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PREFACE 

Over a decade ago, Elsevier published the much-cited volume '%faience-bond 
Theory and Chemical Structure" (Studies in Physical and Theoretical Chemistry, 
vol. 64) edited by Klein and Trinajsti~. Since then, there have been very significant 
advances in methodology and many new researchers have entered the field. The 
l as t  ten years have also seen a vast increase in the range of applications of 
methodology based on valence bond (VB) theory. As such, it seemed timely to 
publish a successor and complement to the earlier book. 

The editor has attempted a selection of contributions by leading researchers 
from throughout the world. A wide range of work in the field is represented but, 
perhaps, with a greater emphasis on work in chemistry than in physics. The last 
two decades have certainly seen the re-emergence of ab initio valence bond 
theory as a serious tool for quantum chemical studies of molecular electronic 
structure and reactivity. Of course, one of the main attractions of VB approaches 
stems from the direct links between variational wavefunctions and more classical 
ideas of bonding. In physics there has been a vast change in attitude with 
extensive VB-based work following from the suggestion of P.W. Anderson in 1986 
that  a resonating valence bond (RVB) description was crucial in understanding 
high-temperature superconductivity. Various chapters in the present volume 
touch on such matters and provide a view of the extensive, predominantly 
semiempirical, research in this important area. 

As is the nature of any such volume, a few people were unable to contribute 
and some important work will have been inadvertently overlooked. Nevertheless, 
the editor believes that  a reasonable snapshot of the diverse field of VB theory is 
presented here. The general, historical development of VB theory is addressed in 
a few of the present chapters (such as those of Gallup and of Klein). Much more 
concerning this history may be found in the earlier Elsevier volume. Most of the 
present contributors were encouraged to focus particularly on work from the last 
decade, and to emphasize recent advances in methodology and recent 
applications. The editor is grateful to Doug Klein for advising on potential 
contributors and for his helpful comments on some of the manuscripts. It should 
certainly be clear from the exciting range of work described in this book that  the 
future of VB theory looks very bright. 

David L. Cooper 
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Chapter 1 

A short history of VB theory 

G. A. Gal lup  

Department of Physics and Astronomy, University of Nebraska-Lincoln, 
Lincoln, Nebraska 68588-0111 

I N T R O D U C T I O N  

Shortly after quantum mechanics evolved Heitler and London[I] applied the 
then new ideas to the problem of molecule formation and chemical valence. 
Their treatment of the H2 molecule was qualitatively very successful, and 
this led to numerous studies by various workers applying the same ideas 
to other substances. Many of these involved refinements of the original 
Heitler-London procedure, and within three or four years, a group of ideas 
and procedures had become reasonably well codified in what was called the 
valence bond (VB)* method for molecular structure. 

A few calculations were carried out earlier, but by 1929 Dirac[2] wrote: 

The general theory of quantum mechanics is now almost com- 
plete, the imperfections that still remain being in connection with 
the exact fitting in of the theory with relativity ideas. These give 
rise to difficulties only when high-speed particles are involved, 
and are therefore of no importance in the consideration of atomic 
and molecular structure and ordinary chemical rea~ions . . . .  
The underlying physical laws necessary for the mathematical the- 
ory of a large part of physics and the whole of chemistry are thus 
completely known, and the difficulty is only that  the exact appli- 
cation of these laws leads to equations much too complicated to 
be soluble . . . .  

*A list of acronyms used in this chapter is in an appendix. 



Since these words were written there has been no reason to feel that they 
are incorrect in any way. Perhaps the only difference between attitudes 
then and now are that, today, with visions of DNA chains dangling before 
our eyes, we are likely to have an even greater appreciation of the phrase 
"much too complicated to be soluble" than did early workers. 

The early workers were severely hampered, of course, by the consider- 
able difficulty of carrying out, for even small systems, the prescriptions of 
VB theory with sufficient accuracy to assess their merit. Except for H2 and 
perhaps a few other molecules and ions, no really accurate VB calculations 
were possible, and, to make progress, most workers had to resort to many 
approximations. There thus arose a series of generalizations and conclu- 
sions that were based upon results of at least somewhat uncertain value. 
In their review of early results, Van Vleck and Sherman[3] comment upon 
this point to the effect that a physical or chemical result was not to be 
trusted unless it could be confirmed by several calculations using different 
sorts of approximations. It is perhaps only to be expected that such cross 
checking was rather infrequently undertaken. 

In this chapter we have two goals. The first is to give a general picture of 
the sweep of history of VB theory. We restrict ourselves to ab initio versions 
of the theory or to versions that might be characterized as reasonable 
approximations to ab initio theory. Our second goal is to identify a few of 
the early ideas alluded to in the previous paragraph and see how they hold 
up when they are assessed with modern computational power. The list is 
perhaps idiosyncratic, but almost all deal with some sort of approximation, 
which generally will be seen to be poor. 

2 His tory:  P r e W W I I  

In the next few sections we give an historical description of the activity 
and ideas that led to our current understanding of VB methods. As with 
so much other human activity, progress in the development of molecular 
theory was somewhat suspended by the second world war, and we use that 
catastrophe as a dividing point in our narrative. 

Almost all of the ideas were laid down before WWII, but difficulties in 
carrying out calculations precluded firm conclusions in any but the simplest 
cases. The H2 molecule does allow some fairly easy calculations, and, 
in the next section, we give a detailed description of the Heitler-London 
calculations on that molecule. This is followed by descriptions of early 



work of a more qualitative nature. 

2.1 Hei t ler -London Treatment  

The original treatment of the H2 molecule by Heitler and London[I] as- 
sumed a wave function of the form 

= N[lsa(1)lsb(2) :t= lsb(1)lsa(2)][a(1)~(2) ~ ~(1)c~(2)], (1) 

where the upper signs are for the singlet state and the lower for the triplet, 
the "a" and "b" subscripts indicate ls  orbitals on either proton a or b, 
and a and ~ represent the ms -- -1-1/2 spin states, respectively. When the 
function of Eq. (1) and the Hamiltonian are substituted into the variation 
theorem, one obtains the energy for singlet or triplet state of H2 as 

J (R)  4- K ( R )  
E(I'3)(R) = 2EH + 1 -t- T (R)  " (2) 

Here EH is the energy of a normal hydrogen atom, J(R)  was called the 
Coulomb integral, K ( R )  was called the exchange integral, and T(R)  was 
called the overlap integral. The reader should perhaps be cautioned that 
the terms "Coulomb", "exchange", and "overlap" integrals have been used 
by many other workers in ways that  differ from that initiated by Heitler 
and London. For the present article we adhere to their original definitions, 

J(R)-  {lsa(1)lsb(2)lV(1,2)llsa(1)lsb(2)}, (3) 

K(R)-- (lsa(1)lSb(2)iY(1,2)JlSb(1)lsa(2)}, (4) 

T(R) "- (lsa(1)lSb(2)llSb(1)lsa(2)}, 

- (lsa(1)llsb(1)} 2, and 

v(1 ,  2) = + + 7R~ (5) 

These equations are obtained by assigning electron 1 to proton a and 2 to b, 
so that the kinetic energy terms and the Coulomb attraction terms --l/r~o-- 
l/r2b give rise to the 2EH t e r n  in Eq. (2). Y(1, 2) in Eq. (5) is then that 
part of the Hamiltonian that  goes to zero for the atoms at long distances. 
It is seen to consist of two attraction terms and two repulsion terms. As 
observed by Heitler and London, the bonding in the H2 molecule arises 
from the way these terms balance in the J and K integrals. We show a 
graph of these integrals in Fig. (1). The energy of Eq. (2) can be improved 
in a number of ways, and we will discuss the way the Heitler-London theory 
predicts bonding after discussion of one of these improvements. 
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Figure 1: The relative sizes of the J(R) and K(R) integrals. The values are in eV. 

The ls  orbitals in Eq. (1) represent the actual solution to the isolated 
H-atom. When we include an arbitrary scale factor in the exponent of the 
l s orbital we symbolize it as 

1~'= ~ e x p ( - ~ ) .  (6) 
When the ls  ~ orbital is used in the place of the actual H-atom orbital, one 
has a as a variation parameter to adjust the wave function. The energy 
expression becomes 

El'3(a, R) = 2EH + (a -- 1) 2 + a J(~ 4- K(aR)  
1 =l= T(aR) ' (7) 

which reduces to the energy expression of Eq. (2) when a = 1. The changes 
brought by including the scale factor are only quantitative in nature and 
leave the qualitative conclusions unmodified. 

It is important to understand why the J(R) and K(R)  integrals have 
the sizes they do. We consider J(R) first. As we have seen from Eq. (5), 
V(1, 2) is the sum of four different Coulombic terms from the Hamiltonian. 
If these are substituted into Eq. (3), we obtain 

J(R) = =j~(R) + j , (R)  + ~/R, 

j~(R) = < l s ~ l -  l/rblls,,) - < l sb[ -  l/r~[lsa>, 

j2(R) = (ls.(1)lsb(2)]l/rl211sa(1)lsb(2)>. 



The quantity jI(R) is seen to be the energy of Coulombic attraction be- 
tween a point charge and a spherical charge distribution, j2(R) is the en- 
ergy of Coulombic repulsion between two spherical charge distributions, 
and 1/R is the energy of repulsion between two point charges. J(R) is 
thus the difference between two attractive and two repulsive terms that  
cancel to a considerable extent. The magnitude of the charges is one in 
every case. This is shown in Fig. (2), where we see that  the resulting 
difference is only a few percent of the magnitudes of the individual terms. 
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Figure 2: Comparison of the sizes of j2 + 1/R and -2jl that comprise the positive and 
negative terms in the Coulomb integral. Values are in Hartrees. 

This is to be contrasted with the situation for the exchange integral. In 
this case we have 

K(R) 
kl(R) 
k2(R) 

= 2kz(R)S(R) + k2(R) + S(R)2/R, 
= ( l s a [ -  1/rbilSb)= ( l s a [ -  1/rallsb), 
= (1s.(1)lsb(2)ll/ri211s.(2)1Sb(1)). 

The magnitude of the charge in the overlap distribution, lsalsb, is S(R), 
and here again, the overall result is the difference between the energies of 
attractive and repulsive terms involving the same sized charges of different 
shaped distributions. The values are shown in Fig. (3), where we see that  
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Figure 3: Comparison of the sizes of ~ + S2/R and -2kls that comprise the positive 
and negative terms in the exchange integral. Values are in Hartrees. 

now there is a considerably greater difference between the attractive and 
repulsive terms. This leads to a value about 20% of the magnitude of the 
individual terms. 

These values for J(R) and K(R) may be rationalized in purely elec- 
trostatic terms involving charge distributions of various sizes and shapes.* 
From the point of view of electrostatics, J(R) is the interaction of points 
and spherical charge distributions. The well-known effect, where the inter- 
action of a point and spherical charge at a distance R is due only to the 
portion of the charge inside a sphere of radius R, leads to an exponential 
fall-off J(R), as R increases. 

The situation is not so simple with K(R). The overlap charge distri- 
bution is shown in Fig. (4) and is far from spherical. The upshot of the 
differences is that the k2(R) integral is the self-energy of the overlap dis- 
tribution and is more dependent upon its charge than upon its size. In 
addition, at any distance there is in kl(R) a portion of the distribution 
that surrounds the point charge, and, again, the distance dependence is 
decreased. The overall effect is thus that shown in Fig. (1). 

*It should not be thought that the result IJ(R)] < < IK(R)I is peculiar to the l s  orbital shape. It is 
fairly easy to show that a single spherical Gaussian orbital in the place of the l s  leads to a qualitatively 
similar result. 
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Figure 4: The overlap charge distribution when the H-H distance is near the molecular 
equilibrium value. We show an altitude plot of the value on the x - z  plane. 

We have not yet spoken of the effect of optimizing the scale factor in 
Eq. (7). Wang[4] showed, for the singlet state, that it varies from 1 at 
R = oo to about 1.17 at the equilibrium separation. Since both d and 
K have relatively small slopes near the equilibrium distance, the principal 
effect is to increase the potential energy portion of the energy by about 
17%. The (c~- 1) 2 term increases by only 3%. Thus the qualitative picture 
of the bond is not changed by this refinement. 

We have gone into some detail discussing the Heitler-London treatment 
of H2, because of our conviction that it is important to understand the 
details of the various contributions to the energy. Our conclusion is that 
the bonding in H2 is due primarily to the exchange effect caused by the 
combination of the Pauli exclusion principle and the required singlet state. 
Early texts (see e .g . ,  [5]) frequently emphasized the r e s o n a n c e  between the 
direct and exchange terms, but this is ultimately due the principles in the 
last sentence. The peculiar shape of the overlap distribution leads to the 
major portion of the chemical bonding energy.* 

*Those familiar with the language of the molecular orbital picture of bonding may be surprised that 
no paratleJ to the ddocalization energy seems present in our description. That effect would occur in the 
VB treatment only if ionic terms are included. We thus conclude that delocalization is less important 
than the exchauge attraction in bonding. 



2.2 Extensions past the simple Heitler-London-Wang result 

After the initial qualitative success of the simple VB calculation, further 
refinements that might be called multiconfigurational were investigated. 
These involve the introduction of polarization[6] and ionic[7] terms into the 
wave function. All of these refinements improve the quantitative agreement 
of the bond dissociation energy, De, with experiment, but any treatment 
so heavily dependent upon the H l s  and po orbitals under-represents the 
electron correlation required to obtain better answers. At the time, such 
a treatment was carried out by James and Coolidge[8], but this was not 
really an extension of the Heitler-London-Wang calculation in any usefully 
physical sense. 

2.3 Polyatomic molecules 

The original Heitler-London calculation, being for two electrons, did not 
require any complicated spin and antisymmetrization considerations. It 
merely used the familiar rules that the spatial part of two-electron wave 
functions are symmetric in their coordinates for singlet states and anti- 
symmetric for triplet states. Within a short time, however, Slater[10] had 
invented his determinantal method, and two approaches arose to deal with 
the twin problems of antisymmetrization and spin state generation. When 
one is constructing trial wave functions for variational calculations the 
question arises as to which of the two requirements is to be applied first, 
antisymmetrization or spin eigenfunction. 

0 Methods based upon Slater determinantal functions (SDF). When we 
take this approach, we are, in effect, applying the antisymmetrization 
requirement first. Only if the orbitals are all doubly occupied among 
the spin orbitals is the SDF automatically, at the outset, an eigen- 
function of the total spin. In all other cases further manipulations are 
necessary to obtain an eigenfunction of the spin, and these are written 
as sums of SDFs. 

2. Symmetric group methods. When using these we, in effect, first con- 
struct n-particle (spin only) eigenfunctions of the spin. From these we 
determine the functions of spatial orbitals that must be multiplied by 
the spin eigenfunctions in order for the overall function to be antisym- 
metric. It may be noted that this is precisely what is done in almost 
all treatments of two electron problems. Generating spatial functions 



with the required properties leads to considerations of the theory of 
representations of the symmetric groups. 

It is difficult to recreate today the attitudes that determined which of these 
approaches people chose. We can speculate that for small systems the 
basic simplicity of the SDF approach was appealing. The group theoretic 
approach seemed to some to be over-complicated. We quote from the Van 
Vleck and Sherman[3] review. 

�9 . . the technique of the permutation group is complicated, and 
more general than needed for practical purposes because the Pauli 
principle must be satisfied after the addition of spin. In the lan- 
guage of group theory, many "characters" for the orbital permu- 
tation group are not compatible with the Pauli principle... Thus 
the character theory is too general. 

One must agree that the precise recipe implied by Van Vleck's and Sher- 
man's language is daunting. The use of charac t e r s  of the irreducible repre- 
sentations in dealing with spin state-antisymmetrization problems does not 
appear to lead to any very useful results. From today's perspective, how- 
ever, it is known that some irreducible representation matrix elements (not 
just the characters) are fairly simple, and when applications axe written 
for large computers, the systematization provided by the group methods 
is useful. 

2 . 4  T h e  H e i t l e r - R u m e r  M e t h o d  f o r  p o l y a t o m i c  molecules 

Heitler and Rumer[9] gave a generalization of the H2 molecule results for 
polyatomic molecules. In these the quantities corresponding to the overlap 
in the normalization integral (the T in (1 • T) -1) of Eq. (2) were set 
to zero, and permutations of higher order than binary were ignored in 
evaluating matrix elements. For the special case of a central atom, C of 
high multiplicity bonded to other atoms, P, Q,- �9 -, they arrived at the total 
energy for the state of lowest multiplicity, 

E = E c + E p + E Q + . . . + J c p q . . . + p p K c p + p q K c Q +  . . . .  p p p q K p Q  . . . .  , 

(s) 
where pp etc. ,  are the number of pairs of electrons in the C - P  bond etc. ,  

Jc~q... is the simple sum of all of the Coulomb integrals and Kcp etc. ,  

are the exchange integrals. In addition, this formula requires all of the 
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atoms be in S states. Eq. (8), although fairly impressive, has too many 
restrictions and approximations to be really satisfactory. In Section 4.1 we 
return to an examination of some of these approximations. 

2.5 Sla ter ' s  b o n d  funct ions  

Fairly soon after the Heitler-London calculation, Slater, using his determi- 
nantal functions, gave a generalization to the n-electron VB problem[10]. 
This was a popular approach and several studies followed exploiting it. It 
was soon called the method of bond eigenfunctions. A little later Rumer[ll] 
showed how the use of these could be made more efficient by eliminating 
linear dependencies before matrix elements were calculated. 

Slater's bond eigenfunctions constitute one choice (out of an infinite 
number) of a particular sort of basis function to use in the evaluation of the 
Hamiltonian and overlap matrix elements. They have come to be called the 
Heitler-London-Slater-Pauling (HLSP) functions. Physically, they treat 
each chemical bond as a singlet-coupled pair of electrons. This is the 
natural extension of the original Heitler-London approach. In addition 
to Slater, Pauling[12] and Eyring and Kimbal[13] have contributed to the 
method. Our following description does not follow exactly the discussions 
of the early workers, but the final results are the same. 

Consider a singlet molecule with 2n electrons, where we wish to use a 
different atomic orbital (AO) for each electron. We can construct a singlet 
eigenfunction of the total spin as the product of n electron pair singlet 
functions 

r -- [ a ( 1 ) ~ ( 2 ) -  ~ (1 )a (2 ) ] [a (3 )~(4 ) -  ~(3)a(4)] 

x . . .  x [ a ( 2 n -  1) f / (2n)-  f / ( 2 n -  1)ct(2n)] , 

where, clearly, S ~  = 0. Consider the total spin raising* operator, J14] 

(9) 

and we operate with it upon ~. This results in zero, since for every pair 
function in Eq. (9) there is a corresponding pair of terms in S, and, e.g., 

( s ,  + s ~ ) [ ~ ( ~ ) ~ ( i )  - ~ ( ~ ) ~ ( / ) ]  = [ . ( ~ ) . ( j )  - . ( ~ ) ~ ( j ) ]  

- -  0 .  

*The individual spin raising operator satisfies S a  = 0 a n d  8[3 = a 

2n  2 n  

s = s~ + is~ = ~ s~k + iSyk = ~ Sk, (10) 
k--O k=O 
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Now, the total spin operator may be written as S 2 = S t S  + Sz(Sz + 1), 
and, therefore, it is seen that  $2~ = 0 and is a singlet spin function. 

We now multiply (I) by a product of the orbitals, one for each particle, 
Ul(1)u2(2)--. u2n(2n), where ul, u2, .-- u2n is some particular ordering of 
the orbital set. When we apply the antisymmetrizer to the function of space 
and spin variables, the result can be written as the sum of 2 n SDFs. It is 
fairly easily seen that  there are (2n)!/(2nn!) different 2n-electron functions 
of this sort that  can be constructed. Rumer's result, referred[l l] to above, 
shows how to remove all of the linear dependences in this set and arrive 
at the minimally required number, (2n)!/[n!(n + 1)!], of bond functions to 
use in a quantum mechanical calculation. 

2.5.1 The perlect  pair ing f u n c t i o n  

We have given a general discussion of the bond eigenfunction method and 
have pointed out that  using all of the Ruiner diagrams gives functions that  
completely span the subspace of the particular configuration addressed. 
Many of the early calculations used only one of the Rumer functions, and 
in this case the calculations were called perfect pairing results. Of course, 
each Ruiner function represents perfect pairing between a particular set 
of orbitals, but the perfect pairing approximation always implied that  the 
paired orbitals had a relation to the actual bonding of the molecule. 

As an example, consider methane. If the carbon atom L-shell orbitals 
are arranged as tetrahedral hybrids, we can take the tatbtctd configuration 
and combine this with an SaSbScSd configuration of the four hydrogen atoms. 
Table 1 shows some numbers of states associated with these orbitals. It is 

Table I" Numbers of states under various constraints for methane and four tetrahedral 
hybrids and four H-atom orbitals. 

Ionic Number of States 
All Singlet States yes 

All States of 1A1 Symmetry yes 
All States with t4s 4 no 

All 1A1 States with t4s 4 no 
All States with tatbtctdSaSbSc8 d n o  

AH 1A1 States with ta~btctdSaSb$cSd n o  

Perfect pairing State (1A1) no 

1764 
164 
86 
II 
14 
3 
1 

clear that using only the single perfect pairing function represents a consid- 
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erable constraint upon the wave function. Nevertheless, actual calculations 
show that it is the largest component of the full wave function, although 
not overwhelmingly so. 

Pauling's criterion of maximum overlap led to the idea that the tetra- 
hedral hybrids should be the most effective in the the perfect pairing wave 
function. People realized, however, that the effective state of the C atom in 
this wave function was not the ground state but a mixture of excited states 
determined by the detailed nature of the state. Van Vleck dubbed this the 
valence state of carbon, and one of the concerns of the early workers was 
the determination of the energy of this state and the corresponding influ- 
ence this has upon the C-H bond energy in hydrocarbons. We examine 
these questions in more detail later in Sec. 4.4, but it must be emphasized 
that this whole question hinges upon the use of the perfect pairing wave 
function alone in determining energies. 

2.6 Symmetric group theoretic approaches 

The early workers, when treating two electron systems, usually made the 
observation that singlet states spin functions are antisymmetric while triplet 
spin functions are symmetric with respect to the interchange of particles, 
i.e., 

~ [a (1) /~(2)  -/~(1)a(2)] �9 singlet 

a(1)a(2) 

V~[a(1)/~(2) +/~(1)a(2)] " t r i p l e t  

Consequently, for the total wave function to be properly antisymmetric, the 
spatial function to be multiplied by the spin functions must be symmetric 
or antisymmetric for singlet or triplet states, respectively. Satisfying these 
requirements may be made more explicit in the following way. 

The antisymmetrizer for two electrons may be written 

A = 1/211- (12)r(12)s], (11) 

where (12) stands for the binary interchange and the r subscript indicates 
this permutation is to be applied to spatial functions and t h e ,  subscript 
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indicates application to spin functions.* We thus factor the permutation 
into a space and a spin part. We may write idempotent symmetrizers or 
antisymmetrizers for either space or spin functions as 

3~ = */211 + (12),], 
A = ' / 2 [* -  (12) 1, 

where i = r or s. With this we obtain 

x = s A. + (12) 

as a "factored" form of A. We work with Eq. (12) in the following way. 
We can use one of the spin eigenfunctions above, symbolizing it by e s ,  

and multiply it by an arbitrary spatial function, .~., to obtain a function of 
both space and spin, 

S �9 (13) 

which is, of course, not antisymmetdc. Applying A to ~I, we obtain 

A ~  - s a = . ~  As 

If oSm is singlet, only the first term on the right of Eq. (14) survives, and 
the spatial part  of the function, $rE, is symmetric. For any one of the three 
triplet functions the other term on the right of Eq. (14) is the one that  
survives with the consequence that  ArE is the required spatial function. 
These axe the familiar results, of course. 

We have given a short description of the two electron case. The impor- 
tant point is that  there is a generalization of Eq. (12) to n electrons. It 
takes the general "factored" form 

A(1 . - .  n) -- E( ,/~- ),(QT'),, (15) 
i 

where P ~  and Q~ are sums of permutations with coefficients that  axe 
determined by the irreducible representation matrices of the symmetric 
group, S,. We write the general function to be used in our calculations as 

--. S = =OM, (16) 

where E is an n-electron spatial function and 0 s is an eigenfunction of 
the total spin. The important result is that  op s (Qi)aOM is zero for most of 

�9 We write the antisymmetrizer as a properly idempotent operator for this discussion, contrary to the 
common practice that  uses a x / ~  prefactor. 
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the terms,* and this is the source of the simplifications obtained by using 
symmetric group methods in atomic or molecular calculations. There is 
not room here to give further details of these methods, but we do discuss 
the nature of OSM. 

The n-electron spin functions are sums of products of n a or/~ functions 
that  satisfy 

2 S S O  m = h2S(S+l)O s ,  and 
s , e  s = 

Both the S 2 and Sz operators are symmetric sums of operators for each 
particle and, thus, both commute with every permutation of the n particle 
labels. Therefore, the eigenfunctions and eigenvalues of S 2 may be classified 
by the irreducible representations of the symmetric group. The important 
result is that there is a one-to-one relation between eigenvalues of S 2 and 
nonequivalent irreducible representations of the groups. We will not give 
the precise result here, there is a unique generalization of Eq. (12) for the 
n electron case. Therefore, applying the antisymmetrizer to an n-electron 

S space-spin function of the form mE) m results in a space function appropriate 
to the total spin quantum number S and satisfying the Pauli principle. 

Serber[15] has contributed to the analysis of symmetric group methods 
as an aid in dealing with the twin problems of antisymmetrization and 
spin state. In addition, Van Vleck espoused the use of the Dirac vec- 
tor model[16] to deal with permutations.[17] Unfortunately, this becomes 
more difficult rapidly if permutations past binary interchanges are incor- 
porated into the theory. Somewhat later the Japanese school involving 
Yamanoucld[18] and Kotani et al.[19] also published analyses of this prob- 
lem using symmetric group methods. 

3 History: PostW-~VII and automatic computation 

The period during and about ten years after WWII saw the beginnings 
of the development of automatic computing machinery. Although early 
workers made heroic efforts in many calculations, computers allowed cal- 
culations of molecular structure that were far too tedious to undertake by 
hand or to expect reliable results. The new computers thus allowed many of 
the quantitative procedures worked out earlier to be chee/~ed and accepted 

*In the two electron case one term was zero and the other not. 
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or abandoned. Nevertheless, one of the principal developments in the late 
1940s was a new way of arranging the orbitals in VB calculations. In this 
section we start with the Coulson-Fisher approach and follow with other 
proposals that grow naturally out of it. Much more recent developments in 
computers have also allowed multiconfigurational VB treatments of a size 
unimagined 45 years ago, and we also describe these in this section. 

3.1 T h e  Coulson and Fisher  t r e a t m e n t  of H2 

Coulson and Fisher[20] took a new step in molecular calculations with their 
treatment of H2 in which the orbitals were non-orthogonal, but extended 
over both centers. They do not actually call their treatment a VB calcu- 
lation, but their idea is an important step in the development of the ideas 
of others who do use the VB label in describing their treatments. 

The essence of this method, when illustrated with H2, is to write the 
two orbitals for the covalent Heitler-London function as 

A(~ = N(ls~ + clS~b), and 

B(~  -- N(cls~ + ls~). 

The constant c provides a parameter to vary during optimization. They, 
in effect, used molecular orbital (MO)s in the wave function, but this ter- 
minology is not usually used in the current context. The introduction of 
this sort of orbital provides the same effect as ionic terms in the more tra- 
ditional treatment. The next two sections give modern extensions of this 
method. 

3.1.1 Goddard's gener~dized VB 

Goddard[21] made the earliest important generalization to the Coulson- 
Fisher method. Goddard's generalized VB (GGVB) wave function is writ- 
ten in terms of orbitals that are linear combinations of the AOs. Using the 
genealogical set of spin functions in turn and 

-- ,4(1- . -n)~(1-- -  n)OSMi, (17) 

there are i = 1, 2,--- ,  f ,  

f = 2 S + 1 (  n + l  ) (18) 
n + l  n/2- S 
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different trial wave functions that can be constructed. Goddard designated 
these as the G1, G2,-.-, Gf methods, the general one being Gi. For each 
of these functions the total energy may be optimized with respect to the 
coefficients in the orbitals. In general, the orbitals are grouped into two 
sets; orthogonality is enforced within the sets but not between them. Using 
the calculus or variations in the usual way, one arrives at a set of Fock-like 
operators that determine the optimum orbitals. The result is a set of f 
different energies, and one chooses the wave function for the lowest of these 
as the best GGVB answer. In actual practice only the G1 or Gf methods 
have been much used. 

In simple cases the G1 is a HLSP function while the Gf wave function is 
a standard tableaux function, which we describe below in Sect. 3.3. For Gf 
wave functions one may show that  the above orthogonality requirement is 
not a real constraint on the energy. On the other hand, no such invariance 
occurs with G1 or HLSP functions, so the orthogonality constraint has a 
real impact on the calculated energy in this case and with all other Gi wave 
functions. 

Goddard and his coworkers applied the method to a number of chemical 
problems with an emphasis on orbital following results. 

3.1.2 The spin-coupled VB 

Somewhat later Pyper and Gerratt[22] proposed the spin coupled valence 
bond (SCVB) wave function. Further developments are reviewed by C~r- 
ratt, Cooper, and ~ o n d i [ 2 3 ]  in an earlier volume of this series. These 
workers originally used genealogical spin functions, which produce the ge- 
nealogical representation of the symmetric groups[24], but so long as the 
irreducible representation space is completely spanned, any representation 
will give the same energy and wave function. About the same time van 
Lenthe and Balint-Kurti[25] proposed using an equivalent wave function. 
The principal differences between these proposals deal with methods of 
optimization. We will continue to use the SCVB acronym for this method. 

We have seen that with a system of n electrons in a spin state ~q there 
are, for n linearly independent orbitals, f (given by Eq. (18)) linearly 
independent spatial functions that can be constructed from these orbitals. 
In the present notation the SCVB wave function is written as the general 
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linear combination of these. 

f 

i=1 

where the orbitals in ~bi are, in general, linear combinations of the whole 
AO basis.* The problem is to optimize the Rayleigh quotient for this 
wave function with respect to both the Ci and the linear coefficients in the 
orbitals. In contrast to the GGVB method the orbitals are subjected to 
no orthogonality constraints. 

Using familiar methods of the calculus of variations, one can set the first 
variation of the energy with respect to the orbitals and linear coefficients 
to zero. This leads to a set of Fock-like operators, one for each orbital. 
Gerratt, r al use a second-order stabilized Newton-Raphson algorithm for 
the optimization. This gives a set of occupied and virtual orbitals from 
each Fock operator as well as optimum Cis. 

The SCVB energy is, of course, just the result from this optimization. 
Should a more elaborate wave function be needed, the virtual orbitals are 
available for a more-or-less conventional, but non-orthogonal configuration 
interaction (CI) that may be used to improve the SCVB result. Thus 
improving the basic SCVB result here may involve a wave function with 
many terms. 

SCVB wave functions for very simple systems appear similar to those 
of the GGVB method, but the orthogonality constraints in the latter have 
increasingly serious impacts on the results for larger systems. 

3.1.3 T ~  B O V B  method  

More recently Hiberty et a/.[26] proposed the breathing orbital valence 
bond (BOVB) method, which can perhaps be described as a combination 
of the Coulson-Fisher method and techniques used in the early calculations 
of the Weinbaum.[7] The latter are characterized by using differently scaled 
orbitals in different VB structures. The BOVB does not use direct orbital 
scaling, of course, but forms linear combinations of AOs to attain the same 
end. Any desired combination of orbitals restricted to one center or allowed 
to cover more than one is provided for. These workers suggest that  this 
gives a simple wave function with a simultaneous effective relative accuracy. 

*The requirements of symmetry may modify this. 
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3.2 More recent developments in symmetric  group methods 

Earlier symmetric group procedures were usually based upon the irre- 
ducible representation matrices corresponding to the various schemes that 
had been developed for determining spin eigenfunction. After WWII the 
earlier work of Young on symmetric groups found application to the prob- 
lems of implementing VB ideas. Matsen and coworkers[27] introduced what 
they termed a spin-free approach. Somewhat later the present author[30] 
introduced VB basis functions based upon Young's standard tableaux rep- 
resentation. 

All methods produce one or another of the infinity of irreducible rep- 
resentations of the symmetric groups, and, if basis sets always completely 
span the representation, the quantum mechanical results are the same. 
One of the advantages of Young's procedure is the way it dearly shows the 
connections among the various ways that basis sets can be arranged. 

The concept of the tableau is central to Young's theory, and we use only 
the portions of the theory necessary to discuss VB theory. For a particular 
set of n orbitals u l - - . un  and n electrons, symbols for the orbitals may 
be arranged in a two-column table, in which the two columns are not 
necessarily the same length, 

U l  U n - k + l  

�9 U n 

l t n - k  

The difference in the lengths of the columns is related to the spin; the total 
spin quantum number is S = n / 2 -  k. Clearly, k <_ n/2. In the tableau 
the orbitals are associated with particles labeled sequentially down the first 
and then down the second column. The subscripts on the orbitals label 
the functions, not the arguments. 

Young defined two operators, the row symmetrizer P and the column 
antisymmetrizer j~f, and we assume the these operate on (permute) the 
particle labels not the orbital labels. Each tableau designates a product of 
orbitals with a particular ordering 

Z = Ul(1)u2(2).-- u,(n). (20) 

As the names suggest 79 is the product of k symmetrizing operators for the 
particles in the rows, 

"P = 112[I + (1, n -  k + 1)]--. 1/21I + (k, n)], (21) 
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and Af is the product of the two antisymmetrizers of the columns 

.Af = J r ( 1 . - - n -  k).A(n- k + 1... n). 

The (i, j)  symbol in Eq. (21) stands for a binary interchange of the particles 
indicated. It will be observed that the particles operated upon in these 
operators are related closely to the way the particle labels occur in the 
tableau. As we have defined them, P and A[ are strictly idempotent. 

Using the operators we have defined and the spatial function ~, new 
functions may be constructed, e.g., ~ .  It should be clear that this func- 
tion now is insensitive to the positions of orbitals in the first k rows, i.e., 
one could interchange ul and U,-k+l, for example, without changing ~ .  
Similarly, any rearrangement (permutation) of the orbitals in a column 
will do no more that change the sign of j ~ .  Permutations that change 
both the row and column position of orbitMs will result in changing these 
projected functions. 

Another central result of Young's work, when stated in our current 
language, is that A / ' ~  is equiv~ent to the perfect pairing function of Slater 
with the orbitals in the same rows paired.[27] At what might be called the 
other extreme, Heitler's and Rumer's early work assumed that diatomic 
molecules interacted with the atoms in their highest spin states consistent 
with the configuration, and these functions are equivalent to ~Af~, where 
the orbitals in a column are associated with one of the atoms. A polyatomic 
analog of this situation exists. Thus, merely inverting the order in which 
the operators are applied, passes from one type of function to the other. 

In discussions of the total spin[31] of multielectron systems the spin 
branching diagram is frequently used. Fig. (5) shows a version. The j ~ P  
operator corresponds to the branch in the diagram where the lowest line 
is always taken and the :PA/" operator to the branch where the highest 
possible branch is taken. The two Young operators thus correspond to 
the first and last rows of the genealogical irreducible representations of 
the symmetric groups, and, hence, to Goddard's G1 and Gf "methods", 
respectively. Therefore, Young's tableaux and the corresponding operators 
constitute a way of, at least partly, unifying the various techniques that 
have been devised for dealing with spin and antisymmetrization and VB 
calculations. 

As a last point we note that the present author and his coworkers[36] 
devised an algorithm for the calculation of matrix elements of the overlap 
and Hamiltonian based upon the PjV" operator that is n 5 in its worst case, 



20  

5/2 

3/2 

I/2 

. . . . . .  ! . . . . .  ! ~ ' | ' | ' | ' a' ! 

I , , I , , , I , ~ I , ,I . . . .  I , I  , 

0 1 2 3 4 5 6 

Figure 5: The spin branching diagram for 0 to 6 electrons (horizontal axis). The total 
spin quantum number is on the vertical axis. The numbers in the circles give the spin 
degeneracies. 

where n is the number of electrons. There are reasons to believe that this 
is the best exponent that  can be achieved. Transformation to the Af~ 
functions is possible when desired. 

3.3 M u l t i c o n f i g u r a t i o n  methods  

The original Heitler-London treatment with its various extensions was a 
VB treatment that  included several configurations, e.g., the total wave 
function is a sum of terms with spatial functions made up of different 
subsets of the orbitals. This is the essence of multiconfiguration methods. 
The most direct extension of this sort of approach is, of course, the inclusion 
of larger numbers of configurations and the application to larger molecules. 
The computational power allowed calculations of this sort. 

At the same time molecular orbital (MO) methods were seeing a rapid 
development, also because of increased computational ability. These, at 
least on the surface, appear to provide a simpler approach to molecu- 
lar structure calculations. Nevertheless, Matsen and Browne[32] made a 
forceful case for the use of MCVB methods,* indicating the difficulties 

*They called their suggest~ procedure an atomic orbital configuration interaction (AOCI) calculation. 
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that the enforced orthogonality in molecular orbital configuration inter- 
action (MOCI) calculations cause with processes that involve large scale 
relative motions of the nuclei. 

3.3 .1  The multistructure procedure of Balint-Kurti  and Karplus 

Balint-Kurti and Karplus[28] implemented an earlier suggestion of Moflit[29] 
for the evaluation of matrix elements of the Hamiltonian by transforming 
the AOs to an orthogonalized set. If carried out correctly, this involves no 
approximations. The method was applied to ab initio and empirically cor- 
rected calculations of LiF, F2, and F~. The transformation of the matrix 
elements to the orthogonalized form can be quite time consuming for large 
bases. 

3.3.2 The MC, V B  m e t h o d  

The present author and his coworkers[36] devised the multiconiiguration 
valence bond (MCVB) procedure. These calculations involve a direct at- 
tack on the problem of evaluating matrix elements between n-electron func- 
tions of non-orthogonal orbitals. The algorithm depends upon the sym- 
metric group methods of Young and the ~oA/" operator. Although there is 
considerable flexibility allowed in the construction of basis sets, a treat- 
ment that uses a full or nearly full set of n-electron functions based upon 
a minimal AO set and "excitations" into n-electron functions containing 
orbitals designed to provide scaling has been a generally useful strategy. 
As was mentioned above, these wave functions are a generalization of the 
original Heitler-Rumer high spin atomic calculations. If the results are of 
interest a simple transformation to a wave function that is a sum of HLSP 
functions is possible. With today's computers calculations consisting of 
> 105 individual n-electron basis f~anctions can be more or less routine. 

4 Ear ly  ideas 

In reviewing the history of VB methods there stand out a few ideas con- 
cerning approximations that might be made. The author has chosen four 
that allow simple computational tests in today's world, and these are dis- 
cussed in this section. There is little connection between them. 
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4.1 Overlap matr ices  and the  neglect of some permuta t ions  

When the actual Heitler-London treatment of H2 is generalized to n elec- 
trons, the matrix elements that arise involve permutations of higher order 
than binary. When calculations had to be done by hand, the complexities 
could mount rapidly. It was perhaps natural, if not strictly rigorous, for 
people to make the approximation of neglecting these higher order per- 
mutations. There was actually much debate about the validity of such 
an approximation, in general, in spite of its crudeness for H2. Clearly in 
Eq. (2), if the binary permutation would be ignored completely, the same 
energy would be obtained for the singlet and triplet states. When it came 
to considering the denominator, however, it seemed to the early workers 
as if the T(= S 2) might be a higher order effect, and suggestions were 
made that it might be safely ignored. Generalizing this led to the idea for 
n-electron systems that the above mentioned triple, quadruple, and higher 
permutations might be usefully ignored. 

This question was not considered completely ~ e m i c .  In Heisen- 
berg's[33] original theory of ferromagnetism the overlaps between the or- 
bitals at the various sites were ignored. Inglis[34] criticized this, but sug- 
gested that including overlaps made the calculation meaningless since the 
correction due to them scales as n, the number of sites involved. Later, 
Van Vleck[35] showed that Inglis' objection ignored cancellations that mit- 
igate the problem. We will not examine the ferromagnetism problem, but 
will undertake a less ambitious course and investigate the contribution of 
various orders of permutations to the value of the normalization constant 
for VB wave functions. 

The ( I+T)  in Eq. (2) arises from the normalization of the wave function 
for H2. In this section we will investigate the extent to which it might be 
permissible to ignore the permutations of some order and higher when 
normalizing a VB function for n electrons. We shall do this for a standard 
tableau function, where we have an expression for the wave function of any 
multiplicity. 

Therefore, consider a standard tableaux function with orbitals ux, u2, 
�9 --, Un, where they need not all be different, of course, 

'Ul ~ n - k + l  

�9 o 

�9 ' ~ n  

Un-k 
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The orbitals are assumed real, normalized, but not necessarily orthogo- 
nal. The overlaps are symbolized by Sij = Sji = <uiluj). It is shown 
elsewhere[36] that the normalization constant for such a standard tableaux 
function can be written as the integral of a functional determinant, 

C -2 = ( n -  k + 1) fo 1 
A qB 

qBt C 
( 1  - t)n-kdt, (23) 

where q - i ~ t / i l  t). It is observed that q is pure imaginary. The 
determinant is therefore that for a symmetric matrix, but not an Hermitian 
one. In Eq. (23) A is the ( n - k )  x ( n - k )  overlap matrix of the first-column 
orbitals, C, the corresponding k x k matrix for the second-column orbitals, 
and B the ( n -  k) x k matrix of the inter-column overlaps. A, C, and the 
overall matrix are symmetric. Eq. (23) is also written with all of the purely 
group theoretic factors implicit in the functions. This would make C -2 = 1 
if the overlaps between all pairs of orbitals were zero, and, thus, we are 
considering only that part of the normalization constant that is affected by 
the overlaps. The overall matrix is diagonalizable by an orthogonal matrix, 
which is also a function of q, of course. We are actually not interested in 
the transformation matrix, but only the characteristic polynomial of the 
overall matrix. To proceed we prove a theorem. 

Consider an N • N symmetric matrix S that has principal diagonal 
elements all equal to one.* 

T h e o r e m  1 A simple transformation of the characteristic polynomial of 
such a matrix will present it in a form where the contribution from each 
order of permutation to the value of its determinant is displayed as an 
elementary symmetric function of the eigenvalues of S - I. 

Consider the determinant 

[I 4- t ( S -  I)l, 

which is a polynomial in t that may be written 

N 

II + t(S- I)I = I + E s,t'. (24) 
I=2 

Clearly, the sum is just the determinant IS[ when t = 1, and a little 
reflection will convince one that sl is the contribution from the/-order  

*We write this with the symbol, S, since the overlap matrix is the sort we consider. 
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permuted indices. The term with l - 1 is zero, of course, since there can 
be no permutation of one object. 

Let O be the orthogonal matrix that  diagonalizes ( S -  I). Then 

( S -  I)  = Odiag(dad2.. .  dN)O t, (25) 

and we rewrite the determinant of Eq. (24), 

II + t (S  - I)l  = I I + tOdiag(dxd:~.., tiN)O'l, 
N 

= H ( 1 +  td~), 
m=0 

N 

= E (26) 

where am is the m~h-order elementary symmetric function[37] of the eigen- 
values of S -  I, each of which is one less than the corresponding eigenvalue 
of S. Equating coefficients of equal powers of t in our two expressions we 
have sl - al. The elementary symmetric functions are simple to determine 
recursively from the d~.* Indeed, the algorithm is essentially that  to de- 
termine binomial coefficients, as is evident from Eq. (26) if we were to set 
each dm = 1. We note that  al is the trace of S -  I,  which is zero, so that 
s x is also zero as it should be. 

We consider the application of this theorem to the evaluation of the 
integral in Eq. (23) for an STO3G basis calculation of CH4 and a r-only 
calculation of naphthalene. As indicated earlier, we do not attempt to 
address the ferromagnetism problem, but we can note that the overlaps 
in naphthalene much more resemble the magnetism system than do the 
overlaps in a small compact molecule like CH4. 

4.1.1 Sums of permutations of  the same order 

It is useful to examine the symmetric functions of Eq. (26) for the n x n  

1 1 - - - 1  
1 1 --. 1 

s = . . . . . .  , ( 2 7 )  

1 1 - - - 1  

*For our work we really do not need to diagon~i~e S -  I. A simpler procedure ~ to txi~nali~e ~t; 
the characteristic equation is available therefrom by an easy recursion. 

matrix 
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which is, of course, invalid as a legitimate overlap matrix. It does, however, 
allow us to get some idea of the limits that the symmetric functions can 
attain when real overlap matrices are used. 

The matrix of Eq. (27) minus the identity has for eigenvalues n -  1 once 
and-1  n -  1 times. Eq. (26) now gives us 

II + t ( s -  I)! = ( 1 -  t) -111 + ( . -  1)t] 

- ( )  = E ( - 1 ) k ( 1  - k) n 
k--o k ' 

where the standard symbol for the binomial coefficient has been used. The 
significance of this result should be clear. When we consider permutations 
that reorder k indices, the coefficient of t k is the number of even permu- 
tations of that order minus the number of odd permutations of the same 
order. We note that the coefficient of t is zero, as it should be, and the 
coefficients of t 2 and t 3 are just minus the number of binary interchanges 
and plus the number of ternary permutations, respectively. All other terms 
involve differences between numbers of even and odd permutations. In the 
next two sections we consider the overlap matrices for realistic systems. 

4 .1 .2  Application to the r-system of naphthalene 

A ten electron system with each electron in a different orbital could have 
a multiplicity of 1, 3, 5, 7, 9, or 11. The singlet and possibly the triplet 
states are the only physically interesting cases, but we give all of them so 
that trends may be observed. The undecet case has some mathematical 
interest, since it just the determinant of the overlap matrix. Table 2 gives 
our results for the first three of the possible multiplicities and Table 3 gives 
the other three. The tables are arranged in columns showing the order of 
the permutation and the values and the accumulated sums for each order 
and the integral of Eq. (23). It should be clear that these orders represent 
the number of indices permuted at each stage. Except for orders 2 and 3, 
however, they involve permutations with different signatures. Order 4 can 
have, e.g., the permutations (12)(34) and (1234). These both involve four 
indices, but the first is an even permutation and the second is odd. Of 
course, only the antisymmetrizer (undecet case) has =kl coefficients that 
exactly match the corresponding permutation's signature. The permuta- 
tion operators giving other spin values are more complicated, and it would 
be difficult to give rules for the way the terms vary with order. 
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The 2pz orbitals in naphthalene all have nearest neighbor distances that  
are quite close to one another, and the nearest neighbor overlaps do not 
vary much on either side of 0.32. With such a set of overlaps, the nor- 
malization constant does not vary greatly with spin state. Even with a 

Table 2: Convergence of normalization constants for singlet, triplet, and quintet standard 
tableaux functions in the 1r-system of naphthalene. 

Order Singlet Triplet Quintet 
0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1 -0.0000 1.0000 0.0000 1.0000 -0.0000 1.0000 
2 -0.7896 0.2104 -0.9204 0.0796 -0.9295 0.0705 
3 0.0693 0.2796 0.1066 0.1862 0.1223 0.1927 
4 0.2017 0.4814 0.2677 0.4539 0.2570 0.4497 
5 -0.0320 0.4494 -0.0482 0.4057 -0.0481 0.4016 
6 -0.0142 0.4351 -0.0262 0.3795 -0.0254 0.3762 
7 0.0020 0.4371 0.0043 0.3837 0.0055 0.3817 
8 0.0002 0.4373 0.0011 0.3849 0.0005 0.3823 
9 -0.0000 0.4373 -0.0001 0.3848 -0.0002 0.3821 
10 0.0000 0.4373 -0.0000 0.3848 0.0000 0.3821 

Table 3: Convergence of normalization constants for heptet, nonet, and undecet standard 
tableaux functions in the ~r-system of naphthalene. 

Order Heptet Nonet Undecet 
0 1.0000 1.00~ 1.0000 1.00(0 1.0060 1.0000 
1 -0.0000 1.0000 -0.0000 1.0000 0.0000 1.0000 
2 -0.9346 0.0654 -0.9478 0.0522 - 1.1902 -0.1902 
3 0.1269 0.1923 0.1487 0.2009 0.2168 0.0267 
4 0.2526 0.4448 0.2397 0.4407 0.4061 0.4327 
5 -0.0422 0.4026 -0.0505 0.3901 -0.1051 0.3277 
6 -0.0278 0.3748 -0.0173 0.3729 -0.0469 0.2808 
7 0.0044 0.3792 0.0030 0.3759 0.0128 0.2936 
8 0.0013 0.3805 0.0004 0.3763 0.0019 0.2955 
9 -0.0001 0.3804 -0.0000 0.3763 -0.0004 0.2951 
I0 -0.0000 0.3804 0.0000 0.3763 -0.0000 0.2951 

fairly small overlap such as we have here, the sums nevertheless require the 
inclusion of terms up to order 5 or 6 to reach a number close to their final 
values. As we see, the value of C -2 is smallest for the undecet case. 

We note that  the order 2 term for the highest multiplicity is the most 
negative. This must be the sum - ~  S?. in this case, and so it consists of s~ 

all negative terms. 



27 

4 .1 .3  Application to CH4 

An STO3G basis applied to CH4 at its equilibrium geometry yields 9 AOs, 
and, if the C ls  orbital is relegated to "core" [36] status, there are only eight 
orbitals and eight electrons to go into them. For illustration purposes we 
consider C -2 for the AO set {2s, 2px, 2p v, 2pz, ls,, lsb, lsc, lSd}. In Table 4 
we show the values of each of the terms for different orders of permutations 
and also the accumulated sum, which gives information about the rate of 
convergence. Table 5 gives similar results for the heptet and nonet states. 

Table 4: Convergence of normalization constants for singlet, triplet, and quintet standard 
tableaux functions in CH4. 

Order Singlet Triplet Quintet 
0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1 -0.0000 1.0000 - 0 . 0 ( 0  1.0000 -0.0000 1.0000 
2 0.3824 1.3824 -0.1323 0.8677 -0.5916 0.4084 
3 -0.0359 1.3465 -0.0798 0.7879 -0.1242 0.2842 
4 0.2049 1.5514 -0.0101 0.7777 0.0590 0.3432 
5 -0.0237 1.5277 -0.0113 0.7664 0.0383 0.3815 
6 0.0916 1.6193 -0.0132 0.7532 0.0051 0.3866 
7 -0.0065 1.6128 -0.0002 0.7530 0.0023 0.3889 
8 0.0378 1.6506 -0.0038 0.7492 0.0025 0.3914 

Among these values, only the singlet has any great physical interest, but we 

Table 5: Convergence of normalization constants for heptet and nonet standard tableaux func- 
tions in CH4. 

Order Heptet Nonet 
0 1.0000 1.0000 1.00(O 1.0000 
1 -0.0000 1.00~ -0.0000 1.0000 
2 -1.0190 -0.0190 -2.0434 -1.0434 
3 -0.1690 -0.1880 0.2331 -0.8103 
4 0.3249 0.1369 1.3421 0.5318 
5 0.1228 0.2597 -0.1549 0.3770 
6 -0.0166 0.2431 -0.370? 0.0063 
7 -0.0227 0.2205 0.0261 0.0324 
8 -0.0054 0.2151 0.0378 0.0702 

again give all so that the trends can be seen. In general, as the multiplicity 
increases, the value of C -2 decreases. The overlaps within this basis are 
not all positive, so it is difficult to make specific predictions. 
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The overlaps in this molecule are rather larger than was the case with 
naphthalene. The largest is near 0.5. This results in a larger value for the 
singlet state and rather smaller value for the nonet state. 

4.2 Or thogona l i zed  AOs 

In a fairly early discussion of solids Wannier[38] showed how linear combi- 
nations of the AOs could be made that rendered the functions orthogonal 
while retaining a relatively large concentration on one center. In more 
modern language we would now say that he used a symmetric orthonor- 
realization of the AO basis. If we symbolize the overlap matrix for the AO 
basis by S, then any matrix N that satisfies 

N t S N  = I, (28) 

constitutes an orthonormalization of the basis. This requirement on N is 
insufficient to define it uniquely. Additional conditions could include: 

1. Require N be upper triangular. This gives the traditional Schmidt 
orthonormalization. 

2. Set N --- Udiag(s~ ~/2, s~/2, . . .  ,s~ ~/2) where U is the unitary matrix 
diagonalizing S and sl, s2, .-- ,  sn are the eigenvalues. This gives the 
canonical orthonormalization. 

3. Set N = S -~/2. This gives the symmetric orthonormalization, so-called 
because this N is a symmetric matrix for real basis functions. 

An important property of the symmetric orthonormalization is that it 
produces a new set of orbitals that are the closest possible to the origi- 
nal set in a least squares sense. Since evaluating matrix elements of the 
Hamiltonian is always much easier with orthonormal orbitals, this change 
had great attractions for early workers. Unfortunately, it has developed 
that this idea must be used with great care. The requirement of closeness 
in the least squares sense, although almost always well defined, does not 
guarantee that the resulting two orbital sets are close to one another in a 
physically useful sense. 

We may demonstrate this difficulty by giving a result due to Slater.[39] 
Applying a symmetric orthonormalization to the basis normally used in the 
Heitler-London calculation we have a Hls  function on each of two centers, 
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l sa and l sb. The overlap matrix for this basis is 

S =  S 1 ' 

and the inverse square root is 

= 2 ~ -  ~ ~  (3o) + , , , 

where S = (lsailsb), and the signs are appropriate for S > 0. This orthog- 
onalization gives us two new functions 

IA) = Pllsa) + Qllsb), 

IB) = #11~,,) + Pllsb), 

where 

P 

Q 

1 + 
2v/1 + S  

1 
2vq S' 

1 

2vrl ~- S 2 ~ / 1 :  S" 

We use these in a single Heitler-London covalent configuration, A (1) B (2) + 
B(1)A(2), and calculate the energy. When R -+ c~ we obtain E = - 1  au, 
just as we should. At R = 0.741 A, however, where we have seen that  the 
energy should be a minimum, we obtain E = -0.6091 au, much higher 
than the correct value of-1.1744 au. The result for this orthogonalized 
basis, which represents no binding and actual repulsion, could hardly be 
worse. 

Slater says surprisingly little concerning this outcome, but, in light of 
present understanding, we may say that the symmetric orthonormalization 
gives very close to the poorest possible linear combination for determining 
the lowest energy. This results from the added kinetic energy of the orbitals 
produced by a node that is not needed. Alternatively, we may say that 
we have used antibondin9 rather than bonding orbitals in the calculation. 
We have here a good example of how unnatural orthogonality between 
orbitals on different centers can have serious consequences for obtaining 
good energies and wave functions. 

We add another comment about this example and note that using sym- 
metric orthonormalization on the simple two AO basis for the triplet state 
of H2 gives the same answer as that obtained with unmodified orbitals. 
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Since the triplet state is represented by the antisymmetric combination of 
the orbitals, it is invariant to any nonsingular transformation of the two 
orbitals. 

4.3 Relation of Hamiltonian matrix to overlap matrix 

In work on the electronic structure of solids, LSwdin[40] pointed out that 
if the Hamiltonian matrix for a system were a polynomial function of the 
overlap matrix of the basis, H and S would have the same eigenvectors and 
the energy eigenvalues would be polynomial functions of the eigenvalues of 
S. A number of consequences of this sort of relationship are known, but 
so far as the author is aware, no tests of such an idea have ever been made 
with realistic H and S matrices. This may be accomplished by examining 
the commutator, since if 

g = ~ akS k, (31) 
k 

H and S clearly commute, and this would be true even if the sum in Eq. 
(31) were a convergent infinite series, rather than a polynomial. Conversely, 
if the two matrices do not commute, no relation like Eq. (31) connects 
them. 

Even if H and S are functionally independent, one still might argue that 
the commutator is likely to be small, and, thus, the idea could be a useful 
approximation. The difficulty here is with the subtleties of the concept of 
smallness in this context. We will not attempt to address this question 
quantitatively, but satisfy ourselves by examining the commutators of H 
and S for three systems. The first of these is a simple 2 x 2 system for which 
we may obtain an algebraic answer. The other two are matrices from real 
VB calculations of CH4 and the ~r-system of naphthalene. 

4.3.1 A Sx ~ s y s t e m  

Let 

and 

A B ] (32) 
H =  B C '  

s [ls 811 
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The commutator of these two is 

] 0 - ( C -  A)s 
H S -  S H  - ( C -  A)s 0 ' (34) 

and we see immediately that the commutator is zero if the two diagonal 
elements of H are the same. 

We may write H as two terms, the first a part that is a polynomial 
function of S and the second a sort of remainder. 

H ] [(Ac j2 0 ] 
B (A + C)/2  + 0 (C - A) /2  " (35) 

Thus, we see in this simple case that the closeness of the approximation 
depends upon the size the second term in Eq. (35); whether it is really 
a small perturbation upon the system. With these matrices the approxi- 
mation would be good only if the two diagonal elements of H are close in 
value. The 2• case is rather special, however, and we give further more 
complicated examples. 

4.3.2 The 7r-system of naphthalene 

For naphthalene we examine the H and S matrices based upon the both 
the HLSP functions and the standard tableaux functions for the system. 
In both cases we include the non-ionic structures, only. This will give a 
picture of how the situation compares for the two sorts of basis functions. 
In both cases, of course, the dimensions of the matrices are 42x42, the 
number of non-ionic Rumer diagrams for a naphthalene structure. Some 
statistics concerning the commutator are shown in Table 6. It is clear that, 

Table 6: Statistics on commutator HS- SH matrix dements for naphthalene. Lower 
triangle only. All are energies in Hartrees. 

Maximum element 
HLSP STF 

6.8380 x i0 : I  . . . . .  3.5665 x l 0  "I- 

Minimum element 
Minimum absolute value 
Average(Commutator) 
RMS(Commutator) 
Average (H~ - Hjj) 
P~S(H~- H~) 

-6.1237 x I0 - t  

7.9021 • 10 -9 

1.5308 x i0 -a 

2.0458 x I0 - t  

1.3997 x I0 - t  

1.1386 x 10 -1 

-1.4897 x I0 -I 

1.1904 x 10 -4 

1.0838 x 10 -2 

5.7002 x 10 -2 

2.5172 x 10 -I 

3.2597 x 10-I 
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while there are quantitative differences between the two bases, qualitatively 
the results are similar. It should be emphasized that if the commutator 
HS-SH were zero for one of the bases, it would also be for the other. The 
important point to be gleaned from Table 6 is that the root-mean-square 
(RMS) values of the commutator elements and the Hi~ - Hjj differences 
are all very similar. The conclusion is that the perturbation presented by 
the non-commuting part of H is not small in this case, and it would be a 
bad approximation to consider H to be a polynomial function of S. 

4.3.3 The CH4 molecule 

When an STO3G AO basis full VB calculation of CH4 is carried out, there 
are 1716 singlet standard tableaux functions all together. When these 
are combined into functions of symmetry 1A 1 the number of independent 
linear combinations is reduced to 164. Thus the symmetry factored H and 
S matrices are 164)<164. We show the statistics for the HS-SH matrix for 
standard tableaux functions in Table 7. The statistics for HLSP functions 
are not available in this case. It is immediately obvious that the numbers 

Table 7: Statistics on commutator H S -  SH matrix elements for CI'I4. Lower triangle 
only. All are energies in Hartrees. 

STF 
Maximum dement 
Minimum element 
Minimum absolute value 
Average(Commutator) 
RMS(Commutator) 
Average(H, - Hjj) 
RMS(H,,- H#) 

1.5946 x I0  +I 

-1.6021 x 10 +1 
1.3350 x 10 -4  

-2.0447 x 10 - 2  

4.0189 
-3.0335 x 10 -1 

8.7425 • 10 -1 

for CH4 are considerably larger than they were in the case of naphthalene; 
the RMS value of the commutator  elements is nearly 5 times the RMS value 
of H i i -  Hjj. When one considers this in comparison with the results for 
naphthalene, it is not too surprising, since the lr system for that  molecule 
involves AOs of only one kind, whereas with CH4 there are AOs from both 
K and L shells of the carbon. In spite of the large deviations between 
diagonal elements of H, the RMS average of the commutator  elements 
is still larger, as was emphasized above. The non-commuting part of H 
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is very large here and represents a large perturbation. Ignoring it would 
constitute a very crude approximation. 

4.4 The  perfect pairing wave function and the valence state  of 
carbon 

We have defined the '~3erfect pairing" wave function earlier, and in this 
section we will examine some of the effects using this function alone has 
on the energies. This will parallel some of the early treatments, but it is 
not simple to use the computer programs current today to give an exactly 
comparable calculation to those carried out in the early days of molecular 
theory. There are two significant differences. The first is that all early 
calculations on a molecule as large as methane were semiempirical, at least 
to some extent. The second is that they also neglected higher order per- 
mutations in the evaluation of matrix elements. These two approximations 
interact to some extent, of course, but, in any event, would be difficult to 
arrange in a modern program. 

In Table 8 we give the results for several different wave functions and 
two different basis sets. 

1. STO3G. This is the conventional representation of Slater type orbitals 
using three Gaussians apiece.J41] 

2. EOP3G. This basis is the energy optimized three Gaussian basis set 
devised by Ditchfield et a/.[42] This is very nearly the same as the 
(33/3) basis given by Huzinaga et a/.[43] 

In each of these there are four valence orbitals on carbon and one on each 
hydrogen for a total of eight. 

Seven different results are given for each basis set, and in all of them 
the C ls  orbital is doubly occupied in a frozen core. They are coded as 
follows: 

1. FV. The full valence MCVB. According to the Weyl dimension for- 
mula eight electrons and eight orbitals give 1716 basis functions, and 
these support 164 1A1 states. The energies for these wave functions at 
the geometry of the minimum are given as zero in Table 8. All other 
energies in each column are given relative to this one, which is the 
lowest in each case. The absolute energies are given in a footnote in 
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Table 8: Energies for various states and wave functions of CH4. 
These are valence only calculations with a C l s  frozen core. 

Code" 

FV c 

HFC 
HPP 
CFC 
HSTF 
CSTF 
CPP d 

STO3G 
E u i .  D~ ~ 

0.000 eV 19.491 eV 
3.853 18.655 
4.138 22.898 
9.968 12.540 

10.912 11.596 
10.912 11.596 
23.895 5.405 

EOP3G 
EMi,, 

0.000 eV 
3.055 
3.239 
7.488 
8.525 
8.525 

19.575 

De b 

17.307 eV 
17.392 
20.992 
12.959 
11.922 
11.922 

6.795 

aFV, full valence; HFC, hybrid full covalent; HPP, hybrid perfect pairing; 
CFC, Cartesian full covalent; HSTF, hybrid stf; CSTF, Cartesian stf; CPP, 
Cartesian perfect pairing. See the text for further details. 

bThe total four-bond dissociation energy for the corresponding wave func- 
tion. 

CThe full valence total energies: STO3G, -39.80107 au; EOP3G,-39.97968 
a l l  

dNot an A1 state. See text. 

the table, and the absolute energy of any one of the states may be re- 
constructed if so desired. For this calculation we need not differentiate 
between tetrahedral hybrid and Cartesian p orbitals. 

2. HFC. The carbon orbitals are formed into the standard tetrahedral 
hybrids, "pointing" at the H atoms. There are 14 covalent basis func- 
tions and the this row gives the relative energy for the 14 term wave 
function. 

3. HPP. This is the single perfect pairing HLSP function with tetrahe- 
dral hybrids. At the geometry of the energy minimum this function 
is no more than 0.2-0.3 eV higher than the HFC wave function. This 
di~erence represents the deviation from perfect pairing that occurs 
with the covalent only functions. This row also has the largest disso- 
ciation energies, since the C atom is forced into the "valence state" of 
van Vleck at the dissociated geometry. 

4. CFC. The standard Cartesian 2pz, 2py, and 2pz orbitals together with 
the unchanged ls  orbital are used in the 14 term covalent wave func- 
tion. This change produces a considerably larger jump in the energy 
than those before. 
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5. HSTF. This is the single best standard tableaux function with the hy- 
brid orbitals. It corresponds to the high-spin wave function of Heitler 
and Rumer and has C in its 5S state exactly. 

6. CSTF. These energies are the same as the previous set, since the C sS 
state is equally well described by the Cartesian or the hybrid orbitals. 

@ CPP. The Cartesian perfect pairing wave function is by far the worst 
on the energy scale, but this arrangement of AOs is not really appli- 
cable to the present discussion. It is unclear, of course, even how to 
pair the orbitals in this case, and, although it is the energy of a singlet 
state, unlike all the others, a single function cannot have A1 symmetry 
with this sort of wave function and, thus, does not approximate an 
energy eigenstate.. 

Vogel44] used the conventional techniques* of the time to determine 
the actual atomic carbon states in the '%~alence" state. Table 9 shows 
the populations of atomic states that Voge determined. Nevertheless, the 

Table 9: Populations of carbon atom states in '~ l ence  state". 

State Population 
s2~ ' s p  0~i406 

1D 0.0466 
sp 3 5S 0.3125 

s p  0.2820 
ID 0.0313 

p4 s p  0.1406 
ID 0.0466 

valence state concept, although well defined, seems artificial today, since 
it is not experimentally available and since full calculations are so easily 
accessible and give better results. 

There is, however, interest in examining some energy differences from 
Table 8. We may estimate the energies of the valence and the 5S states(above 
the calculated ground state), and these are are shown in Table 10. Thus, 
the HPP row shows the perfect pairing valence state to be around 7 eV 
above the ground state, similar to the value obtained by van Vleck. The 
row marked CSTF gives the estimated energy of the 5S state, and it is 

*/.e., neglecting higher order permutations in evaluating Hamiltonian matrix elements and even binary 
permutations in the overlaps. 
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Table 10: Energies of C atom states at asymptotic C + 4H distances. 

STO3G EOP3G Exp. 
HPP 7.545 6.924 NA 

CSTF 3.017 3.140 4.183 

seen to be about 1 eV below the experimental value. This is expected 
since there should be more correlation energy in the ground state than in 
the 5S state, and these bases are too restricted to give any good account 
of correlation. 

Both the historical results and the modern indicate that, without a 
doubt, the excited valence configuration, sp 3, figures large in bonding in 
the CH4 molecule. The hybridized orbitals give a better energy in the 
restricted calculations than do the Cartesian, but, of course, this difference 
goes away for the full calculations. These have no early counterpart, of 
COUrSe. 
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APPENDIX 

A Acronyms 

AO atomic orbital 

AOCI atomic orbital configuration interaction 

BOVB breathing orbital valence bond 

CI configuration interaction 

GGVB Goddard's generalized VB 

HLSP Heitler-London-Slater-Pauling 

MCVB multiconfiguration valence bond 

MO molecular orbital 

M O C I  molecular orbital configuration interaction 



RIVIS root-mean-square 

SCVB spin coupled valence bond 

SDF Slater determinantal functions 

STF standard tableau function 

VB valence bond 
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Chapter 2 

Modern Valence Bond Description of Gas-Phase Pericyclic Reactions 
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The combination of the spin-coupled formulation of modern valence bond 
theory with intrinsic reaction coordinate calculations provides easy-to-interpret 
models for the electronic rearrangements  that  occur along reaction pathways. We 
survey here the information revealed by such studies of the mechanisms of 
various gas-phase six-electron pericyclic reactions: the Diels-Alder reaction 
between butadiene and ethene, the electrocyclization of cis-l,3,5-hexatriene, the 
1,3-dipolar cycloaddition between fulminic acid and ethyne, and the 1,3-dipolar 
cycloaddition of diazomethane. The fully-variational CASVB strategy proves 
particularly efficient for such studies. 

1. I N T R O D U C T I O N  

The elucidation of reaction mechanisms, and endeavours to predict the 
outcome of wide ranges of chemical reactions, lie at the very hear t  of chemistry. 
Electronic structure theory has made very significant progress in the 
quantitative description of one very important  aspect, namely the changes in the 
geometry and energy of the reacting system on the way from reactants to 
products. The relevant potential surfaces can be studied using a wide range of 
correlated post-Hartree-Fock quantum-chemical approaches, the most advanced 
of which are already capable of providing essentially conclusive results for gas- 
phase processes involving relatively small molecules. 

A second, equally important,  aspect of the theoretical modelling of chemical 
reactions is related to the elucidation of the often radical changes in the 
electronic structure of a reacting system as it evolves from reactants,  through one 
or more transit ion structures and/or reaction intermediates,  to one or more sets 
of products. There is a well-recognized need to develop qualitative models based 
on quantitative wavefunctions but highlighting general features and tendencies 
in chemical structure and reactivity; this can be a very difficult task, especially if 
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one attempts to base such models on the multiconfigurational wavefunctions 
used in most post-Hartree-Fock approaches. 

Most chemists still tend to think about the structure and reactivity of atomic 
and molecular species in qualitative terms that are related to electron pairs and 
to unpaired electrons. Concepts utilizing these terms such as, for example, the 
Lewis theory of valence, have had and still have a considerable impact on many 
areas of chemistry. They are particularly useful when it is necessary to highlight 
the qualitative similarities between the structure and reactivity of molecules 
containing identical functional groups, or within a homologous series. Many 
organic chemistry textbooks continue to use full and half-arrows to indicate the 
supposed movement of electron pairs or single electrons in the description of 
reaction mechanisms. Such concepts are closely related to classical valence-bond 
(VB) theory which, however, is unable to compete with advanced molecular 
orbital (MO) approaches in the accurate calculation of the quantitative features 
of the potential surface associated with a chemical reaction. 

Modern valence bond theory, in its spin-coupled form, is an attractive 
approach for elucidating the changes in electronic structure that accompany the 
variations in energy and geometry of a reacting system on its way from reactants 
to products. Our recent work has indeed shown than the spin-coupled approach 
yields easy-to-interpret models for various organic reaction pathways, including 
the mechanisms of six-electron gas-phase pericyclic reactions. For such systems, 
the flexibility of the wavefunction allows it to describe, with equal ease, the 
various heterolytic and homolytic possibilities. In all cases, the spin-coupled 
wavefunction recovers a fairly consistent proportion (typically somewhat more 
than 90%) of the nondynamical correlation energy incorporated in the 
corresponding 'six electrons in six orbitals' CASSCF construction. In the present 
account, we survey the descriptions that emerge for the Diels-Alder reaction 
between butadiene and ethene [1], the electrocyclization of cis-l,3,5-hexatriene 
[2], the 1,3-dipolar cycloaddition between fulminic acid and ethyne [3], and the 
1,3-dipolar cycloaddition of diazomethane to ethene [4]. 

2. SPIN-COUPLED APPROACH 

As described in other Chapters in this book, the single-configuration spin- 
coupled wavefunction takes the form [5] 

in which the active electrons are accommodated in N singly-occupied 
nonorthogonal spin-coupled orbitals ~ ,  which are optimized as completely 
general linear combinations of atom-centred basis functions, without any overlap 
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or localization constraints. The corresponding total spin function, Os~, which is 
labelled according to its eigenvalues of $2 and Sz, is fully optimized in the full 
spin space. The orthonormal inactive orbitals % may be optimized simultaneously 
with the spin-coupled orbitals and the total spin function, or they may be fixed to 
match those in appropriate preliminary calculations. 

The closest MO-theory analogue of such a compact N-electron spin-coupled 
wavefunction is the corresponding many-configuration 'N electrons in N orbitals' 
CASSCF function. It is of course relatively straightforward nowadays also to 
construct fully-variational multiconfiguration VB wavefunctions for ground and 
excited states, should the need arise. However, high accuracy numerical results, 
as required for various applications, are normally achieved instead using 
nonorthogonal CI calculations involving excitations into fixed virtual orbitals. A 
common feature of such calculations is that  the very compact spin-coupled 
descriptions dominate the final ground state wavefunction, so that  we may claim 
that the essential physical picture remains essentially unchanged. As such, 
useful chemical insight may often be derived even from single-configuration spin- 
coupled wavefunctions, simply by examining the variations in the shapes of the 
spin-coupled orbitals and in the changes to the mode of spin coupling during the 
course of a chemical reaction. A convenient way to follow reactions is of course in 
terms of the minimum energy path or intrinsic reaction coordinate, IRC, which 
consists of the steepest-descent paths (in mass-weighted coordinates) leading 
from transition state(s) toward reactants or products. 

A useful basic strategy for studying gas-phase organic reaction pathways could 
be to locate the transition states and several points along the minimum energy 
paths, to check that  the 'N in N' CASSCF is qualitatively correct, and then to 
perform fully-variational spin-coupled calculations at each geometry. Efficient 
computational algorithms, often relying on group theory and/or on graphical 
indexing techniques, have led to tractable schemes for the direct optimization of 
spin-coupled wavefunctions [6,7], and these have been used in some of our work 
on organic reactions. An attractive alternative for carrying out fully-variational 
spin-coupled calculations is provided by codes which we have named CASVB [8]. 
Some key features of our CASVB strategy, which we have used in many of our 
studies of pericyclic reactions, are outlined in the next section. 

3. OVERVIEW OF CASVB 

As is well known, CASSCF wavefunctions are invariant to general (i.e. 
nonunitary) linear transformations of the active orbitals. As such, we may seek 
alternative, but equivalent, representations in which a small number of 
configurations are dominant. This is achieved in our case by means of efficient 
computational schemes for carrying out exactly the transformations of full-CI 
spaces induced by nonunitary transformations of orbital spaces [9]. 
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In its simplest form, the CASVB approach may be used simply to generate 
representations of a CASSCF wavefunction Tc~ in which a single- or 
multiconfiguration modern-VB component Tv. is dominant. Writing 

2 ~4 • 
~c~ = Sv. ~v. + (1-Sv~) ~v~ (2) 

in which T~ denotes the orthogonal complement of Tv., such a task may be 
achieve by maximizing the overlap quantity Sv., defined according to 

Sv~ = <~,v~ t ~, >~ (3) 

This procedure is relatively inexpensive and, with suitable choices of the general 
form of T~, it is fairly robust. An obvious alternative is to minimize the energy 
quantity Ev~, defined according to 

Ev~= (Tv~ i ~ )  (4) 

By its very nature, minimization of E~ is more expensive than the maximization 
of S~, because it requires the construction of quantities corresponding to 
applications of the hamiltonian operator, but this may be achieved by adapting 
the efficient procedures already available in various CASSCF codes. It turns out, 
however, that the two sets of orbital representations tend to be rather similar, 
and so maximization of S~ tends to be preferred. In either case, the actual 
optimization uses reliable Newton-Raphson-like procedures that utilize first and 
second derivatives. 

The CASVB strategy for the fully-variational optimization of modern VB 
wavefunctions relies on a linked two-step strategy, based on alternating steps, 
until convergence is reached. Active and inactive spaces are chosen, in the usual 
way, alongside an appropriate form for ~ .  The 'nonorthogonal step' involves the 
minimization of E~, using the basic CASVB algorithms, whereas the 'orthogonal 
step' involves inactive-active, inactive-virtual and active-virtual orbital rotations 
using standard CASSCF procedures. Particularly when starting from a 
converged CASSCF wavefunction, convergence to the final VB wavefunction can 
involve a remarkably small number of iterations, such that, overall, the 
calculations tend to be somewhat cheaper than our traditional direct 
optimization of spin-coupled wavefunctions. The full CASVB module [8] is 
incorporated in the MOLPRO package [10], that has been used in most of our 
studies, and it has also recently been ported to the MOLCAS package [11]. 

4. PERICYCLIC REACTIONS 

The choice of basis sets and the generation of geometries along the IRC are 
described in detail in our previous work [1-4,12], together with the corresponding 
energies. Instead, we concentrate here on the evolution of the electronic structure 
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revealed directly by the spin-coupled wavefunctions. For each of the gas-phase 
processes considered, six electrons were treated as active in the spin-coupled 
calculations, as in the usual organic chemistry descriptions of such systems. 

4.1 D i e l s - A l d e r  R e a c t i o n  

Symmetry-unique spin-coupled orbitals for the Diels-Alder process are shown 
in Figure 1 for IRC values (in amu~qgohr) of 0.6 (towards reactants), zero 
(transition state, TS) a n d - 0 . 6  (towards products) [1]. It is clear tha t  each orbital 
remains associated with the same carbon atom throughout  the reaction, with the 
main changes being in the degree of sp x character and in the amount  and 
direction of the deformations of the orbitals. Initially, the n bonds in butadiene 
are formed by the symmetry-related pairs (~1,~2) and (W4,~3), while (Ws,W6) 
corresponds to the ~ bond in ethene (see right-hand column of Figure 1). Moving 
to the transit ion state (middle column of Figure 1), the distortion of ~2 towards ~3 
(its symmetry-related counterpart) becomes much more noticeable, at the 
expense of reduced overlaps within the (~,~2) and (~4,~3) pairs. At the same time, 
the overlap between ~5 and ~6 is reduced in favour of distortions towards the 
orbitals of the butadiene moiety. It is clear from the left-hand frame of Figure 2 
that  all of the key overlaps tend to much the same value in the vicinity of the 
transition state. Continuing towards reactants (left-hand column of Figure 1), 
orbitals ~6 and ~ become much more spLlike, and correspond to one of the new 
bonds. Similarly, the pair (~,~3) corresponds to the new n bond. 

IRC=-0.6 

Figure 1. Symmetry-unique spin-coupled orbitals for the Diels-Alder reaction. 

TS IRC=0.6 



46 

0.60 

A 

Z 0.50 

v 

0.40 

0.30 

E 

J 

-0.40 0.00 0.40 0.80 

0 . 6 0 -  

0.40 - 

I 

0.20 - 

0.00 t d 

IRC (amumbohr)  IRC (amumbohr)  

Figure 2. Overlap integrals (left) and spin-coupling weights (right) for the Diels-Alder reaction 

These various changes to the shapes of the orbitals are accompanied by a 
recoupling of the electron spins. As shown in the right-hand frame of Figure 2, 
the total spin function O~o is easily interpreted in the present case by means of 
the familiar Rumer basis. The two Kekul6-1ike functions (1-2,3-4,5-6) and (1- 
6,2-3,4-5) are dominant over the entire IRC segment considered, with one 
corresponding to reactants and the other to the products. They attain equal 
weight in the vicinity of the transition state. Indeed, the orbital overlaps, the 
mode of spin coupling, the estimated "resonance energy", and the location and 
nature of the first excited singlet state [1] are all strongly reminiscent of the spin- 
coupled description of benzene [13], and so it is tempting to argue in favour of an 
"aromatic" transition state. 

Given that the orbitals remain associated with the same carbon atom 
throughout the reaction, but with a recoupling of the corresponding electron 
spins, it seems appropriate to label the changes as "homolytic", as might be 
represented by the following simplistic scheme: 

I p 
4.2 Disrotatory Electrocyclic Ring-Opening of Cyclohexadiene 

The IRC was followed from the transition state, with twelve points in the 
direction of cyclohexadiene and a further twelve in the direction of cis- l ,3 ,5-  
hexatriene, with steps of ca. 0.1 amuV%ohr [2]. Symmetry-unique spin-coupled 
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orbitals ~1-~3 are shown in Figure 3 for IRC values (in amu~bohr) of =-1.2 (ring 
begins to open, left-hand column), zero (transition state, middle column) and 
=+1.2 (ring almost open, right-hand column). Reflection of ~q, W2 and W8 in the 
symmetry plane retained over this IRC interval results in ~6, W5 and W4, 
respectively. 

Cyclohexadiene ~ TS ~ Cyclohexadiene 
ring begins to open ring almost open 

Figure 3. Symmetry-unique spin-coupled orbitals for the disrotatory electrocyclic ring-opening of cyclohexadiene. 

At the s tar t  of the IRC interval, the length of the bond being broken is already 
2.09A, but ~1 and W6 still take the form of spX-like hybrids with significant s 
character. The pair (~2,~a) accounts for one of the n bonds in the cyclohexadiene 
ring. Orbitals ~2-~5 at the transition state (middle column of Figure 3) are 
start ing to at ta in much the same 'symmetrically-distorted'  shape as orbital ~ at 
the Diels-Alder transit ion state. The increased distance between the two terminal 
atoms (2.29 A) is reflected in less distortion of ~1 and ~6 towards one another, and 
a reduced overlap. However, for this system, the most dramatic  changes in the 
orbital overlaps and in the mode of spin coupling occur a little after the transition 
state (see Figure 4), when the carbon-carbon bond lengths in the chain become 
almost equal. The near-perfect 'resonance' of two Kekul~-type modes, as well as 
the near equalization of bond lengths and of orbital overlaps, suggests that  this is 
another reaction tha t  passes through an 'aromatic '  structure. 

At the end of the IRC interval, the distance between the terminal carbon 
atoms is 2.49A. Orbital ~1 is now essentially a n orbital. The three n bonds 
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correspond to the pairs (~1,W2), (~t3,~4) and (W5,~6), and the corresponding perfect- 
pairing mode of spin coupling becomes the most important, as shown in Figure 4. 
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Figure 4. Overlap integrals (left) and spin-coupling weights (right) for the disrotatory electrocyclic ring-opening of 
cyclohexadiene. 

The orbitals remain associated with the same carbon atom throughout the 
reaction, but with a recoupling of the corresponding electron spins. As in the case 
of the Diels-Alder reaction, it seems appropriate to label the changes as 
"homolytic", as might be represented using half-arrows as: 

One difference from the Diels-Alder reaction [11, however, is that the aromatic 
structure in the present case occurs a little after the transition state [2]. 

4.3 1,3-Dipolar Cycloaddition of Fulminic Acid to Ethyne 

Given the concerted, almost synchronous nature of this gas-phase reaction it 
might seem reasonable to suppose that the electronic mechanism would resemble 
those for the Diels-Alder and cyclohexadiene ring-opening reactions, described 
above. However, our spin-coupled calculations along the IRC reveal a somewhat 
different picture [3]. 

The right-hand column of Figure 5 corresponds to separated fulminic acid 
(HCNO) and ethyne moieties. Orbitals ~1, ~3, ~5 and ~6 are associated with the 
fulminic acid molecule and, taken together with the corresponding dominant 
mode of spin coupling, they suggest a 'hypervalent' central N atom, as described 
in previous work [14]. The remaining orbitals, ~ and W4, are associated with the 
'in plane' ethyne n bond that is broken during the course of the reaction. 
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~5 

Isoxazole 

t 
TS ~ Fuiminic acid and 

echyne far apart 

1 aP 2 

aP 3 

4 

Figure 5. Symmetry-unique spin-coupled orbitals for the 1,3-dipolar cycloaddition of fulminic acid to ethyne. 

For this system, we find that  the spin-coupled orbitals do not remain 
associated with the same first-row atom throughout the reaction. Instead, orbital 
�9 2 from the ethyne moiety becomes a linear rcombination of an spX-like hybrid 
from the ethyne and another such hybrid from the HCNO, as is shown for the 
transition state in the middle column of Figure 5. After the transit ion state, this 
orbital becomes almost entirely associated with the HCNO carbon atom. 
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Somewhat less dramatic changes are observed for orbital ~g4, which undergoes 
rehybridization that  is reminiscent of orbital ~g6 in the Diels-Alder reaction. 
Ultimately, the (~g,~g4) pair describes one of the two new bonds that  close the 
isoxazole ring, as shown in the right-hand column of Figure 5. 

Orbital ~gs, originally from the highly polar ' in plane' N - O n  bond, also 'moves' 
during the course of the reaction. At the transition state, it takes the form of the 
combination of two spX-like hybrids, one associated with its original location on 
oxygen and the other with the incoming carbon atom of ethyne. After the 
transition state, it becomes primarily associated with the ethyne carbon. Orbital 
~gl changes relatively little during, the course of the reaction. Ultimately, the pair 
(~gl,~gs) accounts for the other new bond that  closes the isoxazole ring, as shown in 
the right-hand column of Figure 5. The remaining orbitals, ~gs and ~gs, originally 
associated with the ' in plane' C-Nn  bond of HCNO, shift relatively little, so as to 
form a nonbonding pair on the isoxazole nitrogen atom (but with some 
polarization towards the oxygen atom). 

Analysis of the total spin function reveals that  the spins associated with the 
pairs (~g,~g4), (~gs,~g6) and (/g~,~g 5) remain essentially singlet coupled throughout the 
course of the reaction, with no evidence for any aromatic structure along the IRC. 
As such, the spin-coupled description corresponds to a mechanism that  involves 
the simultaneous relocation of three orbital pairs, as might be represented by the 
following simplistic scheme: 

/ , ~  C ~H O ~ c ~ H  

x H 'r  H / 
H H 

Using a somewhat different methodology, based on orthogonal localized 
molecular orbitals (LMOs), Nguyen et al. [15,16] conclude that  the circulation of 
charge for this reaction is in the opposite direction to that  described here. 
However, it is worth pointing out [17] that  the weights of even the most 
important configurations within their CI-LMO-CAS wavefunctions tend to be 
fairly small. In the case of the 1,3-dipolar cycloaddition of fulminic acid to ethyne, 
the two configurations that  are used to deduce the electronic reaction 
mechanism, never have weights that exceeding 0.28 and 0.16. As a rule, the spin- 
coupled wavefunction consistently accounts for more than 90% of the 
nondynamical correlation energy of a '6 in 6' CASSCF wavefunction using just 
one product of six singly-occupied active orbitals. The overlap between the spin- 
coupled and CASSCF wavefunctions is even higher (often more than 0.99). It is 
this proximity between the two wavefunctions that  justifies the use here of 
changes to orbital shapes, orbital overlaps and/or the mode of spin coupling in 
order to describe the electronic mechanism of a chemical reaction. In a sense, we 
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are faced with choosing between a description that  is backed by more than 90% of 
the CASSCF wavefunction, and another one which has behind itself a very much 
smaller proportion. 

4.4 1,3-Dipolar Cycloaddit ion of  D i a z o m e t h a n e  to Ethene  

In an analogous spin-coupled study [4] of the gas-phase concerted 1,3-dipolar 
cycloaddition of diazomethane (CH2N 2) to ethene (C~H4), we found that  the total 
spin function for the active electrons remains dominated by a single perfect- 
pairing mode (i.e. by singlet-coupled pairs) throughout  the course of the reaction. 
Orbital pair shifts were observed, as in the previous example, indicating a 
heterolytic mechanism that  does not pass through an aromatic structure. One 
minor difference arises from the fact that  the N-O ~ bond in HCNO is much more 
polar than the corresponding N-N  bond in CH2N 2 [14,18]. The orbital pair 
responsible for this N - N  bond is somewhat less mobile and shifts over to form 
one of the bonds closing the 1-pyrazoline ring well after the transit ion state, in 
contrast to the previous case, in which the corresponding orbital shifts were 
already well advanced at the transition state. Overall, the orbital changes in the 
present reaction may be summarized by the simplistic scheme 

oo oo 

N e"ll ~ :N 

in which the hollow dots represent a nitrogen lone pair tha t  was not treated as 
'active' in the spin-coupled calculations, and the 'hypervalent '  central N atom of 
the diazomethane molecule is represented as in our previous work [18]. 

5. CONCLUSIONS 

For each of the gas-phase pericyclic reactions considered here, the spin-coupled 
approach produces a very clear picture of the electronic rearrangements  tha t  
accompany the changes in geometry and energy along the IRC from reactants to 
products. In general, the changes in electronic structure in the vicinity of the 
transition state tend to be much more rapid than  are the corresponding 
geometrical changes. 

During the Diels-Alder reaction [1] and in the electrocyclization of cis-l,3,5- 
hexatriene [2], bonds break and form in a homolytic fashion, with orbitals 
remaining associated with the same centres throughout  the reaction. For such 
systems, there is a major recoupling of the electron spins. This last takes place 
most rapidly at or near the transit ion state. The resonance pattern,  taken 
together with other characteristics, is reminiscent of the spin-coupled description 
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of benzene. These gas-phase reactions appear to pass through an 'aromatic' 
structure. 

An entirely different description emerges for the two 1,3-dipolar cycloaddition 
reactions that  we have studied [3,4]. For such systems, the bond breaking and 
bond formation involves instead the shifts of well-identifiable orbital pairs, 
rather than any spin recouplings. Such heterolytic mechanisms, that do not pass 
through an aromatic structure, now seem to be a likely outcome of studies on 
other gas-phase concerted 1,3-dipolar cycloaddition reactions. 
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Chapter 3 

Complete active space valence bond (CASVB) method and 
its application to chemical reactions 
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Hirao 

Department of Applied Chemistry, Graduate School of Engineering, University 
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan 

The complete active space valence bond (CASVB) method is an approach for 
interpreting complete active space self-consistent field (CASSCF) wave func- 
tions by means of valence bond resonance structures built on atom-like local- 
ized orbitals. The transformation from CASSCF to CASVB wave functions 
does not change the variational space, and thus it is done without loss of infor- 
mation on the total energy and wave function. In the present article, some 
applications of the CASVB method to chemical reactions are reviewed follow- 
ing a brief introduction to this method: unimolecular dissociation reaction of 
formaldehyde, H2CO ~ H2+CO, and hydrogen exchange reactions, H2+X 
H+HX (X=F, C1, Br, and I). 

1. INTRODUCTION 

The complete active space self-consistent field (CASSCF) method is one of 
the electronic structure theories that is employed most frequently in the study of 
chemical reactions. This method is feasible and gives potential energy sur- 
faces of good quality, and hence it is also used as a starting point for 
higher-level multireference methods. In fact, the CASSCF method has many 
advantages: (1) it is well defined on the whole potential energy surface of a 
chemical reaction if an appropriate active space is chosen; (2) it is applicable to 
excited states as well as the ground state in a single framework, and (3) it pro- 
vides size-consistent results, etc. However, it often generates too many con- 
figurations, and therefore there is a problem as to how we could extract a 
chemical description from the lengthy CASSCF wave functions. 

The complete active space valence bond (CASVB) method [1,2] is a solution 
to this problem. Classical valence bond (VB) theory is very successful in pro- 
viding a qualitative explanation for many aspects. Chemists are familiar with 
the localized molecular orbitals (LMO) and the classical VB resonance concepts. 
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If modem accurate wave functions such as CASSCF can be represented in terms 
of such well-known concepts, chemists' intuition and experiences will give a 
firm theoretical basis and the role of computational chemistry will undoubtedly 
expand. 

The CASVB functions can be obtained by transforming the canonical 
CASSCF functions without loss of energy. First we transform the CASSCF 
delocalized MO to localized MO using the arbitrariness in the definition of the 
active orbitals. Then we perform the full configuration interaction (CI) calcu- 
lation again in the active space. Here, we also use the arbitrariness in the defi- 
nition of the expansion configuration functions. The configuration functions 
used are spin-paired functions based on the LMOs. This form of spin eigen- 
functions plays a special role in the VB method. The CASVB wave functions 
can be readily interpreted in terms of the well-known classical VB resonance 
structures. The total CASVB wave function is identical to the canonical 
CASSCF wave function. In other words, the MO description and the VB de- 
scription are equivalent, at least at the level of CASSCF. The CASVB method 
provides an alternative tool for describing the correlated wave functions. 

With this method, we clarified the electronic structures of the ground and ex- 
cited states of benzene, butadiene, methane, and hydrogen molecules [1,2]. 
We also applied the method to valence excited states of polyenes [3] and their 
cations [4]. In previous studies, we put our focus on the formalism of CASVB 
and its applicability to molecules in their equilibrium structures. 

Even today, however, it is not a simple task to obtain chemical pictures at the 
transition state (TS) or along a reaction path. Discussion on the nature of TS is, 
for instance, often conducted using other features such as molecular structures 
and energy profiles rather than the wave functions themselves: if the bond 
length at TS is closer to that of the product than reactant, it is called a late TS, 
or if the reaction is highly exothermic, this reaction is assumed to proceed via 
an early TS. These discussions are qualitative and ambiguous. A more 
quantitative and clear-cut chemical description is necessary. 

In this article, we present applications of CASVB to chemical reactions: the 
unimolecular dissociation reaction of formaldehyde, HECO ~ HE+CO [5], and a 
series of hydrogen exchange reactions, H2+X ~ H+HX (X=F, C1, Br, and I). 
The method in this article is based on the occupation numbers of VB structures 
that are defined by the weights of the spin-paired functions in the CASVB func- 
tions, so that we could obtain a quantitative description of the nature of elec- 
tronic structures and chemical bonds even during reactions. 

In Sec. 2, we briefly survey the CASVB method. In Sec. 3, the CASVB 
method is applied to the unimolecular dissociation HECO ~ Ha+CO and the 
hydrogen exchange reactions HE+X --~ H+HX (X=F, C1, Br, and I), and the 
applicability to the reaction is discussed. Conclusions are given in Sec. 4. 
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2. OVERVIEW OF CASVB METHOD 

We have proposed two types of CASVB method. The first one is a method 
where the valence bond structures are constructed from orthogonal localized 
molecular orbitals (LMOs) [1], and the second is one from nonorthogonal lo- 
calized molecular orbitals [2]. 

The idea of CASVB is based on the fact that the densities of variational wave 
functions are invariant under the transformations which hold the variational 
space unchanged. In the CASSCF case, a complete active space (CAS) is 
invariant under the linear transformation of active orbitals and also that of con- 
figuration state functions (CSFs). 

We may re-define the active orbitals utilizing the invariance of the active or- 
bital space. In the CASVB with nonorthogonal LMOs, we employ Rueden- 
berg's procedure of projected localized MOs [6-8] and obtain quasi-atomic 
CASSCF MOs that have maximal overlaps with atomic orbitals (AOs) of the 
free atoms. Consider an AO, ZA, centered on a nucleus A. Diagonalizing the 
matrix, 

(1) 

in the CASSCF MO basis, g~, and choosing the eigenvector with the largest 
eigenvalue gives the LMO, CA, which has the maximum overlap with 2'A. Simi- 
larly, we can define CB, r  The LMOs, (p~, determined in this manner are 
nonorthogonal to each other. These atom-adapted LMOs are Ruedenberg 
orthogonalized, but we leave them as nonorthogonal. On the other hand, in the 
CASVB with orthogonal LMOs, we use LMOs produced by a Boys' localiza- 
tion procedure as { ~0i} [9]. 

The full configuration space that is spanned by all possible configurations 
generated from these quasi-atomic CASSCF MOs is identical to that of full CI 
space that is constructed from the canonical CASSCF MOs. Thus, we use 
{ (p~} as orbitals from which a CASVB wave function is constructed. To obtain 
the corresponding VB structures, we project a canonical CASSCF wave func- 
tion onto a VB wave function. The projection does not modify the original 
wave function but simply re-expresses it in the VB language. Let W cAsscF be a 
CASSCF wave function, 

, ~ (I)CSF v F=Zc | .fs  i (2) 

where (I)i CSF a r e  the configuration state functions constructed by the orthogonal 
orbitals set { ~} and C~ are the known CAS-CI expansion coefficients. Simi- 
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larly define the CASVB function in terms of spin-paired functions as 

where Oi vB are spin-paired functions constructed by LMOs. The number of 
independent spin-paired functions is equal to the dimension of CAS, and the 
spaces spanned by {Oi csF} and {oivB} are identical. Since Eqs. (2) and (3) are 
different expressions of the identical wave function, we may write 

Z A j O  v" = Z c / o  csF . (4) 
j �9 j 

Left-multiplying Eqs. (2) and (3) by o/csF and integrating the products, we get 

Z f'2ijAj : Ci with ~ij = ( OcsF 1 r  
J 

(5) 

whose dimension is equal to the dimension of CAS. Solving this linear equa- 
tion, we obtain CASVB wave function W cAsvB. 

The occupation number (or weight) of a VB structure is calculated with 

n~ = ~.* ~ ]  So.Aj , (6) 
J 

where S~y are overlaps between the structures i and j, defined by 

and satisfies the normalization, 

=1. (8) 
i 

Note that the occupation number n~ could be negative because of the nonor- 
thogonality of resonance structures. 

Fig. 1 is a schematic expression of coefficient A~ and occupation number ni in 
a two dimensional case. 

Thorsteinsson et al. also investigated the transformations of CASSCF func- 
tions to modem valence bond representations [10-12]. They examined trans- 
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Fig. 1. Schematic expression of coefficient Ai and occupation number ni in a two dimen- 
sional case: q-' = A~O vB + A2 OrB . 

formations for which the total wave function is dominated by some VB struc- 
tures (e.g. covalent structures) built from common products of nonorthogonal 
orbitals. This method was also named "CASVB method." Some recent 
works of their CASVB method can be seen in review articles [13-15] and refer- 
ences therein. 

To obtain more insight into CASVB functions, let us consider the hydrogen 
molecule as an example [2]. Fig. 2 shows CASSCF, orthogonal localized, 
nonorthogonal localized, and generalized valence bond (GVB) molecular orbi- 
tals obtained for active space CAS(2,2) with correlation consistent valence 
double zeta (cc-pVDZ) basis set [16] at a bond distance of 0.7 A. We observe 
that the orthogonal LMO is deformed significantly from the atomic Is function 
and has a small tail on the other hydrogen atom due to the orthogonality con- 
straint. The orthogonality requirement between LMOs forces small anti-bond- 
ing admixture from orbitals on neighboring atoms into each LMO. On the 
contrary, the nonorthogonal LMO looks very much like an atomic ls function 
(the overlap is 0.9859) and the LMOs overlap strongly with each other (0.7775). 

The CASSCF wave function for the hydrogen molecule is written as, 

[ CASSCF) = 0.99480 -2 - 0.102 let*2. (9) 

This wave function is transformed to CASVB function with orthogonal LMOs, 

[ CASVBoLMO) = 0.7799r Iq~H~ qgn~ (aft- fla)~/x~ 
+ 0-4426 (~4' EfPH, ~n, a'fl] + ~_s~ Eq~i, (pn a,,O ]) 

=0.6082[HA-H,]+O.3918{~H ~ H~]+EH ~ H ~ } ,  

(10) 
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and with nonorthogonal LMOs, 
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Fig. 2. CASSCF, orthogonal localized, non-orthogonal localized, and generalized valence 
bond molecular orbitals for the hydrogen molecule. 
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J CASVBNLMo }= 0.9124~f' [cpn,, far,. (aft- ,Sa)]/.~ 

= 0.9122[HA- H, ] + 0.0878 {[H; H; ]+EH; ";1}, 
(11) 

where the numbers before the VB structures are occupation numbers ni (Eq. (6)) 
and ~ '  denotes the antisymmetrizer. Nonorthogonal LMOs change the 

11A1g" O-O] 

" ~ _  + 5 other pairs of RS + + - _ + 5 other pairs of RS 

11E1u + :O-O:. O:- -O ]" o 0] m 

+ 

11Elu + [ o-_o. O-0]. [-o.-o_._o--s- 
�9 [ -o_. .o-o-  -.o ] 
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Fig. 3. CASVB description for the ground and 7r---~:r* singlet excited states of benzene. 
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picture of ionic-covalent resonance dramatically from CASVB with the or- 
thogonal LMOs. Orbital relaxation increases the covalent character of the HH 
bond and decreases the ionic character. Thus, the nonorthogonal description 
seems more reasonable conceptually. 

The GVB function is also an equivalent expression to the CASSCF and 
CASVB functions in the CAS(2,2) case. In the GVB description, the wave 
function is written by the covalent structure only, 

(12) 

and no ionic structure contribution. The orbitals are distorted compared to the 
nonorthogonal LMOs due to this unphysical constraint. 

For one more example, a CASVB description for benzene is given in Fig. 3. 
See Refs. 1 and 2 for the computational details. The CASVB affords a clear 
view of the wave functions for the various states. The excitation process is 
represented in VB theory in terms of the rearrangement of spin couplings and 
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Fig. 4. The nonorthogonal LMOs at the equilibrium structure of H2CO determined with 
Ruedenberg's projected localization procedure. 
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charge transfer. The former generates the covalent excited states and the latter 
gives rise to the ionic excited states, in which the covalent bond is broken and a 
new ionic bond is formed. Thus, the singly, doubly . . . .  , polar structures are 
generated from their respective parent ground state covalent (nonpolar), sin- 
gly . . . . .  polar structures. 

The ground state is represented by two covalent Kekul6 structures as ex- 
pected. The lowest excited ~B2u- state is again described by a combination of 
the Kekul6 structure. There are no significant contributions from the Dewar 
structures or the corresponding orthopolar structures. The linear combinations 
of the two equivalent Kekul6 structures generate the plus and minus states. 
Their positive combination gives rise to the totally symmetric 1A2g- ground state, 
while the negative combination yields the excited ~B2u- state. The second and 
third ~r---~r* excited states are described by a number of ionic structures. There 
is no contribution from the covalent structures. The ionic character of these 
states can easily be found from a CASVB description. The highest valence 
excited states are the covalent 1E2g- state. The state has a predominantly De- 
war character with no contribution from the Kekul6 structures. Thus, the Ke- 
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Fig. 5. The nonorthogonal LMOs at the TS structure of the H2CO --> H2+CO reaction. 
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kul6 structures dominate the ground state and the singly excited 1B2u- state 
while the Dewar structures dominate the doubly excited degenerate 1EEg- states. 

The states described by Dewar structures are described by doubly, triply . . . .  
excitations in an MO language. 

In this article, we use only the CASVB description with nonorthogonal 
LMOs. Thus, it is hereafter referred simply as CASVB functions. 

3. APPLICATION TO CHEMICAL REACTIONS 

In this section, we examine how the electronic structures of molecules during 
chemical reactions are described by the CASVB method and how they are ana- 
lyzed with the VB language. Two examples are shown: one is the unimolecu- 
lar dissociation reaction of formaldehyde, H2CO ~ H2+CO [5], and the other is 
the hydrogen exchange reactions, H2+X ~ H+HX (X=F, C1, Br, and I). 

Table 1 
Spin-paired functions and VB structures of formaldehyde 
factors are omitted.) 

(Normalization and phase 

Spin-paired function VB structure 
r r ,t~ ) . r , ~om ( a f t -  ,oa ) 
q,c~q,~afl. ~,c, ~O~, ( a f l -  ,Oa) } 

q'c, ~Oc,a,O " ~~ ~~ ( a,O- ,Oa ) 

q,~ q,~ a~.  ~c~ r ( a ~ -  ~a)  

~, ~, a/~. ~c~c,(a~-/~) 

~o~ rp~ afl" ~Oc~ qOc~ a,8 

r q,c~ a,o. q,~, ~,,,,a,o 

H2--C ---H1 

+ -C__HI H2 

H~ +C--H, 

H2--C- +H, 

H2--C + -H l 

+ -C- +H, H2 
H~ +C + -H, 

H2 C HI 

§ C -H l H2 
H~ C +H 1 

The other (doubly polarized) 
structures 

(D 

(~  

(m) 

(iv) 

(v) 

(vi) 
(vii) 

(vm) 

(ix) 
(x) 

(xi) 
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3.1. Unimolecular dissociation reaction of formaldehyde H2CO --~ H2 + CO 
This reaction is Woodward-Hoffmann forbidden and proceeds via a highly 

asymmetric TS structure. Diabatically H2CO (]A1) dissociates to H2 (lEg +) + 
CO (1H), while H2 (~gg +) and CO (1~+) interact repulsively and correlate with an 
excited state of H2CO. An avoided-crossing of these two diabatic potential 
energy surfaces gives rise to a barrier for dissociation on the adiabatic ground 
state potential energy surface. 

A qualitatively correct description of the dissociation process requires at least 
four active electrons in the two CH bonds of H2CO. During the dissociation 
process, two electrons, one from each CH bond, pair up to form the HH bond 
while the other two form a lone pair on C in CO. 

The basis set used is Dunning's  cc-pVDZ [16]. The CASSCF wave func- 
tion was obtained with CAS(4,4). The geometries of the equilibrium and TS 
structures were determined with this basis set and active space. The orbitals 
were then localized in the active orbital space. The orbitals were transformed 
so as to have maximum overlap with two carbon s p  2 orbitals and hydrogen Is 
orbitals. The sp  2 orbitals were used with the fixed hybridization ratio of 2s to 
2p orbitals (1:2) and with a fixed angle of 120 ~ relative to the CO axis 
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00 c_o] 

[- 
- 0.0036 C ~ O  + 

. /  

-0.0186 

C ~ O  

. ] ~e~-o 
H- 

0.3891 H ~ ~ ~ 0  

+0.1973 H§ +0.0442 
- ~ O  

I" 
L c ~ o  

[' ] +0.0544 H + +0.0041 
C ~ O  

+0.0907 

+0.0036 

-0.0179 

-0.0159 

+H 

N- 
C ~ O  

+... +... 

Fig. 6. The CASVB descriptions at the equilibrium and TS structures. 
values are occupation numbers. 

The numerical 
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throughout the reaction. The resulting orbitals are shown in Figs. 4 and 5. 
All the orbitals are well localized on the atomic centers, except LMOs on the 
carbon atom, which have a small contribution from the oxygen 2p orbital. 

There are 20 linearly independent spin-paired functions corresponding to the 
dimension of CAS(4,4), which are listed in Table 1. Structures (I) to (VII) are 
classified as CH bond structures and the structures (VIII) to (X) as HH bond 
structures. Structure (XI) is classified as neither of the above, since these 
structures can be regarded both as structures polarized further from one of (II) 
to (V) and (IX) to (X). 

The CASVB wave functions obtained for the equilibrium and TS structures 
are given in Fig. 6. 

In the equilibrium structure, the main VB structure is the covalent CH bonds 
structure (I) as expected. The second most important are those where one of 
the CH bonds is connected with a covalent bond and the other with an ionic 
bond made by electron transfer from the hydrogen atom to the carbon atom, (II) 
and (IV). In contrast, the contribution from the structures that describe elec- 
tron transfer from the carbon atom to a hydrogen atom is small and negative. 
The contribution from the HH bond structure (VIII) and ionic structures, (IX) 
and (X), is very small. The total occupation number of CH bonds is 0.9654, 
while that of  HH bond is -0.0147. This indicates almost no bond formation 
between two hydrogen atoms in the equilibrium structure. 

In the TS structure, the main structure is still the covalent structure (I), al- 
though the occupation number decreases. The structure (II), where the longer 
CH bond is covalent and the shorter CH bond is ionic, is also important, but 
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Fig. 7. Changes in the occupation numbers of the covalem CH bonds (e), ionic CH bonds 
(m), covalent HH bond (o), ionic HH bond (n), and the other (doubly ionic) (x) VB struc- 
tures of HECO along IRC. The origin of the horizontal axis corresponds to the TS and the 
left end to the equilibrium structure of formaldehyde. 
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their occupation numbers also decrease. One the other hand, the structure (IV), 
where the shorter CH bond is covalent and the longer CH bond is ionic, is no 
longer important. The total occupation number of CH bonds structures is 
0.6893, which shows a decrease from the value in the equilibrium structure 
0.9654, but it is still large. The total occupation number of HH bond struc- 
tures is 0.2817. Much of it comes from the covalent contribution (VIII), 
0.2232. The contribution from the CH bonds overwhelms the contribution 
from the HH bond in the TS. 

The occupation numbers of the covalent CH bonds, ionic CH bonds, covalent 
HH bond, ionic HH bond, and the other (doubly ionic) structures are defined by 

V / l  

ncovalentCH = n l ,  nionicCH = ~ ns , (13) 
S=II 

ncovalent HH : nVI l l  , nIonie ~ = nix + nx , (14)  

and 

nDo,bly Pol. = nxi .  (15)  

Using Eqs. (13) and (14), we may further define the total occupation numbers of 
the CH and HH bond structures, 
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~ 0 . 8  
E 
Z 0 . 6  
e -  

.O 0 . 4  
m 
D.. 
~ 0 . 2  
U 
t,,) 
o 0 .0  

- 3 . 0  - 2 . 0  - 1 . 0  0 . 0  1 . 0  

IRC / bohr (amu)  1 la 

Fig. 8. Changes in the occupation numbers of the total CH bonds (o), total HH bond (o), 
and the other (doubly ionic) (x) VB structures of H2CO along the IRC. 
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Fig. 9. The structure where the total occupation numbers of the CH bonds and HH bond 
valence bond structures are equal. The hydrogen atoms not bonded to the carbon atom 
represent the position at the TS. 

riCH --" ncova len t  CH "~" n lon ie  C H ,  n H H  " -  ncova len t  HH -I- n ion i  c HH �9 (16) 

Fig. 7 shows the changes in the occupation numbers of the covalent CH 
bonds, ionic CH bonds, covalent HH bond, ionic HH bond, and the other (dou- 
bly ionic) structures along IRC. The origin of the horizontal axis corresponds 
to TS and the left end of each curve to the equilibrium structure. The occupa- 
tion numbers of CH and HH covalent bond structures change rapidly near TS 
and the curves cross immediately after TS (0.1 bohr(amu)l/2), while the occupa- 
tion numbers of CH and HH ionic bond structures change slowly. 

Fig. 8 shows the changes in the total occupation numbers of the CH and HH 
bond structures along the IRC. The crossing point is located after TS, 0.42 
bohr(amu) 1/2. The structure at this point is given in Fig. 9. Compared to the 
TS, the longer and shorter CH bonds have stretched by 0.14 and 0.06/~, respec- 

o 

tively, and the HH bond has become shorter by 0.18 A. These bond lengths 
are 1.03, 1.62, and 1.80 times longer than the corresponding equilibrium CH 
and HH bond distances. That point is the structure where the bonds switch; in 
other words, the point is the transition state of  chemical bond between the CH 
bonds and HH bond. 

The results here demonstrate the total occupation number defined in Eq. (16) 
is a useful concept for studying quantitative description of chemical bonds at TS 
and along reaction paths. 
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3.2. Hydrogen exchange reactions H 2 + X  --~ H+HX (X=F, CI, Br, and I) 
In the previous subsection, we applied the CASVB method to the unimolecu- 

lar dissociation reaction H2CO ---, H2 + CO, and examined how chemical bonds 
and electronic structures are described along the chemical reaction path. Our 
focus was on the chemical bond nature in the transition (TS) structure, that is, 
which bonds are dominant in TS, the dissociating CH bonds or the forming HH 
bond. The CASVB method shows that CH bonds are dominant in TS, based 
on the contribution of the VB structure of each bond. This kind of question is 
not easily answered using the CI picture with canonical molecular orbitals 
(MOs), and hence this is an example that demonstrates CASVB as a useful tool 
for analyzing electronic structures and chemical bond during chemical reactions. 
However, in this reaction the dissociating and forming bonds are both of cova- 
lent nature, that is, the bias of the charge is not so large, and thus the description 
is relatively easy compared to the reaction including ionic bonds. 

In the this subsection, we examine a series of reactions including ionic bonds, 
HE + F ~ H + HF, (R1) 
H2 + C1 ~ H + HC1, (R2) 
Hz + Br ~ H + HBr, (R3) 
H 2 + I  ~ H + H I .  (R4) 

The reaction for fluorine (R1) is highly exothermic, while the reactions for 
chlorine (R2), bromine (R3), and iodine (R4) are endothermic. The heats of 
these reactions are 3 0 . 8 , - 1 . 2 , - 1 6 . 7 ,  a n d - 3 2 . 7  kcal/mol for reactions (R1), 
(R2), (R3), and (R4), respectively. According to Hammond's postulate, reac- 
tion (R1) should have an early TS, and reactions (R2) and (R3) should have late 
TSs. On the other hand, the electronegativity (in Pauling's definition) for 
hydrogen, fluorine, chlorine, bromine, and iodine are 2.2, 4.0, 3.2, 3.0, and 2.7, 
respectively. This suggests that all the reactions (R1)-(R4) might have early 
TSs, since halogen atoms tend to receive an electron and form the bond with a 
hydrogen atom at early stage. What the electronic states are during these reac- 
tions, and how the CASVB method describes the electronic structure, are our 
interests in this subsection. 

We first determined IRC for each reaction and then obtained the CASVB 
functions along IRC. 

The basis sets used in the reactions including F and C1 are the augmented 
correlation consistent polarized valence double zeta (aug-cc-pVDZ) sets [16]. 
In the reactions including Br and I, the relativistic effective core potential (ECP) 
due to Stevens et al. [17,18] and their associated basis sets were used for Br and 
I, and the cc-pVDZ set for H. The basis sets of Br and I were augmented by 
adding a d polarization function with an exponent of 0.389 (Br) / 0.266 (I) and 
sp diffuse functions with an exponent 0.03574 (Br) / 0.03007 (I). The diffuse 
p polarization function of the aug-cc-pVDZ set of H was omitted for consis- 
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tency with the Br and I basis sets. 
The active spaces were constructed by distributing three electrons in three 

orbitals consisting of Hl(lS), H2(ls), and X(2pa), i.e. CAS(3,3). The dimen- 
sion of the CAS is eight. According to this CAS, eight linearly independent 
VB structures, 

~0.A q ' . .  (a /~  - , S a  ) . ~ , x a  

q~"A fP"~ a f l  . (Oxa 

~o. a . ~o.. ~Ox ( a , 8  - , s a )  

~ .X  a .r,o., fO. a f l  

q~H X a " ~ x  ~'x a f l  

and 

q~.a-CxCxaP 

HA -HB X, (I) 

H~, -H s X,  (II) 

H; +H B X, (III) 

H A H B - X ,  (IV) 

H A H~ +X, (V) 

HA H~ -X, (VI) 

H; HB -X, (VII) 

q~SA (0.^ aft .  (p.. a H~ HB + X,  (VIII) 

were used to construct CASVB functions, where the normalization constants 
and antisymmetrizers are omitted. 

The contributions of the covalent HAHB bond, ionic HAHB bond, covalent 
HBX bond, ionic HBX bond, and ionic H A X  bond are defined by 

/'/Covalent HAH B : ni, /'/Ionic HAH B - -  nn + nm, (17) 

ncovalent H a X  "--  ?/TV, g/Ionic .~X = nv + nvl, (18) 

and 

nIonic H A X  - -  nv. + nvm. (19) 

Furthermore, the contributions of the total HAHB and HBX bond structures are 
defined by the sums of the covalent structure (I)/(IV) and ionic structures 
(II)/(V) and (III)/(VI), 

n.~.~ = ncovalent HAHB + nioni c HAHB , n.~x = ncovalent HBX + nIonic HBX" (20) 
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Table  2 
Occupation numbers of the VB structures in theproducts 

(H+) HF (H+) HCl (H+) HBr (H+) HI 

I~/ H - X (IV) 0.538 0.710 0.752 0.786 

I~ H-+X (V) -0.018 0.041 0.064 0.101 

I~ H§ (VI) 0.480 0.249 0.184 0.113 

Let us first examine  the electronic structure at the TS structure of  the four re- 
actions as well as those at the reactant  and product  structures. 

The nonor thogonal  L M O s  were determined in the same manner  as in the pre- 
vious subsection. The atomic orbitals used for the determinat ion are two l s  
orbitals of  the hydrogen  atoms and 2p(a)  orbitals of  the halogen atom. All the 
overlaps be tween the atomic orbital (AO) and the nonor thogonal  L M O  are 
greater  than 0.9 (0.9004 at minimum).  The molecular  orbitals are therefore 
well  localized. 

The reactant in all the reactions is the sys tem consist ing of  a hydrogen  mole-  
cule and a halogen atom. Since the hydrogen  molecule  is expressed with VB 

structures as 

~Fn~ = 0.889[q~r~,q~H, (afl-fla)/x/2]+O.lllE@a~o~afl+q~H~@H~afl ], (21) 

Table 3 
Occupation numbers of the VB structures at the T S 

H + H + F  H +H + C1 H +H +C1 H + H +  C1 

H - H X (I) 0.485 0.328 0.217 0.172 

H § -H X (1/) 0.053 0.059 0.043 0.034 

H - §  X (m) 0.017 -0.022 -0.023 -0.019 

I~I H - X  (IV) 0.252 0.385 0.514 0.591 

I~/ H- +X (V) -0.005 0.018 0.042 0.073 

I~I H § -X (VI) 0.147 0.155 0.142 0.100 

H- ~I +X (VII) 0.006 0.013 0.011 0.010 

H + I~I-X (vm) 0.045 0.064 0.053 0.039 

HH bond 0.555 0.365 0.237 0.187 

HX bond 0.394 0.558 0.698 0.764 

Others 0.051 0.077 0.064 0.049 
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the reactant is written as 

k I J R e a e t a n t  --" 0.889[(I)] + 0.11 l[(II) + (I[I)] (22) 

in all the reactions. 
On the other hand, the products are the systems consisting of a hydrogen 

atom and a hydrogen halide. The VB structures are summarized in Table 2. 
As mentioned before, the electronegativities of all the halogen atoms are larger 
than that of the hydrogen atom. In particular, the difference between the elec- 
tronegativity of F and H atoms, 4.0 and 2.2, respectively, is rather large. 
Hence, the bond nature of the HF molecule is thought to be ionic. However, 
the covalent nature is found to be dominant in all the hydrogen halide in the 
CASVB picture, even in the case of HF. 

Table 3 shows the VB structure at the TSs of H2+X ~ H+HX. Just as for 
the equilibrium structures, the covalent VB structures are dominant: the struc- 
tures are well described by the superposition of the HH and HX covalent struc- 
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Fig. 10. Changes in the occupation numbers of the total HH bond (e), total HX bond (o), 
and the other (x) VB structures along IRC. The origin of the horizontal axis corresponds 
to the TS. 
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ture with small H+H and H§ - ionic contributions. 
Using Eq. (20), these structures are further classified as the HH and HX 

bonds, as shown in Table 3. For X=F, the contribution of the HH bond 
(55.5%) is larger than that of the HX bond (39.4%). This relation is reversed 
for X=C1, Br, and I. The contribution of the HH bond increases as the halogen 
atom becomes heavier (55.8 (C1), 69.8 (Br), and 76.4% (I)). This means that 
the TS of chemical bonds (that is, the point where the occupation numbers of the 
two chemical bonds are equal) defined in the previous subsection is placed in 
the reactant side in the X=F case and in the product side for the case of X=C1, 
and it shifts more to the product side as the halogen atom becomes heavier. 

We now examine the bond nature during the reactions. 
Fig. 10 shows the changes in the total occupation number of the HH and HX 

bond structures along the IRC. Similarly to the previous reaction, the occupa- 
tion numbers of the HH and HX bond structures change rapidly and the curves 
cross near the TS. The crossing points are located at 0.07, -0.11, -0.25, and 
-0.33 bohr(amu) ~/2 for X=F, C1, Br, and I, respectively, where a negative sign 
means the crossing point is located before the TS and a positive sign after the 
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TS. We can see the trend that the crossing point shifts from the reactant side 
to the product side as the halogen atom gets heavier. (We can also consider 
that the TS shifts from the product side to reactant side if we take the crossing 
point as the origin.) 

The changes in the contents of the HH and HX bonds are plotted in Fig. 11. 
As expected in these reactions including ionic bonds, the contribution of ionic 
bond increases as that of the covalent bond increases. This feature contrasts 
with that in the dissociation reaction of H2CO, where the ionic bonds do not 
change so much. However, the crossing point of HH and HX covalent bonds 
are still close to that of the HH and HX bonds in Fig. 10. Thus, also in these 
reactions, we can say that the covalent bonds are mainly responsible for deter- 
mining the crossing points. 

To analyze the crossing points, that is, the TS structures of the HH and HX 
bonds, we further examine the geometrical changes of the HH and HX bonds 
and the dipole moment of the systems. 

Fig. 12 presents the difference of the HH and HX bond lengths from the 
equilibrium lengths along the IRC. It is rather difficult to determine the point 
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Fig. 13. Changes in dipole moment of the systems along the IRC. 

that characterizes the TS. However, for qualitative discussion, the crossing 
points of the curves are enough to be the characterizing points: they are located 
at 0.20 (X=F),-0.02 (C1), -0.14 (Br), and -0.25 bohr(amu) 1/2 (I). The trend in 
these positions is similar to the crossing points of the HH and HX bonds. The 
same can be seen in the changes in dipole moment of the systems plotted in Fig. 
13. The curves are drawn so that either dipole moment value for HH+X or 
H+H§ -~ could be smooth. The crossing points are considered the points 
where the charge transfer from H to X occurs (in other words, the points where 
the electronic structure changes drastically). The points are located at 0.19 
(X=F), 0.04 (C1), -0.04 (Br), and -0.13 bohr(amu)l/2 (I). 

We have now another TS, t h e  T S  o f  t h e  H H  a n d  H X  b o n d s ,  besides the real 
TS. What is the significance of this TS? 

If we measure the crossing points in Figs. 12 and 13 from the crossing points 
of the HH and HX bonds, the values become 0.13 (F), 0.09 (C1), 0.11 (Br), and 
0.08 (I) for geometrical change, and 0.12 (F), 0.15 (C1), 0.21 (Br), and 0.20 (I) 
for dipole moment. The ranges of the values are 0.05 for the former numbers 
and 0.09 for the latter numbers. These are rather small compared to those for 
the numbers measured from the real TS: 0.45 and 0.32. We may therefore say 
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that the TS of chemical bonds reflects the geometrical and electronic structure 
information more than the real TS. If we consider Hammond's postulate, 
probably we should not say that the TS of chemical bonds are shifted from the 
real TS, but instead say that the real TS is shifted from the TS of chemical bonds 
due to the systematic changes in heat of the reaction. 

4. CONCLUDING REMARKS 

In this article, we investigated the nature of bonds at TS and during the 
chemical reaction using the CASVB method with nonorthogonal LMOs. The 
nature of bond dissociation and formation can be viewed quantitatively by the 
use of the occupation number of the VB structure, which is defined by the 
weight of the spin-paired function of VB structure. The results in the previous 
section demonstrate that the occupation number is a useful concept for studying 
quantitative descriptions of chemical bonds at TS and along reaction paths. 
This analysis is applicable to reactions involving excited states as well as just 
the ground state. We believe that the CASVB occupation number analysis is a 
useful tool for understanding chemical reaction mechanisms. 
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Chapter 4 

TURTLE- A gradient VBSCF Program 
Theory and Studies of Aromaticity 

Joop H. van Lenthe, Fokke Dijkstra, Remco W. A. Havenith 

Theoretical Chemistry Group, Debye Institute, Utrecht University, 
Padualaan 14, 3584 CH Utrecht, The Netherlands 

The A b Initio Valence Bond program TURTLE has been under development 
for about 12 years and is now becoming useful for the non-specialist 
computational chemist as is exemplified by its incorporation in the GAMESS- 
UK program. We describe here the principles of the matrix evaluation and 
orbital optimisation algorithms and the extensions required to use the Valence 
Bond wavefunctions in analytical (nuclear) gradient calculations. For the 
applications, the emphasis is on the selective use of restrictions on the orbitals in 
the Valence Bond wavefunctions, to investigate chemical concepts, in particular 
resonance in aromatic systems. 

1. INTRODUCTION 

Valence Bond theory has always struck a sympathetic chord in chemist's 
minds, because it can be linked so closely to the familiar Lewis structure. A 
bond is immediately translated in the wavefunction by two non-orthogonal 
orbitals on neighbouring atoms that are singlet coupled. An ionic structure may 
contain an atomic orbital, that is occupied twice, or alternatively two orbitals on 
the same atom. So it is simply possible to translate the assumed concept of the 
bonding in a molecule into a (small) set of structures. Alternatively, if the nature 
of the bonding is in question, the relative importance of the different structures 
may give insight. Vital for an unbiased wavefunction is the ability to optimise 
the wavefunction, both its orbitals and its structure coefficients. An efficient 
way to perform such an optimisation is implemented in the spin-coupled 
program and in its later incarnation the CASVB method [1,2]. These methods 
usually consider all spin-couplings and often a single set of singly occupied 
optimised orbitals. 

In the development of the TURTLE program [3], we started by considering 
a multi-structure Valence Bond wavefunction and added the capability to 
optimise the orbitals. We tried to avoid putting restrictions on the way the 
wavefunction is built and to allow great flexibility in the choice of orbitals. For 
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instance if covalent and ionic structures are employed, the orbitals used in these 
structures may be identical, which just mimics the effect of orbital 
optimisations. Also all orbitals in an ionic structure, both doubly and singly 
occupied ones, may be chosen to be different from those in the covalent 
structure. This yields a very compact and accurate wavefunction (the Breathing 
Orbital Valence Bond method) [4,5] at the cost of a troublesome orbital 
optimisation, due to the near identity of the orbital spaces. The orbitals used 
may be fully optimised as in the spin-coupled approach, but they may also be 
restricted to a subspace of the full orbital space, e.g. just the one atom. This 
enhances the interpretability of the wavefunction considerably. Recently we 
added gradient capabilities to the program and integrated it into the GAMESS- 
UK [6] program. 

We will describe the main features of our program and give examples of the 
use of the code for studying the aromaticity in various molecules. 

2. WAVEFUNCTION OPTIMISATION 

Our wavefunction is build as a linear combination of structures 

~C/~i 
i (1)  

Each structure is a spin-adapted linear combination of determinants. Both 
Rumer diagrams and Branching Diagrams may be chosen. If required, even 
individual determinants may be employed as building blocks. The coefficients 
in Eq. (1) are usually determined by solving the corresponding generalised 
eigenvalue problem 

(I-I- ES)C = 0 (2) 

Alternatively, they may be fixed from the outset. To the structures, weights 
can be attributed, which add up to one, using a formula given by Chirgwin and 
Coulson [7]. 

Wj - E cicjaij (3)  
i 

2.1 Orbital Optimisation 
The orbital optimisation is based on the Generalised Brillouin Theorem [8] 

as extended to non-orthogonal wavefunctions [9,10]: 
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<Vgo lH - Eo[~o ) - O (4) 

where T/j" is the singly excited state, a Brillouin state, obtained by applying the 
unnormalised excitation operator Ci~j to the wavefunction: 

The excitation operator does not have to adhere to the unitary condition, as 
is the case for orthogonal orbitals. Each Brillouin matrix element (Eq. (4)) 
represents the stationary condition for the mixing of orbitals gti and q~. according 
to Ni ~ N~ + ~ The wavefunction consisting of To and all singly excited 
states 

T -  bow o + Z buTu (6) 
i , j  

is obtained by solving the corresponding generalised eigenvalue problem, the 
Brillouin state interaction problem. One can employ the coefficients b O. to 
determine improved orbitals according to 

I~( i ~ {ff  i "3r" b o u/ i (7) 

For orthogonal orbitals this procedure is often called the SuperCI method. 
When the new orbitals are determined, the Valence Bond function is re- 

determined using Eq. (2), and the procedure is repeated until convergence is 
obtained, i.e. all bo.'s in Eq. (6) are zero and the Generalised Brillouin theorem 
(Eq. (4)) is satisfied. 

The usual convergence acceleration/stabilisation tools may be employed in 
this orbital optimisation. For instance, we have implemented level shifting and 
DIIS [11]. 

The SuperCI itself is usually quite stable, but involves solving a non- 
orthogonal CI of a considerable dimension, with each Brillouin state containing 
the same number of determinants as the Valence Bond wavefunction, which is 
rather time consuming. The SuperCI matrix can be approximated by its first row 
(the Brillouin theorem elemems) and the diagonal at a considerable time saving. 
Then the Brillouin state coefficients b o. are estimated following 

<w0fu- 0fv0> 
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which is the non-orthogonal equivalent of the first-order Raleigh-Schr6dinger 
perturbation expression [12]. This approach produces, for not so complicated 
wavefunctions, acceptable convergence behaviour, especially when 
convergence aids like DIIS are invoked. 

3. EXPRESSIONS FOR THE ENERGY AND ITS DERIVATIVES 
[13-151 

The wavefunction consists of a linear combination of structures, which 
themselves are spin-adapted linear combinations of determinants: 

V - Z C p A  p (9) 
p 

According to L6wdin [ 16] the interaction between two determinants Ap and Aq 
is: 

(Ap[I211Aq) - Z hikS(i'k) + Z {(ijlkl)- (ijllk)}S(i'J'k'l) 
ik i < j ,k <l 

(10) 

The overlap is obtained by expanding along an arbitrary column (k)" 

(AplAq)- IS[- Zs~ks ,~,k) (11) 
i 

In these equations h,.k and S,k are the one-electron matrix elements for orbital i 
and k (qi/(1)[h(a)[r and (r162 The <ij[kl> are the two-electron 

integrals (r162 k (1)r S~ k~ and .~(;,j,k,0 "" ab are the first and second 

order cofactors of the overlap matrix, which are signed minors of it. The orbitals 
in Eqs. (10) and (11) are the orbitals occupied in the determinants Ap and Aq. So 
the indices i and j refer to the occupied orbitals in Ap, and the indices k and l to 
occupied orbitals in Aq. S is the overlap matrix between the occupied orbitals of 
Ap and Aq. More about cofactors and adjugates can be found in for example a 
book by Aitken [ 17]. The approach used to obtain the various cofactors will be 
discussed in the next paragraph. 

Assuming a normalised wavefunction, we can now write the energy as 

q,g-/~[/~]l~-f) - p~ ~q Cpeq( Zhik ik ~'~(i'k) i<j,k<lZ {(ij]kl) - (ij]lk)}S(pi;j'k'l) I (12) 
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By rearranging the summations and realising that s~ k' and S(p; j'k'l) are sub- 

determinants of the determinant representing the overlap between Ap and Aq and 
that they are zero if the orbitals i j  and k,l do not appear in the respective 
determinants, we obtain 

( Z h i k Z  s (i,k) (i,j,k,l)CpCq) = Spq Cpfq + Z {(ijlkl)-(ijllk)}EESpq 
ik p q i<j,k<l p q 

(13) 

or 

E-(1~/[HI I~J)--( Zhikdik i<j,k<l~-~{(ijlkl)--(ij[lk)}Dok') (14) 

with the one and two electron reduced density matrices 

dik E E  ~i,~, - Spq CpCq 
P q 

(i,j,k,l) Dijkl=ZZSpq CpCq 
p q 

(15) 

This is of course the familiar expression from orthogonal MO theories. The 
complexity due to the non-orthogonality is now hidden in the cofactors in the 
reduced density matrices. 

3.1 Hellmann-Feynman theorem 
For exact wavefunctions, the Hellmann-Feynman [18,19] theorem states 

that the derivative of the energy with respect to a nuclear co-ordinate x equals 
the expectation value of the derivative of the Hamiltonian. 

When the wavefunction is expanded, using expansion parameters c, this 
theorem still holds if 3E/3c=0, or when Oc/Ox=O. The first is the case for 
completely optimised wavefunctions and the second for wavefunctions where 
some, or all, of the coefficients are frozen. This can be seen when we write the 
derivative of E with respect to x as a sum of two terms: 
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dE(x) c)E(x;c) OE(x;c) c)c 
= ~ +  (17) 

dx Ox c)c oax 

The first term contains the direct dependence on x, the second the dependence 
on x through c. When OE/Oc=O (optimised), or Oc/Ox=O (frozen coefficients) the 
second part disappears: 

dE(x) OE(x;c) 

dx & 
(18) 

Therefore, the dependence on the coefficients does not enter the gradient 
expression; not for fixed orbitals, which is the classical Valence Bond approach 
and not for optimised orbitals, irrespective of whether they are completely 
optimised or if they are restricted to extend only over the atomic orbitals of one 
atom. If the wavefunction used in the orbital optimisation differs, additional 
work is required. This would apply to a multi-reference singles and doubles VB 
(cf. [20,21]). Then we would require a yet unimplemented coupled-VBSCF 
procedure. Note that the option to fix the orbitals is not available in orthogonal 
(MO) methods, due to the orthonormality restriction. 

3.2 Gradient expression 
The only restriction for the gradient evaluation is that the wavefunction has 

to be normalised, i.e. 

(q-'lq ~)-  1 or [ ( ~ ] ~ ) - 1 - O ]  (19) 

To take this restriction into account, the Lagrange multiplier formalism is 
employed. We devise a Lagrangian by adding the restriction multiplied by a 
Lagrange multiplier X. 

L - E -  A,[S- 1]-  ( ~ I H I ~ ) -  A,[(~I ~ ) -1]  (20) 

The Lagrange multiplier X is determined by requiring that the derivatives of 
the Lagrangian with respect to all optimised variables like the structure 
coefficients Ck are zero: 

-~k = O ~  ~ C~CjH~ - A, CiCjS o - 1  . -  - - 
ij i 
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This is clearly equivalent to the secular equations 

Z C~ {H~k - ES~k } - 0 (22) 
i 

Thus ,a, equals the energy E. Similarly one can derive the expression involving 
the orbital coefficients, which involves the generalised Brillouin theorem 
(Eq. (4)) which again yields Z=E. 

The required energy derivative is 

ax = -~- = ~ ~<Vl 'e> (23) 

Another way to see that E is the required Lagrange multiplier is by taking 
the derivative of the energy expression for an unnormalised wavefunction: 

0x <'el'e> <'el~V> ~ 
(24) 

Now add normalisation of W so that (WlW) = 1, and use: 

E-<~1~1~> (25) 

and obtain: 

oic= tt'l/-)[~t' ) - oax(tt'l~t') (26) 

Eq. (26) gives the final expression for the derivative of the energy. The 
derivatives of the energy (Eq. (14)) and the norm of the wavefunction have to be 
evaluated, using partial differentiation, since both one- and two-electron 
integrals and the density matrices (through the cofactors) may change with the 
geometry: 

+ hi~--~-+ ~ {<ijlkl)-<ijl ---~Dok, 
i<j,k<l 

(27) 
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This equation has two parts. The first part contains derivatives of the one 
and two electron integrals. These are supplied by any standard gradient package 
and also appear in gradient expressions for orthogonal MO methods. The other 
part contains the derivatives of the density matrices, more specifically the 
derivatives of the first and second order cofactors. These are absent in the 
orthogonal methods by virtue of the fact that all cofactors are either 1 or 0. The 
orthonormality of the wavefunction is handled by the orthonormality 
restrictions, which in their turn give rise to Lagrange multipliers. We will gather 
all terms involving derivatives of the overlap in the derivatives expression into a 
matrix L, which can take the place of the Lagrange multiplier matrix of MO 
based gradient packages. 

3.3 Density matrices and Cofactors 
As a cofactor is itself a determinant, we may just consider the determinant 

of an overlap matrix. A determinant can be expressed as a sum of products of its 
matrix elements. The derivative of a product of matrix elements is obtained by 
taking the derivative of one matrix element and multiplying this by the product 
of the other matrix elements. This has to be done for all the matrix elements in 
the product, and the results have to be added. Another way to look at a 
determinant is by expanding it in its first order cofactors (cf. Eq. (11)) : 

N 

- -  S (i 'k) (28) 
i 

Now the determinant is a linear combination of matrix elements of a row (or 
column) times the corresponding cofactors. The weight of a certain matrix 
element in the determinant is given by its first order cofactor. The derivative 
must be the sum of the derivatives of the matrix elements times their cofactors, 
like shown in the next equation: 

dlSl:dx dsrsdx S(r's) (29) 

Because cofactors are sub-determinants, one can immediately write down 
their derivatives. The first order cofactors of first order cofactors are second 
order cofactors, and first order cofactors of second order cofactors introduce 
third order cofactors. 
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dS ( i, k) 

dx 
dS(g,J,k,o 

dx 

= (sign)E dSr, s(i,r,k,s) 
dx r$ 

dapq S (i'j'r'k'l's) 
= (sign) E dx 

rs 

(30) 

In these equations there is also a sign involved, which depends on the 
relative positions of the original indices ij, k and l with respect to r and s. The 
first indices refer to the original overlap matrix, while r and s should refer to the 
matrix where row i (and j )  and column k (and l) have been removed. To keep 
the equations simple we will omit this sign in our equations*. 

Thus the derivatives of the density matrix elements are 

Odik __ ~rs dSrs ~ .  _(i,r,k,s) dSrs " 
& - dx I- 'dESPq Cpfq = E-----~dirks 

p q rs 

ODijkl dSrs ~ .  s(i,j,r,k,l,s) dSrs - 
8X - - E  d x l . ~ E  Cpfq-E- - -"~ i j rk l s  

rs p q rs 

Thus, we now need also a third order reduced density matrix, which involves 
the corresponding third order cofactors. 

Eq. (28) can now be used to derive the expression for the derivative of the 
norm of the wavefunction, which is also required in Eq. (26). 

0 <lkIJ I kI/> dlS pql~ E dSrs dSrs 
Ox - Z Z CpCq -----~ Tx ~ ~ CpCqS~pqS' - ~  Tx dr~ (32) 

p q rs p q rs 

Combining Eqs. (27), (31) and (32) the final expression for the derivative of 
the energy with respect to say a geometrical parameter is 

O<V[HIV) ( Ohik {O<ij[kl> 
: E-SZx. i  + E �9 i<j,k<l 

8<ijllk) } ) &ik 
oqX Oq kl -~i---~-.Lik (33) 

t The sign depends on the relative position of the rows and the columns, which are removed. 

For instance, if r<i, the sign is unchanged when removing r, but if r lies beyond i the sign 

should reflect, that r actually should be moved 1 place back and therefore a -1 is produced 
cf. [22]. 
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with 

Zik - E~ - E hrsd~isk - E { ( r j l s l )  - (rjlls)}Drjislk 
rs r<j ,s<l  

(34) 

This expression is very similar to those in the normal orthogonal case. We 
may therefore use any general gradient package. Our VB program generates the 
density matrices and the matrix L, which is used instead of the Lagrange 
multiplier matrix of for instance a MCSCF function. 

3.4 Cofac tors  I23,24] 
For the calculation of cofactors we use algorithms based on work by 

L6wdin [16], and Prosser and Hagstrom [25,26]. An overview of the theory of 
determinants, cofactors, adjugates and compound matrices can be found in a 
book by Aitken [17]. The symmetry and possible orthogonality in the orbital 
spaces give rise to a block-structure in the overlap matrices. This structure is 
exploited [22,27] to minimise the size of the matrices in the L - d - R  
decomposition, described below, an n 3 process for each matrix. 

The calculation of the first order cofactors is simplified by performing an 
L-d-R decomposition of the overlap matrix. L and R are lower and upper 
diagonal matrices respectively. They have ones on the diagonal and therefore 
their determinant is one as well. L and R are chosen in such a way, that when S 
is pre-multiplied by L and post-multiplied by R the result is a diagonal matrix d. 

d - L . S . R  

ILl- IRI = 1 (35) 

S -  L -1 " d . R  -1 

Because the determinants of L and R are one, the determinant of S equals 
the determinant of d. 

N 

[Sl- [dl- dii 
i=1 

(36) 

Now the adjugate matrix of S, which contains the first order cofactors can be 
calculated using [17] and Eq. (38) 

a d j ( S )  - a d j ( L  -1. d .  R - ' )  - a d j ( R - 1 )  �9 a d j ( d )  . a d j ( L  -~ ) - R .  a d j ( d )  . L (37) 
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The nullity of the overlap-matrix S, is its dimension minus its rank, so the 
nullity of S corresponds to the number of zero diagonal elements in d. Nullity 
above 0, implies a singular S-matrix. The algorithm depends on the nullity. 

3.4.1 Nullity 0 
Using the fact that the inverse of a diagonal matrix is a diagonal matrix with 

inverse elements, and that the adjugate of a matrix is directly related to its 
inverse 

adj(d) -[dl.d -~ (38) 

the complete first order cofactor matrix can be calculated using Eq. (37) at a 
cost of ~n 3 operations per overlap matrix, where n is the number of electrons. 
For the higher order cofactors we use the Jacobi ratio theorem to express higher 
order adjugates in terms of the compound matrices of the first order adjugate 

adj (k~ (A) -IA! ~-k (adj(A)) (k~ (39) 

The k th order compound matrix B (k~ is a matrix with the k th order minors (k th 
order sub-determinants) as elements. So the k th order adjugate can be expressed 
in terms of the k th order compound matrix of the first order adjugate. 

The 2 nd order cofactors cost 2 multiplications each, at a total cost of 2.n 4, no 
more than the cost of multiplying them by the two-electron integrals. Similarly, 
3 ~d order cofactors take 6.n 6 in total. 

3.4.2 Nullity 1 
Now the first order adjugate of the matrix d contains only 1 nonzero 

element, simplifying the application of Eq. (37). The Jacobi ratio theorem 
cannot be used straightaway for the higher order cofactors, when the overlap 
matrix is singular, since its determinant is zero. However, we can make use of 
the fact that determinants and thus cofactors, which are sub-determinants, are 
linear in their elements. If we change a matrix element of S as [ 13,28] 

Sfiq - Spq -1- t (40) 

then the determinant of S changes as: 

[s'(t)l- Isl + ts(P'q) (41) 

The changes in the cofactors are similar. 
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S , ( t ) ( i ,  l) _ S(i, 1) @ ( s i g n ) t S  (i'p,l,q) 

S t ( t )  (i,j,l,m) = S (i,j,l,m) ~. ( s i g n ) t S  (i,j,p,l,m,q) 

St(t)(i,j ,k,l,m, n) -- s(i,j,k,l,m,n) Jr (sign)tS(i'J'k'P'l 'm'n'q) 
(42) 

This procedure can be used to eliminate the singularities by changing the 
zero (diagonal) element of d after an L-d-R decomposition. The sign in these 
equations depends, like in the derivation of the derivatives of cofactors, on the 
ordering of p and q with respect to id',k,l,m and n. However, in a standard L-d-R 
decomposition the singularity is moved to the last position of d and the sign is 
just plus. 

To obtain the n th order cofactors for a singular matrix, with nullity 1 we 
have to interpolate between two values of t, i.e. t = +1 and t = -1. The n th order 
cofactors of S' for t=l and t=-I are added to obtain the n th order cofactors of S 

1 (adj(. , (S'(1)) + adj (") (S'(-1))) adj(n)(s) - -~ (43) 

3.4.3 Nullity 2 
When the nullity equals 2, all first order cofactors are eliminated. For the 

higher order adjugate matrices, two parameters have to be introduced and we 
need four points to interpolate and obtain 

l (adj(n'(s"(1,1)) + adj("'(S"(1,-1)) ) 
adj (n' (S) - ~ [. +adj (n' (S"(-1,1)) + adj (n' (S" ( -1 , -  1)) 

(44) 

3.4.4 Nullity k 
When the nullity is k there are also k parameters. The interpolated 

expression for the adjugate has now 2 k terms and we have to evaluate 
determinants of order n, where n is the order of the adjugates we require. When 
n<k all cofactors are zero. 

A special case is when k equals n, i.e. the nullity equals the order of the 
adjugates. Then one can extend an algorithm by Prosser and Hagstrom [25,26]. 

Writing S as L~.d.R l the adjugate of S is 

adj(n) (S) - adj(n) (L -1 . d . R  -1) 

= adj(n~(R-1).adj(n)(d).adj(n)(L-1 ) 
(45) 
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The determinants of L and R are one, and we can introduce the n th order 
compound matrices of R and L. 

adj '"~ (R-~) �9 adj '"~ (d). adj '"~ ( L  -1  ) - R '")- adj '"~ (d) -L ~") (46) 

The nullity equals n, and therefore the r/th order adjugate of d has only one 
non-zero element. Now only one row of R (n~ and one column of L ('0 remain in 
the product, and the n th order adjugate of S reduces to the product of this row 
and column multiplied by the only element of the n th order adjugate of d. 

4. P R O G R A M  

The formalisms derived above were implemented in the Ab Initio Valence 
Bond program TURTLE [3]. The logo for the program is shown in Fig. 1. This 
is the logo for the parallel version, as is obvious from the number of turtles 
depicted. 

Currently the program has been parallellised using MPI[29,30], following 
the scheme in Fig. 2. This implies parallellising over 99% of the program, since 
contrary to MO programs, the matrix elements, both those needed when 
calculating the wavefunction and those required in the SuperCI, dominate 
completely. In the present implementation, a speedup of 54 is obtained when 
using 64 processors[31 ]. An implementation using Global Arrays[32-34] is in 
progress. In this implementation, the integral transformation and all calculations 
of density matrices are parallellised. 

t t 1 
t t 1 

tttt u u rrrrr tttt 1 

t u u r r t 1 

t t u u r t t 1 1 

ttt uu r ttt Iii 

0 0 0  
QOQO@ 

e 
6 0 6  

. . . . .  ) ) ) ) )  . . . . . .  ) ) ) ) )  

. . . .  ( o o )  . . . .  ( o o )  
_ ( _ ) _ ( _ ) _  ( ^ ) - - -  _ ( _ ) _ ( _ ) _  ( ^ ) 

_ ( _ ) _ ( _ ) _ ( _ ) _ /  / _ ( _ ) _ ( _ ) _ ( _ ) _ /  / 

.... _(_)_(_)_(_)_(_) I _(_)_(_)_(_)_(_) I 

(_) _ (_) _ (_) _ (_) _ (_) (_) _ (_) _ (_) _ (_) _ (_) 

II II II II II II II II 

Fig. 1. TURTLE logo. The logo was originally developed by J. Verbeek. 
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CPU 1 CPU 2 CPU N 

make virtuals 

integral 
transformation 

Y -Koutput) 

calculate ~ calculate 
<~ilHl~> <~lHl~> 

diagonalise ~ diagonalise 

calculate 
<~ilHI~> 

! 

- - -~1 diagonalise / 

J calculate I I I  calculate 
<%lHIVk,> I I <~ijlHIWk'> 

diagonalise 4-.--~ diagonalise I ~ - - - ~ t  

change 
orbitals 

calculate 
<~ijlHl~Fkl> 

diagonalise 

Fig. 2. The structure of the parallellised version of TURTLE. 

5. APPLICATIONS 

The concept of aromaticity has been intriguing chemists for years. An 
overview of the discussion about aromaticity and the various experimentally 
measurable effects can be found in textbooks as Garratt's [35], a paper by Von 
Schleyer and Jiao [36], and in a review by Wiberg [37]. 

There is still much dispute about what aromaticity really is. As a 
consequence of induced ring currents in aromatic n-systems [38,39] the 
magnetic properties of aromatic compounds differ with respect to those of non- 
conjugated alkenes. Hence, magnetic properties [36] (large anisotropy of the 
magnetic susceptibility [Az] , exalted magnetic susceptibility [A], deshielded 
ring protons and negative Nucleus Independent Chemical Shift (NICS) [40]) are 
also frequently used as aromaticity criteria. There are many other criteria, for 
instance based on geometric criteria [41-43]. The anomalous magnetic 
properties and bond equalisation all result from the cyclic electron 
delocalisation, with which aromaticity is associated. 
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The theoretical models start with Kekul6's [44] description of benzene, as 
having two structures. Later Hfickel [45,46] discovered his [4n+2] and [4n] 
rules, and was able to account for the stability of benzene ([4n+2]) and the 
instability of cyclobutadiene and cyclo-octatetraene (both [4n]). The [4n+2] 
compounds were called aromatic after benzene, while the [4n] compounds were 
given the designation anti-aromatic. 

A natural way to study aromaticity would be to make use of the concept of 
two structures, as introduced by Kekul6. The first to use this view were Pauling 
and Wheland [47]. They used an approximate form of the valence bond (VB) 
method developed by Heitler and London [48], for describing the aromaticity of 
benzene. 

Classical VB calculations using fixed orbitals and containing all possible 
covalent and ionic structures for the re-system were done by Norbeck and Gallup 
[49] and by Tantardini et al. [50]. They both used c~-orbitals from an SCF 
calculation. The resonance energy used by them is the energy difference 
between benzene (described with all the structures) and 1,3,5-cyclohexatriene 
(described with a subset of structures) at a certain geometry. In these 
calculations, high resonance energies of-61.4 and-67.4 kcal/mol are obtained 
for benzene. 

More recently, Mo and Wu [51 ] used this type of description for benzene 
and cyclobutadiene as well. They also optimised the geometries of these 
molecules and of the ones with localised bonds. In their calculation of 
resonance- and stabilisation energies, they took another set of structures for the 
description of the cyclohexatriene, which leads again to a different definition of 
the resonance energy. 

The first calculations on benzene using optimised orbitals were done by 
Cooper et al. [52], using their spin-coupled VB method [20]. A review [53] has 
appeared with an overview of their work on aromatic and anti-aromatic 
compounds. 

Resonating Generalised Valence Bond (GVB) calculations were performed 
on cyclobutadiene by Voter and Goddard [54]. They find a resonance energy of 
-22 kcal/mol for this molecule. According to them its geometry cannot easily be 
predicted, and is determined by the interaction between resonance and bond 
strain. 

In the last 15 years new theories about aromaticity appeared. Since the 
discovery of the Hfickel rules, aromaticity was considered as an effect of the 
interacting re-electrons, Shaik, Hiberty and co-workers [55-61] challenged that 
view, and stated that the n-system of benzene favours a distorted geometry with 
localised bonds, and that the a-system forces the molecule to be symmetric. 
Glendening et al. [62] on the other hand conclude from their calculations on 
benzene with localised bonds that the interaction between the two Kekul6 
structures is necessary for the molecule to have a symmetric geometry. 
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In classical Valence Bond theory, a bond is simply defined as a singlet 
coupled orbital (electron) pair. Thus, a single bond is obtained using: 

(B~ -(10,~21-1~021)/~ ~ (12) (47) 

Then a total wavefunction is obtained by multiplying these units together 
and proper antisymmetrisation, thus 

= (12)(34)(56)(78)... (48) 

This resembles the GVB picture of chemical bonding as promoted by 
Goddard et al. [63]. However, in contrast to this, here we have no orthogonality 
imposed and the number of structures is, in principle, unlimited. 

Ionic structures are most easily represented, as are lone pairs, by a doubly 
occupied orbital or, by two orbitals on one atom located in the same region [4], 
which is a more balanced picture. Finally, not all bonds have to be designated 
explicitly. Instead, one might define an orthogonal core, which contains these 
doubly occupied orbitals. 

Thus, the simplest wavefunction describing say three bonds using the 
Valence Bond model in addition to an orthogonal core is given by 

W -1(core)(12)(34)(56)1 (49) 

The wavefunction in Eq. (49) could be the wavefunction for a simple 
molecule, allowing for three bond dissociating, or it could be one of the 
structures of benzene. The wavefunction for benzene, containing two Kekul6 
structures for the n-system, is pictorially given in Fig. 3 and in formula by �9 

LF - C11(C%ore )(12)(34)(56) I + C2](Cr~ore )(23)(45)(61) I (50) 

The spin-space for the rt-space of benzene is completed by adding the three 
Dewar structures shown in Fig. 4. 

The wavefunction in Eq. (50) does describe the resonance between the two 
Kekul6 structures through the interaction between the two structures. 

Fig. 3. The two Kekul6 structures of benzene 
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Thus one can study the 'hypothetical' situation without resonance by just 
including one of the structures in the wavefunction, so as to assess the 
importance of resonance. 

There is still freedom in the choice of"atomic" orbitals used in Eq. (50). For 
instance, one can use fixed atomic orbitals, which eliminates the (sometimes 
costly) orbital optimisation. One can also use fully optimised, potentially 
delocalised orbitals in the spin-coupled / Coulson-Fischer sense. Finally, one 
can use "real atomic" orbitals by limiting each orbital to its own atom. This 
often gives a clearer physical picture of chemical bonding. It generates for 
instance optimal hybrids [9,10]. 

Since a restriction is applied to the wavefunction, the energy goes up and 
the bond-strength is diminished. This is used in assessing the effects of the 
strengths of the bonds in cyclobutadiene. The orbitals may also be restricted to 
extend just over a part of the molecule [64], inhibiting delocalisation. 

The applications we present are all related to the concepts of aromaticity, 
resonance and delocalisation. 

5.1 The importance of resonance- benzene and cyclobutadiene[24,65-67] 
Our VB program TURTLE [3] allows for both a more extensive and a more 

restrictive description of benzene and cyclobutadiene than was available in the 
previous studies. We included full orbital and full geometry optimisation. Two 
orbital models were used. The first has p-like (p~) orbitals strictly localised on 
the carbon atoms. This corresponds to the classical Heitler-London model [48], 
but with optimal orbitals. The second uses delocalised fully optimised [68] p~ 
orbitals, which include tails to neighbouring atoms. 

The main difference between them is that the delocalisation of the orbitals 
mimics the effects of ionic structures, giving stronger bonds in the molecule. 
This allows us to study the effect of the bond-strength in the ~-system on the 
geometry. The local orbitals allow a description closer to the Pauling picture 
[47], since the orbitals lack freedom. 

Since we can assign bonds at will, we may distinguish four molecules, some 
of which are not real in a chemical sense. First there is benzene which we 
described using just the two Kekul~ structures (Fig. 3). The three Dewar 
structures (Fig. 4) were not taken into account. 

Fig. 4. The three Dewar Structures of benzene 
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Fig. 5. The two resonance structures for cyclobutadiene 

Earlier calculations [52,69] showed that they have a weight of about 6-7% 
each. Because these weights are relatively small, compared to the total weight of 
the Kekul6 structures of about 80%, and since they obscure the view of the 
resonance, they were left out. 

Next, we have cyclobutadiene, which is described using two structures as 
well (Fig. 5), though the two are not expected to have equal weight in the 
wavefunction. 

Strictly adhering to the Pauling definition [47], the resonance energy (Eres) 
of an aromatic hydrocarbon is obtained as the difference between the total VB 
energy and the energy of the most stable structure (Eres=Etot-Elowest). 

The energy difference between the two-structure calculation and a one- 
structure calculation at the same geometry with optimal orbitals but lacking 
resonance/n-electron delocalisation gives the vertical resonance energy (VRE) 
[70]. 

Finally, we can just use one structure, which for C6H6 gives the elusive 
cyclohexatriene (D3h symmetry) (fig. 6). Of course, for cyclobutadiene, nothing 
out of the ordinary is observed and the normal 1,3-cyclobutadiene results. The 
difference in energy with the two-structure calculation gives the theoretical 
resonance energy (TRE) [51 ]. 

The energy of the hypothetical cyclohexatriene was previously estimated by 
Dewar et  al. using experimental data by taking three times the C=C and C-C 
increment [71 ]. 

For all the compounds, orbitals and geometries were optimised using a 
6-31G basis set [72]. 

Fig. 6. 1,3,5-cyclohexatriene and 1,3-cyclobutadiene 
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5.1.1 Benzene and Cyclohexatriene 
The benzene calculations using delocalised orbitals yielded a symmetric 

structure with a C-C bond length of 1.399 A, in excellent, be it fortuitous, 
agreement with the experimental value (1.399A [73]). In the calculations where 
orbitals were restricted to the atoms, the C-C bonds were weakened and 
correspondingly they lengthened to 1.426 A. This elongation was also found 
when the local approximation was applied to the re-system of ethene [67]. The 
cyclohexatriene calculations (1 structure), resulted in a D3h geometry, with C-C 
bond lengths of 1.433 and 1.369 A, in reasonable agreement with linear 
1,3,5-hexatriene (1.458 and 1.368 A [74]). If  the rc-orbitals are restricted to the 
atoms the effect is only noticeable on the single bonds, which elongate to 1.509 
A, whereas the double bonds even contract very slightly to 1.368 A. 

This suggests, that in the delocalised calculation the formal single bonds still 
have some double bond character, as they have in 1,3,5-hexatriene. They lose 
this in the purely localised calculation. This throws some doubt on the clear 
interpretability of the delocalised calculation. However if a two-structure 
calculation is performed at the optimised geometry of cyclohexatriene, the 
weights according to Eq. (3) of the structures are quite similar in both models, 
viz. 0.74/0.26 for the delocalised calculations vs. 0.79/0.21 for the strictly 
localised ones. 

In Table 1 we collect all resonance energies. The values for both the VRE 
and TRE are considerably lower than most previously reported values (range -5 
to -95 kcal/mol [51,75-77]). We note that in previous calculations the 1,3,5- 
cyclohexatrienes (D6h and D3h) were accessed with non-optimised orbitals [76], 
or with pre-determined ethene r~-orbitals [77]. Note the large difference between 
the Pauling resonance energy and the vertical resonance energy for the 
delocalised orbitals, whereas there is no difference for strictly localised orbitals. 
Obviously just for benzene, the extra freedom offered by the delocalisation is 
utilised to the full. If  anything, the other resonance energies are remarkably 
similar, showing that the resonance persists even in cyclohexatriene. The two- 
structure calculation on cyclohexatriene does not represent a true minimum. It 
lies just 1.2 kcal/mol (delocalised orbitals) above benzene and will revert to that 
geometry if the geometry is relaxed. 

Table 1 
Resonance energies for benzene and cyclohexatriene 

Molecule Benzene Cyclohexatriene 

model delocalised localised delocalised localised 

Pauling Resonance Energy 
Vertical Resonance Energy 
Theoretical Resonance Energy 

-19.8 -25.4 
-9.6 -25.1 
-7.4 - 11.3 

-8.4 -7.7 

-6.2 -7.7 



98 

The calculations show that the resonance energy is the driving force behind 
the symmetrisation of benzene (cf. [62]). Indeed benzene is easy to distort to 
e.g. a cyclohexatriene geometry [61 ]. This, however, should not be construed to 
be an indication of the unimportance of resonance but, on the contrary, to be 
taken as a sign of its persistence (cf. [69]). 

Some of the previous calculations in the literature stressed the importance of 
ionic configurations. They are indeed needed for a proper description of the 
bonding when localised orbitals are used, as shown by the poor bond lengths 
obtained without. The calculations with ionic structures also give huge 
resonance energies, due to the large number of ionic structures used in the 
description of benzene. It is our feeling that the only reasonable definition for 
the resonance of benzene is the interaction between two Kekul6 structures. 
Inclusion of the full set of ionic structures makes it difficult to obtain a balanced 
description of both cyclohexatriene and benzene. Different choices can be made 
for the description of cyclohexatriene as well (of. [51 ] and [49]). The application 
of the spin coupled method[53], where the orbitals are optimised, gives 
essentially the same result (-20.0 kcal/mol) for the resonance energy as our 
calculations using delocalised orbitals. The only difference is that the Dewar 
structures of Fig. 4 were also present in the spin-coupled wavefunction. 

5.1.2 Cyclobutadiene 
A calculation using the delocalised orbital model yields a rectangular 

structure as expected [78], both with the two-structure and with the one- 
structure calculation. The bond lengths are 1.552 A and 1.367 ./t for the two- 
structure calculation and hardly different for the one-structure calculation. The 
resonance energy is quite small (-0.98 kcal/mol). 

However when the ~-bond strength is diminished, when using strictly 
localised orbitals, a molecule with equal C-C bondlengths (1.465 A) is obtained. 
Now the resonance energy is quite large (Pauling Eres  = -17.66 kcal/mol). So is 
the stabilisation energy of-7 .85 kcal/mol with respect to the one-structure 
calculation, which obviously still yields a rectangular structure with bond 
lengths of 1.556 and 1.395 A. The ~-bonds are relatively weak in this system, 
due to the use of strictly localised orbitals. Thus, the square geometry can be 
explained by a preference of the o-system for equal bond lengths. 

In order to see if it is possible to neutralise this effect of the o-system we 
performed a second calculation which used localised orbitals for the o-system 
as well as for the re-system. In this calculation one perfect-pairing structure was 
used for the C-C bonds of the o-system. All orbitals were localised on the C-H 
fragments. Doubly occupied orbitals were used for the C-H bonds, and strictly 
localised singly occupied orbitals for the C-C bonds. This calculation again 
yields a rectangular geometry with a much lower resonance energy. The bond 
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lengths are also longer than for calculations with only localised ~z-bonds, which 
shows that the bonds are indeed weaker. 

We may conclude that the relative strengths of the cy- and the ~-bonds 
determine the geometry of cyclobutadiene. For relatively weak ~-bonds, the 
resonance, together with the a-bonds, prevails to yield a square geometry. With 
stronger n-bonds or weaker t~-bonds the, expected, rectangular structure is 
produced. 

5.1.3 Concluding remarks on the importance o f  resonance 
Of the views expressed in the literature, we find two of them to be partly 

compatible with our findings. The model developed by Shaik, Hiberty and co- 
workers [55-61 ] states that the c~-system prefers equal bond lengths, while the ~z- 
system prefers alternating bond lengths. The resonance of the ~-system is also a 
symmetrising influence. 

The viewpoint expressed by Glendening et al. [62] is that the resonance 
between the structures is the key factor for delocalisation. We find this as well. 
When there is no resonance in cyclobutadiene (and benzene), the molecule 
becomes asymmetric. Just resonance is not enough, however. Both benzene and 
square cyclobutadiene have large resonance energies. 

Finally, we have to disagree with Zilberg and Haas [79]. They state that the 
geometric distortion of cyclobutadiene is a fundamental property of [4n]- 
electron ring systems. We were able to generate a square symmetric system just 
by weakening the ~-bonds. Voter and Goddard[54] correctly suggest that the 
geometry of cyclobutadiene is a result of a balance between bond strain and 
resonance. 

We can therefore now conclude that there are three contributions that 
determine the geometry of benzene and cyclobutadiene. The first contribution is 
that of the a-system which prefers equal bond lengths. The other two 
contributing factors are the re-bonds and the re-resonance. The n-bonds by 
themselves give rise to two states with a minimum at one of the geometries with 
alternating bond lengths. The resonance provides interaction between the two 
states and stabilises the symmetric structure. 

5.2 Aromaticity of bent benzene rings [69] 
An interesting question [80] is" "What happens when the benzene ring is 

bent from its planar structure?" Will it still be aromatic? The only experimental 
way to get insight into the possible behaviour of bent benzene molecules is by 
attaching bridges over the ring that put the ring under strain. Examples of such 
molecules are [n]meta- and [n]paracyclophane molecules, the number n 
denoting the length of the carbon chain that is attached to the benzene ring. The 
only way to study bent benzene molecules, without the disturbing influence of 
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the bridges, is to use theoretical methods, where the Born-Oppenheimer 
approximation [81 ] allows one to freeze the molecular geometry. 

For the description of the bent benzene, the flat benzene ring was the 
starting point. For this system, there is a clear arc  separation. There is a clear 
distinction between the doubly occupied orbitals for the ~-core and the 6 non- 
orthogonal p-orbitals for the re-system. 

The re-system is described by all five Rumer structures, which is the 
complete spin-space (i.e. Fig. 3 and Fig. 4). This allows a smooth transition 
from benzene, where the 2 Kekul6 structures are most important, to the highly 
bent Dewar benzene, where only one of the Dewar structures (Fig 4) is 
important. All the orbitals, doubly occupied and singly occupied are fully 
optimised. For each bent structure, the orbitals from the preceding less bent 
structure were used as initial guess. This and the choice of wavefunction ensure 
that an aromatic "n-system" can be identified, even when no symmetry 
separation exists. All orbitals were completely optimised so we have a 
wavefunction of the spin-coupled type. This is the type of wavefunction used by 
Cooper et al. [52] in their study of benzene. 

To obtain geometries, 10-orbital 10-electron complete active space self- 
consistent field (CASSCF) [82-84] calculations were performed with the 
GAMESS-UK program [6]. The occupied orbital order in an SCF for flat 
benzene is rc,2a,2n. In the bent molecule, there is no clear distinction between 
a-  and rc-orbitals and we want to include all the n-orbitals in the CAS-space. 
Thus, 10 orbitals in the active space are required. Obviously, the 5 structure VB 
wavefunction would have been a preferable choice to use in the geometry 
optimisation. However, at that time, the VB gradients were not yet available. 
The energies of the VBSCF at the CASSCF geometries followed the CASSCF 
curve closely. 

The geometry of the molecule at each point was optimised for a fixed 
bending angle ~) (Fig. 7), while all the other geometrical parameters were free. 

J 
J 

C1 C4 / ~  ~---H1 

_ _  _ 

C 6  C5 ~ ' ~  

H2 

Fig. 7. Important geometrical parameters: ~ is the angle between the plane of the displaced 

carbon atom 4 with carbon 3 and 5 and the plane of the 4 lower carbon atoms. 
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C2v symmetry has been used throughout. Calculations were performed for t~ 
from 0 ~ to 90 ~ with a step-size of 5 ~ All calculations were performed using the 
6-31G basis set [72]. 

The carbon-carbon bond lengths remain very similar, with differences of 
less than 0.03 A, up to a bending angle (~) of 55 ~ The end-CH (ct) bending 
increases up to 40 ~ at ~=55 ~ thus maintaining the re-system as much as possible. 
Beyond ~=55 ~ the end-CH turns upwards ((z=-I o at t~=60~ signalling the end 
of the aromatic ring. At that angle the equivalence between the C-C bonds is 
gone as well. There is a drastic change in the geometry between 55 ~ and 60 ~ 
where the molecule attains the shape of Dewar benzene. The barrier in the 
potential energy curves is also here. 

The clearest picture of the bonding is given by considering the weights of 
the Rumer structures (Eq. (3), Fig. 8). The weights for equivalent structures are 
added; So the weights of the two Kekul~ structures are summed and the weights 
of two of the Dewar structures are summed. It is clear that at low angles the two 
Kekul6 structures are the most important ones. They make up for more than 
70 % of the wavefunction, up to 55 ~ Then one Dewar structure takes over 
completely and the molecule has become Dewar benzene. 

The energies of the individual structures behave more smoothly. They are 
continuously rising (except for the bonding Dewar structure beyond 60~ 
though there is sudden change at 60 ~ because of the change in geometry. 

The resonance energy (Pauling definition [47]) is -20.30 kcal/mol for flat 
benzene and it decreases to -17.39 kcal/mol at 55 ~ Thus, we still have an 
aromatic molecule at 55 ~ . After 55 ~ one Dewar structure dominates the 
wavefunction and the resonance energy decreases to -0.10 kcal/mol; the 
aromaticity is gone. 
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Fig. 8. Structure weights in bent benzene 



102 

0 

35 ~ 

55 ~ 

60 ~ 

80 ~ 

Fig. 9. rc like orbitals on carbon atoms 3 and 4 for some important bending angles. The 

orbitals on the other atoms may be obtained by mirror-symmetry. The pictures were produced 

with the help of Molden [851 
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Orbital pictures for the different bending angles are shown in Fig. 9. The 
pictures show iso-surfaces with an absolute value of 0.1. The different signs are 
shown by the dark and light grey-shades, and the orbitals extend to 
neighbouring atoms, reflecting the delocalised model employed. They show that 
the orbitals try to adapt to the form of the molecule and to maintain bonds for 
the Kekul6 structures. At 60 ~ the p-like orbitals on carbon atom 1 and 4 rotate to 
form a bond between those two atoms. So. first of all, the overlaps are 
maximised for the bonds in the Kekul6 structures. Then the orbitals on the two 
carbon-atoms, which are bent out of plane (atom 1 and 4) rotate to form a bond 
in the Dewar structure with correspondingly much larger overlap. 

The orbitals in bent benzene try to adapt to the bent ring as much as possible 
while still keeping large overlaps for the Kekul6 structures. This also has to do 
with the geometry of the molecule, especially the hydrogen atoms attached to 
the carbon atoms 1 and 4. First, they are bent down making it possible for the 
p-orbitals on the carbons to stay perpendicular to the plane of the other 4 carbon 
atoms. In the Dewar form, they are bent up and the p-orbitals are again 
perpendicular to the plane of the hydrogen. So the geometry and the bonds adapt 
to each other. 

If now the geometry would be forced to inhibit the aromatic system, as is 
the case in the experimental systems, where bridges are attached to bend the 
molecule, the aromaticity disappears at much lower angles. Test calculations 
[86], where the angle ~z is reversed to simulate this situation, indicate that then 
the aromaticity is only maintained up to 30 ~ 

5.3 Aromaticity of Pyrene and its Cyclopentafused Congeners [65,87] 
Polycyclir aromatic hydrocarbons (PAH's) with external cyclopentafused 

five-membered rings, such as the r pyrene derivatives (Fig. 10), 
belong to the class of non-alternant polycyr162 aromatic hydrocarbons. 

Several qualitative models, e.g. Platt's ring perimeter model [88], Clar's 
model [89] and Randid's conjugated circuits model [90-92] have either been or 
are frequently used for the rationalisation of their properties. All these 
qualitative models rationalise the properties of aromatic and anti-aromatic 
hydrocarbons in terms of the Htickel [4n+2] and [4n] rules. The extra stability of 
a PAH, due to ~-electron delocalisation, can also be determined, 
computationally or experimentally, by either considering homodesmotic 
relationships [36] or by the reaction enthalpy of the reaction of the PAH towards 
suitable chosen reference compounds [93]. 

In a related study on the cyclopentafused pyrenes [94] in which regular ab 
initio methods were used (RHF/6-31 G* and B3LYP/6-31G*), we found that the 
magnetic properties suggested that the aromatic character decreases upon 
r The aromatic stabilisation energies were unaffected, though. 
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These effects prompted us to study the effect of cyclopentafusion in the 
cyclopentafused pyrene series on the interaction between the different Kekul6 
resonance structures and thus on the resonance energy. 

All geometries of 1-7 were optimised at the RHF/6-31G level. Structures 1- 
6 are really flat but 7 was found to be bowl-shaped [94]. In a treatment of the 
conjugated system in this geometry, the c~ orbitals cannot easily be excluded, as 
the strict ~ ~ separation is destroyed. 

The deviation from the planar form of 7 is rather small. Since an aromatic 
structure is not easily destroyed by bending (cf. Section (5.2), [69]), the VB 
results obtained for the planar transition state are expected not to deviate much 
from those of bowl-shaped 7. Of course, the calculation on planar 7 is 
computationally much cheaper. 

The c~-core was taken from a preceding RHF/6-31G calculation. The ~z- 
system was described by strictly atomic non-orthogonal p-orbitals, which were 
optimised for benzene. Test calculations on cyclopenta[cd]pyrene (2) indicated 
that the structure energies and weights change only marginally upon 
optimisation of the p-orbitals. 

For pyrene (1) 1430 covalent structures can be generated. Only six of those 
have all n-bonds along the ~-bonds. These six structures are the Kekul~ 
resonance structures of pyrene. In the case of tetracyclopenta[cd, fg, jk, mn]- 
pyrene (7), 208012 covalent structures can be generated. Only ten Kekul6 
resonance structures exist for this molecule. It is expected that only the Kekul6 
resonance structures are important in the description of these molecules and that 
the other structures can be ignored at a considerable saving in time and gain in 
interpretability. 

1 2 3 

4 5 6 7 

Fig. 10. The structures of 1-7. 
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In the spirit of  Pauling [95], only the Kekul6 resonance structures were 
considered. 

To identify the most important resonance interactions between Kekul6 
resonance structures and thus the most aromatic subsystems the total resonance 
energy had to be partitioned. Therefore the t t  matrix was transformed to an 
orthogonal basis using L6wdin-orthogonalisation [96], yielding H ~. The total 
energy can then be partitioned in the weighted diagonal contributions of  the 
structures and the weighted resonance contributions between them 

_k • m m E - Z Z c i c j H i j  -Zcicini&i l I - Z Z 2 c i c j a i j  -Ediagq-Eres 
i j i i j>i 

(51) 

where ci is the coefficient of  structure i in the wavefunction. 

The sum of  the resonance contributions (Er'~) is again another measure of 

the resonance energy, namely with respect to the weighted mean value of  the 
energy of  all structures. This mean resonance energy is thus more negative 
(stabilising) than the Pauling resonance energy (Ere~). In Table 2 we give the 
total energies and resonance energies of  the 7 compounds. The Erm~ values for 

1-7 follow the same trend as the Eres values. 
The contribution to Erme~ of a particular interaction between two structures is 

twice the weighted resonance contribution (2cicjHiJf). The differences between 

a pair of Kekul6 resonance structures elucidate the conjugated circuit in which 
the rt electrons are delocalised by resonance as shown in Fig. 11. 

Table 2 
Total energies of compounds 1-7 (a.u.) and resonance energies (kcal/mol). 

Compoun an RHF ........... VB Eres b E7 s b 
1 (6) -611.555550 -611.286631 -62.3 -100.9 

2 (6) -687.242053 -686.940798 -58.5 -101.1 

3 (6) -762.918242 -762.584880 -62.2 -101.8 

4 (7) -762.922606 -762.592661 -54.5 -101.5 

5 (7) -762.925727 -762.595225 -56.4 -101.8 

6 (8) -838.595341 -838.236025 -58.6 -102.7 

7 ( 1 0 )  -914.259921 -913.873884 -62.5 -104.2 

aThe number of Kekul6 resonance structures is indicated between parentheses. 

bFor comparison the resonance energies of benzene, calculated with local p-orbitals (6-31G 
basis set) and two structures, are Ere s = -25.4 kcal/mol (Table 1) and Ere s = -44.2 kcal/mol. 
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Fig. 11. Resonance between the structures leading to benzene-like resonance in the top six rt 

electron, central six n electron and 14 n electron conjugated circuits, respectively. 

,) 

1 86% 2 s7% 3 87% 

4 87% 5 87% 

6 87% 7 86% 

Fig. 12. Contributions of the individual rings to the resonance energy. 
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Using this method, the resonance energy was divided over the rings. The 
result is displayed in Fig. 12. The percentages below each structure give the 
amount of resonance energy accounted for by just the rings indicated. The 
remainder is resonance in 10/12/14/.. rings. 

The partitioning of the resonance energy shows large contributions to the 
mean resonance energy (E~'~) from the resonance interactions in the top and 
bottom six-membered rings. The right and left central six-membered rings 
contribute less than a third to the resonance energy. 

In a previous study, it was shown that the aromatic stabilisation energies of 
the compounds 1-7 are all nearly equal [94] i.e. cyclopentafusion has no effect 
on the resonance energy. This conclusion is confirmed by the VB calculations. 
The resonance energy (both E ~  and E ~ )  of the compounds 1-7 are all of the 
same magnitude (Fig. 12 and Table 2). 

More generally, upon the addition of externally fused five-membered rings, 
the weights and energies of the pyrene sub-structures are only marginally 
affected. The contributions of the different conjugated circuits to Erems show for 
all compounds the same trends; the six ~-electron (benzene-like) conjugated 
circuits in the top and bottom six-membered rings have the highest contribution 
to E~ ,  independently of cyclopentafusion. Hence, all compounds should be 
seen as substituted pyrene derivatives. 

1 2 3 

I -9.4 

4 5 

6 7 

Fig. 13. The NICS values of the individual rings. 
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Nucleus Independent Chemical Shift (NICS) values in the ring centres [40] 
were calculated using the Direct IGLO [39,97] program, at the RHF/6-31G 
geometry using the IGLO-III basis set. The chemical shift shielding tensor is 
given as a sum of the diamagnetic and paramagnetic part by the IGLO program. 

The NICS values calculated at the ring centres for the compounds 1-7 are 
depicted in Fig.13. Large negative NICS values are found for the top and 
bottom six-membered rings. The NICS values for these rings are shifted 10 ppm 
upfield with respect to the NICS values of the central six-membered rings, 
which is in line with the resonance criterion, derived above. 

Upon addition of extemally fused five-membered rings, the NICS values at 
the ring centres suggest a reduction of the aromatic character in this series. The 
resonance criterion (both Ere~ and E~), however, does not suggest that the 
aromatic character of 1-7 decreases. 

This apparent discrepancy might be understood by realising that the 
diamagnetic contribution of the chemical shielding tensor perpendicular to the 
molecular framework (NICS ~ ~) is indicative for the induced ring currents. 
Unfortunately, the paramagnetic contribution, which is zero in benzene due to 
symmetry, is included in the NICS values and the relation between dia- and 
paramagnetic contributions is gauge dependent. Thus, the NICS values can only 
be used for comparing the aromatic character of similar rings. 

5.4 The enhanced acidity of carboxylic acids and enols relative to alcohols 
[98-100] 
In this early application of the TURTLE program, the ability to restrict the 

wavefunction is used to ascertain the relative importance of re-electron 
delocalisation and induction to the enhanced acidity of carboxylic acids and 
enols compared to alcohols. These generic classes of molecules are represented 
by formic acid, vinyl alcohol and ethanol respectively. 

The enhanced acidity of carboxylic acids and enols relative to alcohols has 
long been attributed to the stabilisation of the carboxylate and enolate anions by 
delocalisation of their rc electrons (see 1 and 2 below). Alkoxide anions, as 
saturated systems, are not subject to resonance stabilisation. 

The parent acids and alcohols, on the other hand, are not expected to display 
any significant mesomeric stabilisation, because this would involve the 
participation of some rather unreasonable Lewis structures with separated 
positive and negative charges. As a consequence, the ~-delocalisation in 1 and 2 
is a factor that lowers the deprotonation energy of carboxylic acids and enols, 
thus reinforcing their acidity, according to standard organic-chemistry 
textbooks. 
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Fig. 14. Resonance structures for carboxylic acids and enols 

2c 
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Since the molecules are planar, there is a strict separation between the cy- 
and the ~-system. In the calculations, the cy-system was handled with the usual 
delocalised orbitals. For the ~-system two different models were defined. 

In the localised VB the orbitals are only allowed to extend over part of the 
molecule. For instance, for an enolate anion, the basic wavefunction would have 
a doubly occupied ~-orbital, localised only on the oxygen atom and a doubly 
occupied n-orbital extending over both carbon atoms. Thus, while describing 
structure 2a in Fig. 14, a single determinant is still employed. Since the orbitals 
are completely optimised, the ~-system can partly counteract the charge 
separation. 

The delocalised model entails a normal Hartree-Fock calculation, allowing a 
complete delocalisation of both the cy- and ~-systems, and thus describing the 
complete delocalisation of the ~-system. 

In both models inductive effects are included, so one can calculate the 
energetic effect of n-delocalisation in a direct way. The calculations were 
performed at three different levels of theory, with an increasing degree of 
electron correlation. For instance one might allow left-right correlation in the ~- 
bond in the localised model and perform a corresponding CASSCF in the 
delocalised one. The results were found to be insensitive to the degree of 
electron correlation, so we present only the results of the simplest level here. It 
should be noted that in all cases inductive effects are fully operational, 
irrespective of the degree of localisation. 

The calculations were performed with a standard 6-31G* basis set [101] 
augmented by diffuse p-functions [102]. The geometry optimisations of the 
delocalised states were carried out through a standard gradient technique with 
the GAUSSIAN92 program [ 103]. 
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Table 3 
Delocalisation energies of the deprotonated anions and their parent acids. 

Anions z ~  Acids zlE 

(kcal/mol) (kcal/mol) 
HCOO" 40.2 HCOOH 17.5 

CH2CHO" 3 4 . 9  CH2CHOH 13.6 

CH3CH20- 1 4 . 6  CH3CH2OH 6.6 

Because no gradient routines were available at that time for the VB calculations, 
the geometries of the localised states were partly optimised by hand. 

From a consideration of the optimised geometries, it could be concluded 
that both the acids and the deprotonated anions are subject to some re-electron 
delocalisation. In accord with chemical intuition, the effect of delocalisation is 
more important in the carboxylate and enolate anions than in the other species. 
However, the geometry changes that the acids undergo under deprotonation are 
only partly explained by n delocalisation. 

The delocalisation energy (AEdeloc) of the parent acids and their anions is 
defined as the energy difference between the localised wavefunction, ~)loc, and 
the delocalised ground state, l~del in their optimal geometry, i.e. the adiabatic 
delocalisation energy [ 104] 

m E d e l o  c - -  Eq~lo c - Eq~delo c (52) 

The energetic effects of zr-delocalisation as calculated through Eq. (52) are 
summarised in Table 3. 

The results show that the carboxylate and enolate anions have the largest 
delocalisation energies among the six species, in accordance with the principles 
of resonance theory. This is because none of these anions can possibly be 
described by a single Lewis structure. For example, the carboxylate anion, with 
its symmetrical geometry, requires besides structure l a  at least the contribution 
of lb.  This also applies to the enolate anion, but with an important difference: 
l a and 1 b are degenerate structures, a factor that is expected to maximise the 
resonance energy, while the structures 2a and 2b are not equivalent and have 
different energies. Accordingly, the delocalisation energy is expected to be 
smaller in the enolate anion than in the carboxylate anion, which is indeed found 
to be the case (see Table 3). 

As expected, because the parent acids of these two anions can be reasonably 
well described by a single Lewis structure, they have much smaller 
delocalisation energies. In ethanol and its deprotonated anion, for which no 
resonance between low-lying Lewis structures may be expected, the 
delocalisation energy is relatively small. 
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As delocalisation reinforces acidity only if it stabilises the anion more than 
the parent acid, the contribution of delocalisation to the acidity is best defined as 
the difference of the two delocalisation energies: (AAE = AE(anion) - AE(acid)), 
Using this criterion, it appears that delocalisation contributes rather little (8 
kcal/mol) to the acidity of ethanol, as expected from chemical intuition. In 
contrast, delocalisation contributes as much as 21-23 kcal/mol to the acidity of 
formic acid and of vinyl alcohol. Perhaps surprisingly, the AAE values are the 
same for the two species, while one might have expected resonance effects to be 
more important in formic acid, for which the mesomeric description of its anion 
involves two equivalent structures. The explanation probably lies in the polar 
nature of the C-O bond, which results in a large contribution of structure 1 c to 
the anion. Since an ionic structure of the same type is also important in the 
undissociated acid, the nature of the 7c electronic system changes less than 
expected from acid to anion, so that the change in delocalisation energy remains 
relatively moderate. To push this reasoning to the limit" if the C-O bonds were 
entirely ionic, there would have been no resonance at all. 

This does not mean that enols and carboxylic acids have comparable 
acidities, since inductive effects may also contribute to the acidities. In that 
respect, it is useful to compare the AAE values obtained with the total acidity 
enhancements of formic acid and vinyl alcohol with respect to ethanol. The 
experimental gas-phase acidities of formic acid and ethanol are known to be 345 
and 376 kcal/mol, respectively [105]. The acidity of vinyl alcohol has been 
accurately calculated by Streitwieser et al. [106], who predicted a value of 359.5 
kcal/mol. So, the acidities of formic acid and vinyl alcohol are reinforced by 31 
and 16.5 kcal/mol, respectively, relative to ethanol. The calculations indicate 
that delocalisation contributes 23, 21 and 8 kcal/mol, respectively, to the 
acidities of formic acid, vinyl alcohol and ethanol. Delocalisation therefore 
reinforces the acidities of the two former species by 15 and 13 kcal/mol, 
respectively, compared to ethanol. This is 48% and 78% of the total acidity 
enhancement, which is the major part of the acidity enhancement in vinyl 
alcohol. Delocalisation and inductive effects are found to be of equal 
importance to formic acid. 

The calculations support the traditional view by showing that delocalisation 
is an important factor responsible for the enhanced acidity of carboxylic acids 
and enols relative to alcohols. 

The same methodology was applied to the study of the role of conjugation 
in the stability and rotational barriers of formamide and thioformamide [100]. 
Here it was found that resonance accounts for roughly one-half of the rotational 
barrier of formamide and for two-thirds in the case of thioformamide. 
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6. CONCLUSIONS 

We have given an account of some of the inner workings of  the gradient 
VBSCF program TURTLE. The program is especially conceived to allow the 
optimisation of wavefunctions of arbitrary form. This feature is exploited in the 
study of resonance and delocalisation phenomena. 

For instance it allows the complete optimisation, orbitals and geometry, of 
benzene (D6h symmetry), which is described by two resonating structures and of 
the fictional molecule cyclohexatriene (D3h symmetry), whose wave function 
consist of just one of the structures. A comparison of the results gives a better 
insight in the nature and the persistence of resonance. 
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ABSTRACT 

The Generalized Multistructural Wave Function (GMS) [1,2] is 
presented as a general variational many-electron method, which encompasses 
all the variational MO and VB based methods available in the literature. Its 
mathematical and physico-chemical foundations are settled. It is shown that 
the GMS wave function can help bringing physico-chemical significance to 
the classical valence-bond (VB) concept of resonance between chemical 
structures. The final wave functions are compact, easily interpretable, and 
numerically accurate. 

1. THEORETICAL FOUNDATIONS 

1.1. Introduction 
Ab initio calculations of electronic wave functions are well established 

as useful and powerful theoretical tools to investigate physical and chemical 
processes at the molecular level. Many computational packages are available 
to perform such calculations, and a variety of mathematical methods exist to 
approximate the solutions of the electronic hamiltonian. Each method is based 
(or should be) on a well defined physical model, specified by a certain 
partition of the electronic hamiltonian, in such a way as to include a subset of 
all the interactions present in the exact one. It is expected that this subset 
contains the most important effects to describe consistently the situation of 
interest. The identification of which physical interactions to include is a major 
step in developing and applying quantum chemical theory to the study of real 
problems. 
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From the conceptual point of view, there are two general approaches to 
the molecular structure problem: the molecular orbital (MO) and the valence 
bond (VB) theories. Technical difficulties in the computational 
implementation of the VB approach have favoured the development and the 
popularization of MO theory in opposition to VB. In a recent review [3], 
some related issues are raised and clarified. However, there still persist some 
conceptual pitfalls and misinterpretations in specialized literature of MO and 
VB theories. In this paper, we attempt to contribute to a more profound 
understanding of the VB and MO methods and concepts. We briefly present 
the physico-chemical basis of MO and VB approaches and their intimate 
relationship. The VB concept of resonance is reformulated in a physically 
meaningful way and its point group symmetry foundations are laid. Finally it 
is shown that the Generalized Multistructural (GMS) wave function 
encompasses all variational wave functions, VB or MO based, in the same 
framework, providing an unified view for the theoretical quantum molecular 
structure problem. Throughout this paper, unless otherwise stated, we utilize 
the non-relativistic (spin independent) hamiltonian under the Born- 
Oppenheimer adiabatic approximation. We will see that even when some of 
these restrictions are removed, the GMS wave function is still applicable. 

1.2. Molecular Orbital Theory 
Proposed shortly after the VB theory, the MO theory became the most 

popular approach to molecular structure calculations, mainly because this 
theory is much more amenable than VB to computer implementation. As a 
consequence, there is a great number of results of MO calculations on many 
chemical systems. With the improvement of the numerical techniques and of 
auxiliary interpretative tools by many research groups, together with the wide 
availability of computer codes, MO theory was soon established as "the" 
computational (and for some also "the" conceptual) approach to the molecular 
structure problem. Due to its widespread use, MO theory is frequently pushed 
beyond its conceptual limits. In this section we will briefly outline some 
aspects of MO theory and highlight its physico-chemical interpretation. 

Application of ab init io MO theory usually begins at the 
monoconfigurational level, with the Hartree-Fock-Roothaan or LCAO-SCF 
methodology [4,5]. In this scheme the wave function for a closed-shell 
molecule containing N electrons is approximated as an antisymmetrized 
product (determinant) of spin-orbitals { ~oi}: 

~ ( x l ,  x:, ..., XN) = (N!) v~ det[ c.pj(xj) cp2(x2) ... (pN(XN) [ 
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The best spin orbitals will be the eigenfunctions of the one-electron Fock 
operator: 

Fi(p; = ~i(Pt , where F(i) = h(i) + g(/,j). 

The Fock operator is divided into two general terms: h(i), called the core- 
hamiltonian, contains the one-electron terms (electron kinetic energy, electron 
nucleus attractions); g(i,j) contains the two-electron operator, composed of 
coulomb and exchange terms, which average the interactions among 
electrons. The spin-orbitals are almost always expanded in a basis of known 
functions (usually gaussians), and the expansion coefficients are variationally 
optimized to minimize the total electronic energy. At the end of the 
optimization process we have a set of orbital energies {ei}, and of spin- 
orbitals {(p~} associated with the electrons. Physically speaking, we have 
approximated the state of a many-electron system by an antisymmetrized 
product of N one-electron states, each one of them determined so as to 
respond to the average field generated by the other N-  1 electrons. 

The Hartree-Fock wave function is only valid as an approximation to 
the many-electron state when it obeys the so-called SCF theorems [6], which 
govern the physical interpretation of the SCF solution functions. The 
Brillouin theorem states that singly excited determinants do not mix with 
converged ground state determinants in a configuration interaction expansion. 
The Delbruck theorem says that the spatial-spin symmetry of the SCF 
solutions must be the same of the exact many-electron wave function. In 
another words, the Hartree-Fock wave function must have a non-vanishing 
overlap with the exact many-electron wave function [7]. When either or both 
of these two restrictions are not met it is said that the Hartree-Fock solution 
presents instabilities [8], meaning that by removing the space-spin symmetry 
constraints one obtains a solution with lower energy. However, the physical 
meaning of the Hartree-Fock instabilities is a more complex subject, which 
will be addressed in a separate paper [9]. Unrestricted wave function based 
approaches [10] ( U H F -  unrestricted Hartree-Fock and G H F -  general 
Hartree-Fock) will not be considered here. The corresponding wave functions 
are not eigenfunctions of the S 2 operator, and therefore do not obey 
Delbruck's theorem. This is a well known and documented problem of the 
UHF and GHF wave functions [4]. However, what is never mentioned is the 
fact that although the UHF wave function is antisymmetric in the cz and/or [3 
electrons, the full wave function is not antisymmetric and therefore it does not 
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obey the Pauli principle. For the moment we just anticipate that only closed 
shell many-electron systems can be approximated by a physically meaningful 
monoconfigurational wave function. 

Chemically speaking there is little to say. Canonical Hartree-Fock 
molecular orbitals leave no place for classical chemical concepts such as 
bonds between atoms or groups, lone pairs, resonance hybrids, etc. However, 
chemists still utilize these concepts because they are extremely useful in 
correlating and understanding chemical facts. Even when one manages to 
localize the canonical molecular orbitals (which is not always 
straightforward) in regions such that they could be associated with lone pairs 
or individual chemical bonds, it is important to bear in mind that the orbitals 
represent localized one-electron states, and not a two-electron chemical bond 
between atoms or a lone pair of electrons, as will be discussed further. 

From the physical point of view, we are representing a many-electron 
state by an antisymmetrized product of one-electron states. The density matrix 
formalism [4,11-13] allows one to analyse in the same footing calculations 
resulting from different levels of approximation. The density matrix is called 
reduced when is formed from a pure state: 

F= 

If we form the reduced density matrix from the one-electron states 
obtained from a Hartree-Fock calculation, we will have the so-called Fock- 
Dirac reduced density matrix which is an approximation to the many-electron 
state. The analysis of this density matrix reveals the physical features of the 
many-electron state under the Hartree-Fock approximation. The first-order 
density matrix provides the natural 1-particle states (or natural states) of the 
system, that in some situations (especially in the presence of degeneracies or 
near-degeneracies) can differ considerably from the canonical Hartree-Fock 
orbitals. The pure many-electron state of a system, under a given 
approximation, is fully specified by the occupation numbers and natural 
orbitals of the reduced first-order density matrix (RDM1). In the Fock-Dirac 
DM, the occupation numbers are fixed, since we are dealing with a 
monoconfigurational wave function. The second-order reduced density matrix 
(RDM2) provides information on the interaction between the electrons in a 
given state. The total energy of a given state is determined by its first and 
second-order reduced density matrices. At the monoconfigurational level, one 
can see that there is no correlation between electrons of different spins. 
However, in the absence of any sort of correlation (dynamic or non-dynamic) 
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between electrons of different spins, it would be impossible to understand the 
formation and the breaking of a covalent bond as resulting from the pairing or 
unpairing of electrons of the atoms involved in the bond. Consequently, at the 
Hartree-Fock level we cannot speak of "chemical bonding" involving two 
electrons, but only of the binding energy of the whole system. However, 
electrons with the same spin factors are rigorously kept apart (Fermi hole) due 
to the antisymetrization imposed to the wave function. 

Extensions of the monoconfigurational MO theory attempt to improve 
the description of the electronic correlation. In practice this means including 
in an explicit or implicit form other space-spin symmetry adapted orbital 
configurations (configuration state functions - CSF), and expanding the wave 
function in this extended basis. Under certain circumstances, this procedure 
allows one to obtain VB-type wave functions from MO calculations, that is, 
chemical bond descriptions. This is a manifestation of the Unitary Group 
invariance of the hamiltonian, meaning that if one performs an exact MO 
calculation ("full-CI" - superposition of all possible CSFs), the roots obtained 
("many-particle" electronic states) are exactly the same ones that would have 
been obtained in an exact VB calculation [4]. It must be noted that the 
eigenfunctions are completely different in form, in spite of providing the same 
eigenvalues. In the next section we will briefly outline the VB theory, 
emphasizing the special form of the wave function and its physico-chemical 
interpretation. 

1.3. Valence Bond Theory 
VB theory is the quantum-mechanical translation of the classical ideas 

about chemical bond and chemical structure developed by Kekul6, Lewis, 
Pauling and others. From the most elementary levels, chemists are trained to 
regard molecules as a collection of atoms held together by individual 
chemical bonds. Specific properties of a molecule are assigned to atoms or 
groups of atoms present in its structure, and our chemical reasoning is based 
on these ideas. However, when one tries to ground these concepts into 
quantum mechanical language, many practical and some conceptual 
difficulties arise. This situation has led to an uneven development of the VB 
method in comparison to MO methods. In the last three decades, due to an 
increase of computational power and the development of new models, VB 
theory is slowly recovering its place as the conceptual basis for the quantum 
description of chemical phenomena [14,15]. In what follows we will sketch 
the main features of VB theory. An alternative view to the chemical structure 
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problem is presented by Bader [16] with his "Atoms in Molecules" theory. 
However his theory is subject to so many mathematical, physical and 
conceptual objections that it will not be considered here. 

In its most general form, the classical VB wave function is the 
antisymmetric product of atomic centred singly occupied orbitals and their 
spin factors. Each spin coupling scheme defines a "chemical structure" by 
associating to each two singlet-paired electrons in two different orbitals a 
"chemical bond". The spatial orbitals are not necessarily orthogonal, and their 
non-zero overlap is essential for the VB description of chemical bonding [4]. 
The linear superposition of all possible coupling schemes is the exact VB 
wave function for the molecule. The exact VB wave function (full-VB) has 
the same energy eigenvalues as the exact MO wave function. However, just as 
for its MO counterpart, it is computationally unpractical for all but the very 
small molecular systems. The use of only one kind of spin coupling, defines 
what is called the perfect pairing approximation. The Heitler-London wave 
function for the singlet H2 molecule can be taken as example: 

�9 (Xl, x2) = N [a(rl)b(r2) + b(rl)a(rz)] x [a(Sl)fl(sz)- fl(Sl)a(s2)] 

The first term in the product is associated with the spatial part and the second 
with the spin labels. The letters "a" and "b" stand for atomic orbitals centered 
in hydrogen atoms Ha and Hb respectively. To account for the 
indistinguishability of the electrons, spatial and spin factors appear in two 
products (configurations). Consequently, the VB approach is 
multideterminantal from the outset. This superposition of determinants causes 
the VB wave function, even in its most simple form, to maintain the 
indistinguishability of the electrons within the chemical bond. This effect is 
called "exclusion correlation", a non-dynamical correlation effect. 

We can calculate the natural one-particle states from the density matrix 
generated by the VB wave function. However, for chemical interpretation 
purposes it is better to analyse the non-orthogonal singly-occupied orbitals 
since each one will correspond to an atomic localized electron overlapping 
(making a chemical bond) with another one. To illustrate the importance of a 
non-zero overlap among the spatial orbitals we can calculate the energy 
expression for this simple case: 

E = Q  + K  
I +A 
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where 

Q = (alhIa) + (b[hlb)+ (ab[g[ab) 
x - 2so  (aJh[b)+ (ablg[ba) 

A : ( a b l b a ) :  

The Q term contains the usual J (coulomb integral) plus the one electron 
diagonal terms among the electrons. The K term contains the Hartree-Fock 
exchange term plus an overlap dependent one-electron term. For singlet 
coupling this term is large and negative, contributing to the stabilization of 
the system. Thus, the chemist's view of the formation of the chemical bond 
through the overlap of atomic orbitals is preserved. In addition, since the VB 
wave function is built from individual atomic wave functions, it behaves 
correctly upon molecular dissociation, a feature not shared by MO 
monoconfigurational wave functions. 

On the other hand, the non-orthogonality among atomic orbitals turns 
out to be a great problem in evaluating the matrix elements of the 
hamiltonian. While in the MO theory, developed with orthogonal orbitals, one 
can use the Condon-Slater rules to eliminate a priori  many matrix elements 
from the calculation, in VB theory the number of these matrix elements 
increases enormously due to non-zero overlap. This fact, together with the 
problem of diagonalizing dense hamiltonian matrices, posed great difficulties 
to the computer implementation of the VB method. Another more serious 
problem, from a conceptual point of view, arises when one attempts to 
calculate classical VB wave functions. Most of the time, reasonable numerical 
accuracy can only be attained with the inclusion of highly unrealistic ionic 
structures. This is so, even for the simplest covalent system, the hydrogen 
molecule, causing VB theory to lose its most important characteristics: 
chemical interpretability and compactness of the wave functions. Coulson and 
Fischer [ 17] identified the origin of the problem and showed that the need for 
the ionic structures could be associated with the lack of orbital relaxation 
upon formation of the bond. However, the solution of this problem in feasible 
terms required new approaches to calculate VB wave functions that only 
began to appear almost 20 years later. In the meantime, unfortunately, VB 
theory fell into disuse, and the MO approach became the only practical model 
for molecular structure calculations. 



124 

In the late sixties, independent works of Goddard [18] and Gerratt [19], 
gave new impetus to VB theory. They explicitly considered the problem of 
orbital optimization, and generalized the definition of VB structure by 
considering a complete set of spin functions associated with a given orbital 
product. They named their models as GVB (generalized valence bond) and 
SCVB (spin coupled valence bond) respectively. These models optimize 
explicitly the form of the singly-occupied orbitals, (therefore, implicitly 
including the effect of ionic structures) yielding highly accurate 
monoconfigurational VB wave functions. Since the orbitals are non- 
orthogonal, the final wave functions incorporate a great deal of electronic 
correlation. Nowadays almost all VB related methods include orbital 
optimization to at least some extent. 

Among the VB related methods existent in the literature, besides GVB 
and SCVB, it is worth mentioning the VB-SCF and the BOVB (breathing 
orbital valence bond) methods [3]. The VB-SCF method incorporates orbital 
optimization to the classical VB scheme. When one has more than one 
important perfect pairing scheme (or "resonance", but see the next Section) 
the BOVB method can be utilised. More recently McWeeny also presented 
his version of the classical VB method including orbital optimization and 
multi structural capabilities [20]. 

1.4. Resonance, Symmetry Breaking and Conical Intersections 
One of the most characteristic concepts of VB theory is resonance. 

When just one perfect pairing scheme is unable to represent qualitatively the 
chemical structure of a given molecule, two or more perfect pairing schemes 
have equal or nearly equal importance for the representation of the molecule. 
The linear superposition of these "chemical structures" is called resonance in 
classical VB theory. Each chemical structure is called a resonance hybrid. 
Resonance is a concept to which chemists are deeply rooted [21]. In the 
classical VB literature it is stressed that the resonance hybrids have no 
individual physical significance, only their superposition. In quantum- 
mechanical terms, resonance is a coherent superposition of states. This 
superposition is sustained due to some sort of "mechanical stabilization" 
(energy lowering) originating in the coupled system. In applying the classical 
qualitative VB theory, chemists have made great (perhaps exaggerate) use of 
the concept of resonance. In spite of its great power in explaining and 
rationalizing many chemical facts, we have sometimes the unavoidable 
feeling when reading those classical works that the resonance concept brings 
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an artificial complexity to the description of some systems. In modem 
quantum chemistry literature, resonance is used in many contexts in very 
different forms. In what follows we will try to formulate the concept of 
resonance on more precise grounds and then analyse the arosed consequences. 

Before getting into a deeper analysis of the concept of resonance, we 
must define precisely what we understand by "chemical structure". One of the 
most basic concepts in molecular quantum mechanics is the one of potential 
energy surface (PES). It allows us to define a "molecular structure" as an 
arrangement of nuclear positions in space. The definition of "molecular 
structure" depends on the validity of the Born-Oppenheimer approximation 
for a given state. Actually, its validity is limited to selected portions of the 
entire Born-Oppenheimer PES. When a state is described by one PES, we call 
it an adiabatic state. It is clear that the concept of "chemical structure", 
depends on the existence of a previously defined "molecular structure". Only 
adiabatic states have a "molecular structure". From now on, we will always be 
dealing with adiabatic states. 

Considering only the valence electrons, we define chemical structure 
as a configuration of singly occupied non-orthogonal atomic-localized spin- 
orbitals in a given molecular structure. We do not make restrictions on the 
topology of the spin pairing, that is, we can have two or more electrons 
involved in the same "bond". In fact, the reference to "spin" is somewhat 
misleading. There is no physical coupling between electron spins in a non- 
relativistic hamiltonian. Although the symmetry requirements imposed to the 
orbital part of an electronic wave function, as to conform to a given spin state, 
are very stringent, the final results can be analysed without specific reference 
to spin. In other words, provided that the orbital part possesses the correct 
permutational symmetry of a given spin state, they can be understood 
independently of spin. Thus, considering only the valence electrons, 
"chemical structure" can be redefined as a configuration of  singly-occupied 
non-orthogonal atomic-localized orbitals. These concepts are implicit in 
GVB and SCVB theories but we think that they are not thoroughly explored, 
since in the papers describing applications of VB theory, the authors are 
usually more interested in reproducing classical concepts than in exploring 
the new ones suggested by their own calculations. A good example is the 
SCVB calculation on the benzene molecule [22]. The classical Kekul~ 
structures for benzene are the archetype of resonance hybrids. However, its 
SCVB wave function suggests that benzene is described by one configuration 
of equivalent singly occupied non-orthogonal atomic-localized orbitals, 
making a six-electron chemical bond, beautifully illustrating the "aromatic 
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effect". The Kotani spin functions used form an orthogonal set [23] defining 
unambiguously the total electronic wave function, allowing the spatial part to 
be considered independently of the spin part. In spite of that, the authors put 
more emphasis on the representation of this wave function in terms of the 
biased Rumer non-orthogonal spin basis to yield Kekul6 and Dewar 
structures. These representations scramble the spin and spatial parts of the 
SCVB wave function, destroying the "chemical structure" originally defined, 
since the wave function is no longer monoconfigurational, the original spatial 
configuration topology being annihilated. Moreover, as we will show later in 
this paper, the spectroscopic ground state of benzene is not described by a 
superposition of Kekul6 and/or Dewar structures. 

Resonance is related to degeneracy or near-degeneracy effects. 
Degeneracy may arise in molecular quantum mechanics due to the existence 
of symmetry groups that commute with the molecular hamiltonian [24-26]. It 
is easily shown that the eigenfunctions of the exact hamiltonian must 
transform as irreducible representations of the commuting symmetry groups. 
When a given group has degenerate representations, some or all eigenstates of 
the hamiltonian of the system will reflect its degeneracy. A k-degenerate 
eigenvalue induces in the Hilbert space of functions, a k-dimensional 
subspace spanned by its eigenfunctions. Since they span the same subspace, 
the eigenfunctions can always be made orthogonal. This is the ordinary case 
of degenerate representations. However, under certain circumstances, another 
kind of degeneracy is possible. When the degenerate eigenvalues do not 
belong to the same subspace one says that there exists an "accidental 
degeneracy". In this case the tensorial Hilbert space is factored into 
irreducible non-overlapping subspaces, each one associated to an eigenvalue. 
The well known example of accidental degeneracy is the hydrogen atom. Its 
eigenfunctions should transform as irreducible representations (S, P, D, F, ...) 
of the SO(3) group. However the eigenfunctions associated with the same 
principal quantum number are degenerate: [ls], [2s,2p], [3s,3p,3d] ... In fact, 
the correct (non-relativistic) group of symmetry of the hydrogen atom is 
SO(4), which is the rotation group in four spatial dimensions. Accidental 
degeneracies signal that a given system has more symmetry than it appears to 
have. From the group theory point of view, it seems natural to relate 
degenerate resonance structures to point group degeneracy, or accidental 
degeneracies. This attribution is essential if one wants to relate "resonance" to 
identifiable physical effects, and to associate a "chemical structure" with the 
resonance hybrids. The structure of the resultant partitioned Hilbert space will 



127 

guide us in understanding the fundamental nature of the resonance 
phenomenon in each case. 

A curious effect, prone to appear in near degeneracy situations, is the 
"artifactual" symmetry breaking of the electronic wave function [27]. This 
effect happens when the electronic wave function is unable to reflect the 
nuclear framework symmetry of the molecule. In principle, an approximate 
electronic wave function will "break" symmetry due to the lack of some kind 
of non-dynamical correlation. A typical example of this case is the allyl 
radical, which has Czv point group symmetry. If one removes the spatial and 
spin constraints of its ROHF wave function, a lower energy symmetry broken 
(Cs) solution is obtained. However, if one performs a simple CASSCF or a 
SCVB [28] calculation in the valence "pi" space, the "symmetry breaking" 
disappears. On the other hand, from the classical VB point of view, the 
bonding of the allyl radical is represented as a superposition of two resonant 
structures. 

However, as we will show below, a molecule possessing C2v symmetry cannot 
possess two degenerate resonance hybrids. Thus, the allyl radical has a three 
electron "pi" bond, which cannot be described properly at the MO 
monoconfigurational level. This type of symmetry breaking is called 
"artifactual". 

On the other hand there are other situations where the effects are 
difficult to identify precisely, and the wave function presents an intrinsic 
localization that breaks the symmetry. Typical examples are the core-hole 
states of homonuclear molecules. When one electron is removed from the core 
orbital of a molecule that has another equivalent core orbital, the symmetry 
broken ROHF wave function is usually 10eV more stable than the symmetry 
constrained one. In this case, we have two or more accidentally quasi- 
degenerate states, and their correct calculation demands a special wave 
function. The GMS wave function is perfectly suitable for these cases of 
"accidental degeneracy", since it can treat different states on the same footing. 
Apart from accidental degeneracies, there are the normal point group 
degeneracies, leading to Jahn-Teller nuclear framework distortions. In this 
case, the interaction between the degenerate states can also be treated, when 
they arise. Thus, there is a fundamental difference between artifactual and real 
"symmetry breaking". The first one is a calculation artefact and the other is a 
physical effect. More mathematical details on the symmetry character of wave 
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functions will be given in a forthcoming paper [9]. It should be clear that in 
the presence of either point group or "accidental" degeneracies, one 
configuration of singly occupied non-orthogonal atomic-localized orbitals is 
not enough to qualitatively describe the system. It is necessary to consider 
other configurations, leading naturally to the concept of resonance. 

The study of nonadiabatic effects [29,30] in potential energy surfaces is 
one of the most active research areas of chemical dynamics. Conical 
intersections and intersection seams are found to be omnipresent in molecular 
potential energy surfaces. They seem to appear when different adiabatic states 
happen to have the same or nearly the same energy eigenvalues at the same 
region of nuclear configurations. That is precisely what happens when there is 
"resonance". In the presence of such degeneracies the Born-Oppenheimer 
approximation is no longer valid and different states interact directly giving 
rise to the so-called nonadiabatic effects, that include photochemical 
processes, charge transfer processes and spin forbidden reactions. The 
signature of a conical intersection is the so-called geometric phase effect; the 
sign of an adiabatic wave function is changed when transported along a 
closed loop, through a specific pseudorotation path around the conical 
intersection [31 ]. This pseudorotation connects the states at the vicinity of a 
conical intersection, and mediates their interaction. Since we are dealing with 
different adiabatic states, they will not cross each other, their adiabatic wave 
functions remaining intrinsically real by creating singularities in the 
hamiltonian. The pseudorotation that connects them is performed in the 
complex plane parametrized by an angle of mixing, allowing the total wave 
function to be single valued. Thus, at a conical intersection, the total 
adiabatic wave function is described by the coupling o f  different states 
connected through a mixing angle. But this is the same idea behind the 
concept o f  resonance! Thus, the resonance hybrids can be identified with 
adiabatic states which are related, through VB theory, to their individual 
chemical structures. With all these facts in mind it is easy to see that 
resonance is a nonadiabatic effect, derived from the superposition of many- 
electron states, which should always take place at conical intersection regions 
(except for diatomic molecules). At this point, the attentive reader may note 
that at a conical intersection, there is a breakdown in the Born-Oppenheimer 
approximation and it is not possible to define "molecular structure". 
Consequently it is also not possible to define "chemical structure" in the 
immediate vicinity of this point. However, around the conical intersection 
there are regions where the interaction between the adiabatic states is 
negligible, and the molecular and the "chemical structures" can be formally 
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defined from these nuclear configurations, as will be exemplified in the 
"applications" section. 

In quantum chemistry literature resonance is sometimes considered to 
be equivalent to "delocalization". This happened mainly because of the 
"successful" MO monoconfigurational description of the "pi" system of 
benzene. However, the Hartree-Fock wave function for the benzene molecule 
(and for all aromatic molecules) is unstable [32], providing a qualitatively 
wrong description of its electronic structure. When dealing with pure states, 
delocalization reflects the failure of a given level of approximation to provide 
an N-representable wave function [9]. On the other hand, when there is 
resonance (in the precise sense defined above), we are dealing with mixed 
states, and the delocalization signals the intrinsic complex instability of 
degenerate or quasi-degenerate states. 

1.5. Symmetry Conditions for Resonance Hybrids 
It remains to state the symmetry conditions to be obeyed by resonance 

hybrids. For the total wave function to be able to split into different adiabatic 
states, it should be decomposable into independent parts. If the nuclear 
framework has some sort of spatial symmetry, it is easy to know the possible 
structures of the resonance hybrids. However, we must distinguish between 
two different situations: point group and accidental degeneracies [25,26]. 

When a given state belongs to a k-dimensional degenerate irreducible 
representation, the degenerate eigenfunctions belong to the same tensor 
subspace, and can always be made orthogonal. Point group degenerate states 
are always subject to Jahn-Teller distortions. The nuclear framework follows 
the symmetry descent coordinate until the complete removal of the 
degeneracy [33]. Consequently, it is not possible to have one PES minimum, 
or resonance, made by point group degenerate states. However, if these point 
group degenerate states are quasi-degenerate with a different state, the 
situation becomes much more complicated, and will not be considered in 
detail here. In these cases, resonance between these states may be possible, 
and the symmetries of the resonance hybrids will follow the symmetry descent 
path of the full point group of the system. An example of this situation 
recently described in the framework of MO theory is the NO3 radical [34]. 

The real Hilbert space is always partitioned into a direct sum of 
subspaces, each representing a different energy eigenvalue of the spectrum of 
the hamiltonian operator: 
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When two or more eigenvalues happen to be equal, or nearly equal, we say 
that there is an "accidental degeneracy". Since the states belong to different 
subspaces, there is no symmetry descent path to follow. The direct product 
decomposition is the mathematical tool to analyse the symmetry of the 
allowed individual adiabatic states. It is related to the "ascent in symmetry" 
method [35] and justified by the Littlewood-Richardson rules for 
decomposition of tensor spaces in independent parts [36]. These rules define 
the only permissible decompositions of a tensor space (in our case, point 
group space), providing us with the possible symmetries of the resonance 
hybrids, which reproduce the total symmetry of the system. A simplified 
statement, suitable for our purposes, is that "the direct product between the 
subsystem point group and the group that relates (maps) the subsystems 
should recover the full  symmetry of  the system". Notice that both the 
subsystems's point group and the group that maps the subsystems must be 
invariant subgroups of the full point group. In Table 1 all point groups are 
classified according to the possibility of being described by a direct product 
decomposition [37]. 

Table 1 
Point groups decomposable in direct product 
forms 
Cn, Sn(n=4k+2,  k - l ,2  .... ) 
Dnd (n odd) 
Cnh, Dnh, Th, Oh, Ih 

Point groups not decomposable in direct 
product forms 
Cn, Sn ( n ,  4k + 2, k=l, 2 .... ) 
Dnd (n even) 
Ci, Cs, Cnv, Dn, T, Td, O, I 

Table 2 
Possible point group decompositions in direct products 
Cn = Cn/2 | C2 (n - 4k + 2, k = 1, 2, ...) 
Sn=Sn/2|  k - l , 2  .... ) 
Dnd- Dn | Ci (n odd) 
Cnh = Cn | Ci, Cn | Cs (n even); Cn | Cs (n odd) 
Dnh = Dn | Ci, Dn | Cs, Cnv | Cs (n even); Dn | Cs, Cnv | Cs (n odd) 
Dooh = Coov | Ci, Coov | Cs 
Th = T @ Ci 
O h = O |  Ci 
I h = I |  
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Good examples are the core hole excited states of homonuclear molecules. 
When one electron is removed from a core orbital, the original D~h symmetry 
is lowered to C~v. The Do~h group can be decomposed into two C| 
components related by a Ci or C~ operation, so it is fair to consider that the 
core-hole excited states are described by resonance between the two 
structures. The adiabatic subsystems have, by definition, zero overlap in the 
real space. Their interaction is defined only in complex space through the 
explicit overlap between the many-electron states. 

An inspection on Table 2 shows that it is not possible to relate the 
benzene (O6h symmetry) to Kekul~ (D3h) or Dewar (D2h) structures. The 
ground state of benzene is not degenerate, and there is no theoretical or 
experimental evidence of a conical intersection with a degenerate state near 
the ground state geometry [38]. If there is no intersection of degenerate point 
group state, one cannot follow the symmetry descent path in this case. The 
only possibility would be that of an accidental degeneracy, but this is ruled 
out by the impossibility of direct product decomposition. Thus, as already 
stated before, the ground state of the benzene molecule is not described by a 
resonant mixture of Kekuld and/or Dewar structures. 

As the SCVB treatment had already shown [22], the "~" system of benzene is 
correctly described by a one configuration (one "chemical structure") of 
singly occupied atomic-localized non-orthogonal orbitals, making a six- 
electron bond, with no resonance. 

Thus, the stabilization of the benzene molecule is due to the formation of the 
six-electron bond. From the MO point of view, the stability would be 
attributed to the "~" system delocalization. However, as previously 
mentioned, the Hartree-Fock wave function for benzene (and for all aromatic 
systems) is unstable [32], and the delocalization effect is exactly a 
manifestation of this instability [9]. Therefore, MO theory does not really 
explain the stability of these molecules. 



1 3 2  

At first sight it may appear that this model is difficult to reconcile with 
the traditional process of "molecular fragmentation" which is inherent to the 
classical VB description of the formation of a two-electron bond. However, 
Shaik and Hiberty presented in a series of papers a possible mechanism, 
through a nonadiabatic process, which can account for the formation of these 
multiply bonded systems retaining the classical concepts of molecular 
fragmentation [15,39,40]. The same reasoning equally applies to the allyl 
radical, whose "n" system is correctly described by one configuration 
representing a three -e lec t ron  b o n d  [28]. 

In summary, we have enlarged the concepts of chemical structure and 
resonance in such a way as to make then conform the more general theories of 
molecular quantum mechanics. Classical VB concepts have been extremely 
useful in rationalizing empirical facts but became inadequate in the light of 
the new theoretical developments. The new concepts presented here are 
consistent both with the mathematical models of quantum chemistry and with 
empirical chemical facts, and their formulation recognize the latest research 
advancements. 

1.6. The Generalized Multistructural Wave Function (GMS) 
The GMS wave function [1,2] combines the advantages of the MO and 

VB models, preserving the classical chemical structures, but dealing with 
self-consistently optimized orbitals. From a formal point of view, it is able to 
reproduce all VB or MO based variational electronic wave functions in its 
framework. Besides that, it can deal in a straightforward way with the non- 
adiabatic effects of degenerate or quasi-degenerate states, calculating their 
interaction and properties. 

The GMS wave function can be defined as 

Nstruct Nsef 
= C i ( p ,  , 

I =1 l =l 

where (p/ represents the ith spin eigenfunction (Nsef) of the Ith structure (Nstruc) 
and the c / i t s  weight in the expansion. There are no restrictions whatsoever on 
the form of the wave function ~0/. Each of the (Oi I can be individually 
optimized at the Hartree-Fock, or multiconfigurational (GVB, CASSCF) 
level, followed or not by configuration interaction (CI) treatment. 
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Each one of the ~Oi I is represented in a basis of orthogonal orbitals { ~ /}  
optimized for the Ith structure. Although the orbitals of a given structure are 
taken to be orthogonal to each other, 

no such restriction exists for the orbitals belonging to different structures I 
and II, 

H 

The coefficients c /are  obtained variationally by solving the equations, 

( H  - S E ) C  = 0 

where H and S are the interaction supermatrices containing the diagonal 
(same structure) and interstructural matrix elements. The matrix elements 
involving orbitals belonging to different structures are computed using a 
biorthogonalization procedure. 

1.7. Equivalence between MO and VB based wave functions 
The unitary group invariance of the hamiltonian assures that its exact 

eigenvalue spectrum is invariant to a unitary transformation of the basis. It 
means that a "full CI" calculation must provide the same eigenvalues (many- 
electron energy states) as a "full VB" calculation. However, at intermediate 
levels of approximation, this equivalence is not straightforward. In this 
section we will sketch out the main points of contact between MO and VB 
related wave functions. 

The most simple and well known equivalence holds for the special case 
of two electrons in two orbitals, described by GVB(pp) and CASSCF(2,2) 
wave functions for covalent bonds [41]. When the bond has a mixed ionic- 
covalent character, the CASSCF(2,2) description is able to account 
approximately for this effect due to the presence of an extra ionic 
configuration. This problem is exactly replicated in a larger scale when 
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considering the equivalence between a CASSCF(N,N) and an unrestricted 
GVB(N) or SCVB(N), where N is the number of active electrons. The 
CASSCF natural orbitals can always be localized in approximately 
(sometimes exactly) atomic basis, providing as in VB theory, one 
configuration of non-orthogonal orbitals [42,43]. However, these orbitals are 
not necessarily singly-occupied, as they always are in single configuration VB 
theories. When they are singly occupied it is possible to extract VB wave 
functions from MO calculations. Being specific, the CASSCF(N,N) is 
qualitatively equivalent to a SCVB(N) or GVB(N) calculation when there is 
no net charge transfer between the N atomic-localized non-orthogonal 
orbitals, meaning that they are all strictly singly occupied [42]. 

In cases where this equivalence is not feasible, we are in the presence 
of degenerate or near-degenerate states of the many-electron system, and one 
configuration VB wave functions no longer represent the system correctly, 
since it is not possible to define real-valued reduced density matrices. In this 
situation we will have a mixing of many-electron states, and the non- 
orthogonal orbitals will not be strictly singly occupied, preventing the 
association of this density with a "chemical structure". In this case, 
multi structural or multistate theories are required. One should describe on the 
same footing the interaction among different many-electron states. In MO 
theory this can be accomplished approximately by MR-CI (multireference 
configuration interaction) on a basis of state-averaged CASSCF orbitals for 
the degenerate or near degenerate states [29]. Other MO based approaches are 
the B-CC (Brueckner orbitals coupled cluster) and QRHF-CC (quasi- 
restricted Hartree-Fock coupled cluster) [44], but since they are non- 
variational it is doubtful that they could treat excited states in an unbiased 
way. Moreover, in all MO based approaches, the idea of"chemical structure" 
is completely lost, avoiding a deeper understanding of the physico-chemical 
features of the coupled system. In VB theory one should consider a 
superposition of resonance structures. Each resonance structure should be 
associated with an adiabatic state, and with a "chemical structure", providing 
a clear picture of the physico-chemical features of the system. To meet 
simultaneously these requirements, it is necessary to consider explicitly the 
non-orthogonality effects between the structures. From a formal point of 
view, any multistructural VB method can deal with this situation, but in 
practice the existing methods generally are restricted to smaller domains, and 
the choice of which one to use will depend on the specific case [3]. 

Formally, all these wave functions, VB or MO based, can be 
reproduced at the GMS level. When using one structure, the GMS wave 
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function is equivalent to MO-CI, single or multireference, with complete 
flexibility as to the choice of configurations. It must be noted that any 
monoconfigurational VB (one "chemical structure") calculation can be 
reproduced exactly at the MO-CI level provided that the correct natural 
orbitals and CSFs are chosen. When using more than one structure, in the 
most general sense defined in this work, the resonance effects between 
adiabatic states (or "chemical structures") can be properly treated, since there 
are no orthogonality restrictions among different structures in the GMS 
methodology. Thus, the form of the GMS wave function allows a precise 
physico-chemical assessment to the unbiased defined concepts of chemical 
structure and resonance presented in this paper. It should be clear that the 
GMS method is formally suitable to treat all nonadiabatic processes that may 
occur in atoms or molecules, for bound and continuum states, as will be 
explored in forthcoming papers. 

2. APPLICATIONS 

In this section we will review briefly some of the recent applications of 
the GMS wave function. A previous review [45] covers most of the early 
applications of the GMS wave function. Our main goal is to illustrate some of 
the new ideas presented in the last section, using the most recent applications 
and some earlier but not unpublished material. 

2.1. Core-hole excited states 
The proper theoretical study of core-hole excited states has been one of 

the most challenging problems in molecular quantum mechanics. The 
difficulty stems from the fact that these states lie above the continuum part of 
the spectra, and their attainment as high-energy roots in an ordinary 
configuration interaction calculation is impossible [46]. However, core-hole 
excited states play an important role in the identification of chemical species 
by X-ray based spectroscopic techniques. Additionally, there are many 
interesting effects that are particular to this region of the spectra and their 
study are the object of active research [47]. 

When a given symmetric molecule contains indistinguishable nuclei, 
the associated core-hole spectra present extra complications. At the 
monoconfigurational level, symmetry broken localized ROHF solutions have 
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lower energy than the symmetry-constrained solution (about 10 eV in first 
row atoms). These localized states related to indistinguishable nuclei are 
"accidentally" degenerate and the correct approximation to their energies and 
properties should consider the superposition of the states in an unbiased way. 
The GMS wave function has been successfully applied to the accurate 
determination of transition energies, and optical and generalized oscillator 
strengths for core-hole states [48-52]. In this paper we will comment briefly 
on the latest applications of the GMS wave function to the study of core-hole 
states in molecules possessing identical nuclei. 

The CO2 molecule has two identical oxygen nuclei that can give rise to 
accidental degeneracy effects in its core-hole spectra. The total symmetry is 
Dooh, but the core-hole localized states have Coov symmetry. The superposition 
of these two symmetry broken degenerate solutions recovers properly the total 
symmetry of the molecule. The GMS wave function was used in conjunction 
with spectroscopic measurements to help the assignment of the electronic 
transitions of the inner-shell spectra of the COz molecule [51]. Three 
structures were used in the calculations" two ROHF degenerate solutions with 
the hole localized in each one of the oxygen atoms, and one ROHF-CI 
delocalized structure. Transition energies and intensities were calculated, 
presenting excellent agreement with the experiments (Table 3). 

Table 3 
Transition energies for inner-shell excitation of the CO2 molecule 

Experimental ( e V )  Calculated (GMS) (eV) Assignment 
535.4 535.5 l~g --~ 2rCu 

535.7 lcru --~ 2rtu 
535.7 lcrg --~ 3SCyg 
536.9 lcyu --~ 3SCyg 

538.8 538.0 1Crg --~ 3pcru 
538.0 1Cyu ~ 3peru 

538.8 539.3 l~u --~3prtu 
539.6 1 cyg --~ 3prtu 

538.8 540.3 1Cyg ~ 4SCyg 
540.3 1 ~u --~ 4scy~ 

It must be noted that the experiments did not resolve the bands of the quasi- 
degenerate states and the theoretical calculation is essential to get some 
understanding of the processes involved. The sum of the calculated optical 
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oscillator strengths for the l Cyg ----> 2~u and l cyu --> 27Cu states (which are 
experimentally indistinguishable in an electron impact based experiment) 
agrees well with the measured one (calculated: 0.12; experimental: 0.11 to 
0.13). The GMS wave function was able to reproduce not only the transition 
energies but also the optical oscillator strengths, which is a much more 
sensitive test for a wave function. For an extensive discussion on the profiles 
of the calculated and measured generalized oscillator strengths of the inner- 
shell spectra of the CO) molecule, the reader is referred to the original paper 
[51]. 

A similar theoretical study was undertaken for the core-hole states for 
the ethylene molecule [52]. There are two identical carbon atoms and the 
molecule has D2h symmetry. The localized core-hole states have C2v symmetry 
and the direct product Czv | Cs recovers properly the full symmetry of the 
system. The results for transition energies and optical oscillator strengths 
agree well with those available in the literature. 

2.2. Molecular Structure and Valence Spectroscopy 
As an illustration of the new ideas presented in this review, we can 

consider the problem of determining a chemical structure of the ozone 
molecule (03). Traditionally, this molecule is regarded as a resonance hybrid 
between two zwiterionic structures. In the early seventies, the CoVB(pp) 
method gave a very different picture, regarding the molecule as a singlet 
biradical, with a long "~" bond between the terminal oxygen atoms [53]. As 
already explained for the allyl radical, Czv molecules cannot have degenerate 
resonance structures, since there is neither point group degenerate states nor 
accidentally degenerate states, because C2v is not a direct product group. 
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The GMS wave function for the ozone molecule supports the GVB(pp) 
picture for the ozone molecule in a straightforward way [54]. The two 
classical resonance structures were considered together with the biradical one 
in a three structure GMS-CI calculation. The ground state of the 03 molecule 
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is solely described by the biradical structure, the contribution of the localized 
ones being completely negligible. 

o/~ 
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This is in perfect harmony with the theory presented in the first section. In 
fact, a simple qualitative application would allow an a pr ior i  deduction of the 
chemical structure of the 03 molecule, since the biradical is the only non- 
degenerate symmetric structure possible. 

The (n --~ ~,)1,3 excited states of the pyrazine molecule are a well- 
known case of wave function symmetry breaking [27,55]. An accidental 
degeneracy arises when one considers the valence electronic excitations 
within the equivalent nitrogen lone pairs. The pairs are in opposite and 
equivalent positions and, when there are two singly occupied orbitals in 
different symmetries, we will have a pair of accidentally degenerate states as 
shown below: 

The total symmetry of the molecule is D2h, SO we cannot have point group 
degenerate states. The accidentally degenerate states represented above have 
C2v symmetry. The direct product C2v | Cs recovers properly the full 
symmetry of the system. Depending on the particular excitation and final spin 
state four states can be generated. In Table 4 we compare the results of 
Hartree-Fock (HF), configuration interaction with singles and doubles 
excitations (CI-SD) and the two structure GMS calculations, with the 
available experimental data. 
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Table 4 
Transit!on energies (eV) for the (n --~ re*) :'3 excited states of the pyrazine molecule 

State HF CI-SD GMS Exp. 
3B;u ...... 4.52 3.51 3.27 3.33 [56,571 
1B3u 5.27 4.20 3.89 3.85 [56,58] 
3B2g 6.23 5.21 4.77 4.59 [56] 
1B2g .......... 7.1.1 5.91 5.48 5.19 [56,5..9] 

The results from the GMS calculation are always better than the HF and CI- 
SD ones, with the additional advantages of compactness of the wave function, 
and exact preservation of the full symmetry of the system. 

3. FINAL REMARKS 

In this chapter we presented the Generalized Multi Structural (GMS) 
method as the most general variational approach to calculate electronic wave 
functions. Emphasis was given to a proper understanding of the general 
conceptual features of the MO and VB methods and the relationship between 
them. Considering only valence electrons, we defined chemical structure as a 
configuration of singly occupied atomic-localized non-orthogonal orbitals, 
and stressed that it is valid only for an adiabatic state. The classical valence- 
bond concept of resonance was recast in a physically meaningful way, being 
exactly related to a nonadiabatic effect of point group or accidental 
degeneracy. In the case of accidental degeneracy, a set of point group based 
"selection rules" for the possible symmetries of resonant structures was 
discussed and applied to representative cases. It was shown that in these cases 
neither single configuration VB nor single state MO approaches could 
approximate the correct electronic wave function. Multi structural 
methodologies are then required, and the GMS method seems to be flexible 
and generally applicable. Finally, we briefly presented some applications of 
the GMS wave function. 

At first sight, the concepts presented in this chapter may seem a little 
odd if compared to classical VB theory. However, in adopting these new 
concepts, we can bring physico-chemical significance to the resonance 
concept, establishing a common line of reasoning with MO theory. This is 
important because once one begins to increase the sophistication of the 
calculations, the numerical differences between MO and VB theories tend to 
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disappear. Secondly, VB theory has suffered for a long time the 
(unjustifiable) fame of  not being physically motivated. Since the difference 
between chemistry and physics lies only in our heads, the ideas presented 
above put the two lines of  thought in a single framework, while keeping the 
specific features of  each one. 
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Chapter 6 

A spin-free approach for valence bond theory and its 
applications 

Wei Wu, Yirong Mo, Zexing Cao, and Qianer Zhang 

Department of Chemistry, The State Key Laboratory for Physical Chemistry of 
Solid Surfaces, and Institute of Physical Chemistry, Xiamen University, Xiamen, 
Fujian 361005, China 

A spin-flee approach for valence bond (VB) theory, based on symmetric 
group techniques, is introduced in this chapter. Bonded tableaux (BT) are adopted 
to represent VB structures, and a paired-permanent-determinant algorithm is 
developed to solve the so-called "N!" problem in the nonorthogonal VB method, 
followed by the introduction of our ab initio VB program, Xiamen-99. 
Furthermore, applications of ab initio VB method to the resonance effect, 
chemical reactions, and excited states are carried out by the Xiamen package. 

1. INTRODUCTION 

The striking difference between the molecular orbital (MO) theory and the 
valence bond (VB) theory[ 1] lies in the fact that all orbitals in the former are 
delocalized and orthogonal, while orbitals in the latter are localized and 
nonorthogonal. The nonorthogonality of orbitals leads to the notion that chemical 
bonds originate from the overlap of the bonding orbitals, which is the heart of the 
chemical theories. Thus, the MO and VB methods are complementary rather than 
exclusive. However, the notorious N! problem due to the nonorthogonality of 
orbitals in the VB method hindered the development of ab initio VB approaches, 
although significant progress has been made by a few groups [2-7]. Particularly, 
Goddard's generalized VB (GVB) [4], whichmakes a compromise between the 
MO and VB methods by introducing the strong orthogonality approximation and 
thus notably reduces the computational costs, still enjoys great popularity. In the 
past decade a significant resurrection of interests in the ab initio VB methods 
[8-11 ] has been observed. This trend is partially promoted by the advancement of 
computation technology, however, the growing demand for ab initio VB methods 
to solve many tricky computational chemistry problems, for which MO methods 
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are unable to give definite answers, nevertheless is the driving force. 
In the MO theory, the most reliable approach for the study of reaction 

pathways perhaps is CASSCF [12, 13], but multi-VBSCF is essentially at the 
same level with CASSCF [ 14]. Since a VB wave function can be expanded into 
the combination of numerous Slater determinants that are used to define 
configurations in the MO theory, the VB theory provides a very compact, accurate 
description for chemical reactions. While both MO and VB theories have their 
own advantages as well as disadvantages, in our opinions, there are some areas 
where the VB theory is particularly superior to the MO theory: 1) the refinement 
of molecular mechanics force field; 2) the development of empirical or 
semi-empirical VB approaches; 3) the impact of intermolecular charge transfer or 
intramolecular electron delocalization on the structure and properties; 4) the 
validation of classical chemical theories and concepts at the quantitative level; 5) 
the elucidation of chemical reactions and excited states intuitively. 

As one of the most remarkable progresses in chemistry, molecular simulations 
of condensed states such as solution and biosystems are receiving more and more 
attentions [15]. Generally molecular simulations are based on molecular 
mechanics (MM) methods, where the force field is normally expressed as the 
summation of bonded and non-bonded terms [ 16]. Unfortunately, very few leads 
are available to guide the formulations and parameterization of these energy terms. 
For example, whether and how the polarization effect is important in the 
simulation of protein and DNA interactions is still an open question [ 17], although 
there is much interest to develop polarizable force fields [18]. Since in the VB 
theory, wave functions for diabatic states (or resonance structures), where each 
bonding electron pair is localized in the bonding region, can be easily constructed, 
it is possible to derive various energy terms such as polarization and charge 
transfer energy and compare their contributions to the complexation energy 
between monomers [19], and this type of information is indispensable for the 
validation and refinement of MM force fields [20]. Notably, the importance of 
electron transfer between protein and aqueous solution is especially difficult to 
evaluate. Most recently, Thompson and Hynes tried to estimate the charge transfer 
effect in simple hydrogen bonding systems at the MM-VB level [21 ]. 

Closely related to the above merit of VB methods, the unique definition of 
diabatic states also allows us to derive the energy profiles for diabatic states. Since 
for many reactions the whole process can be described with very few resonance 
structures, the comparison between the diabatic and adiabatic state energy profiles 
can yield insight into the nature governing the reactions [22-24]. In fact, even for 
complicated enzymatic reactions, simple VB ideas have shown unparalleled value 
[25, 26]. However, the further utilization of the VB ideas at the empirical and 
semi-empirical levels should be carefully verified by benchmark ab initio VB 



145 

computations. 
While the concept of resonance has been broadly but qualitatively used in 

chemistry, the exploration of the nature of some chemical reactions and the 
understanding of structure-activity relationships call for the quantification of the 
resonance effect. For example, conventionally, it is believed that n electron 
delocalization is responsible for the greater acidity of carboxylic acids compared 
to aliphatic alcohols. However, this explanation was challenged by Siggel and 
Thomas [27], who attributed the difference in acidity to electrostatic interactions. 
The controversies went on due to the lack of absolute data to support either side 
[28], until ab intio VB calculations by Hiberty and Byrman [29] presented reliable 
data to show the importance of electron delocalization in carboxylic anions. 
Similarly, our studies on the delocalization in allyl cation, radical and anion also 
solved the arguments about the magnitude of the resonance stabilization in these 
systems and showed that in the cation and anion the resonance stabilization is 
comparable, which leads to the conclusion that the averaging of charges inside a 
system is the main driving force for electron delocalization at least in these allyl 
ions [30]. 

Although at the present ab initio VB methods are still limited to small systems, 
the impact of this development on the reformation of our chemical knowledge is 
significant and diverse. In brief summary, the small benchmark calculations can 
not only enhance the reliability and legitimization of simple VB models and 
monitor the development of semi-empirical VB approaches, but also provide the 
guidelines for the refinement of MM force fields, which have been widely applied 
to the simulation of biosystems. The VB project in Xiamen University started in 
1986, when a spin-free form of VB method was independently derived [31 ]. The 
same form was also proposed by McWeeny [32]. In the earlier years we wrote a 
simple VB code and applied it to some simple systems [33, 34]. The systematic 
development of a complete and efficient VB code nevertheless started in 1992 
[35], when an algorithm based on the left coset decomposition of the symmetric 
group was proposed and programmed [36]. While this approach has been further 
pursued by Li after his moving out of our group [37], later we developed a more 
efficient algorithm called the paired-permanent-determinant approach [38, 39], 
on which our present code, Xiamen-99, is based. A similar algorithm for S = 0, �89 
was also presented by Li and Pauncz [40]. 

The arrangement of this chapter will be as following. Firstly, we discuss the 
construction of the bonded tableau basis and its properties. Secondly, the 
paired-permanent-determinant method is derived, followed by the introduction of 
our Xiamen-99 ab initio VB program. Then we show the applications of the ab 
initio VB method to the resonance effect, chemical reactions, as well as to excited 
states. Finally, we give a brief summary and an outlook for our future work. 
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2. BONDED TABLEAU VALENCE BOND APPROACH 

2.1 Bonded tableau basis 
The most general many-electronic wavefunction in spin-flee quantum 

chemistry, which should be a spin eigenfimction and share anti-symmetry of 
electron indices, is of the form, 

W K - AK~0OK , (1) 

where A is an antisymmetrizer, ~o is an orbital product 

E~ o = ~1 (1)r (2)" "O~v (N) (2) 

and OK is a spin function. For VB approaches, spin functions are Rumer bases 

O x = 2 -1/2 [a(i, ) f l ( j ,  ) - fl(i I )a( j ,  )] x 2-1/2 [a(i 2)fl(j2 ) - fl(i2 ) a ( k  )]"" 

= H 2-1/2 [ a ( i ) f l ( j ) -  f l ( i ) a ( j ) ] l ~  a(k) ,  
(03 k 

(3) 

where (/j) runs over all bonds and k over all unpaired electrons. Given an orbital 
product fl0, a complete set of VB functions is constructed by choosing the spin 
functions OK. Using the antisymmetry property of electron indices in VB 
functions, one can rewrite the VB function, Eq. (1), as 

't' K = A ~  I, O0,  (4) 

where 

O 0 = 2-1/2 [a(1)fl(2)-  f l(1)a(2)]x2-1/2[ot(3)f l(4)-  fl(3)a(4)]... (5) 

and 

a K "- 2-1/2 [Oil (1)Oil ( 2 ) +  Oj I (1)O~ (2)] x 2-1/2[0~2 (3)~j2 (4) + Oj2 (3)0~2 (4)1....(6) 

Eq. (4) shows that a complete set of VB functions can also be given by fixing 
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a spin function and changing the orbital product ~x. 
The antisymmetrizer can be decomposed into e E~1~, and e t~lre , the operators 

which operate on the orbital and spin spaces, respectively, as [41 ] 

)1 - ~ AtaJetaJetXJr rs ~ , (7) 
F 

where Atr ~J = (_+1) is a coupling coefficient, [~,] is the conjugate representation of 
[)q, and the projector is defined through the irreducible representation matrix 
elements, DffI(P), as 

- [ ~ ]  ~ D f f ] ( P ) P  . (8) ~rs 
P 

Thus, one can have 

WK N x  ~ txJAxlc~ AXlt~ 
- -  J ~ r  eCrs ~ C ' K ~ .  ~;'JO' (9) 

Y 

where NK is a normalization factor and [)q = [2 N/2-s, 12S]. It can be easily proved 
that 

e t a l c •  ,~ ot~l~ (10) rs ~'~K " - V s l ~ ' r l  ~ ' K  " 

Using Eq. (10) and the properties of the first Young tableau [31 ], one can reduce 
Eq.(9) to 

= Nr erl ~'Keu ]O0, (11) 
r 

where OK is now simply an orbital product, 

f~K = ~ (1)~j~ (2)0/2 (3)~j2 (4) '"  . (12) 

In spin-flee quantum chemistry, matrix elements of a spin-independent 
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Hamiltonian are determined only by the spin-flee function 

f ~  K = N K ~  " r l  " ~ ' K  ' (13) 

which is called a bonded tableau (BT) state [31, 42], and where ArK is a new 
normalization factor. In Eq. (13) one omits r from ~x  since the matrix elements 
are independent of r in the spin-free treatment. A BT basis can be denoted as 

a I b' 
C t 

Ar o['t],r 
= ~" K~"rl ~a  (1)0,,' (2)Ob (3)0b'(4) "'" , (14) 

which clearly corresponds to a VB structure with bonds a - a  ', b - b  ', c - c  ', . . . .  

It is proved that BTs have the following symmetry properties, which exactly 
echo the symmetries of VB structures: 

b 

m 

O 

(15) 

b 

d =  
ell 
a (16) 
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(17) 

+! ! 
C 

b 

a 

i 

(18) 

(19) 

For a given orbital configuration, various BTs can be constructed by taking 
different orbital pairing schemes. Like VB structures, all possible BTs form an 
overcomplete set and are not independent of each other. The construction of a 
complete BT set from an overcomplete one is not unique. For the VB approach, 
one can define the functions corresponding to canonical VB structures as the 
canonical BTs (CBTs). By this definition, all doubly occupied orbitals are placed 
in the upper part of the tableau. In the lower part, each two bonding orbitals 
occupy the same row, while the unpairing orbitals are inserted in the 
single-column part. Another simple way to construct CBTs is to follow the Weyl 
rules [31 ], which is more suitable for CI procedures in molecular orbital theory. 

2.2 Matrix elements of the Hamiltonian and overlap 
In the spin-free VB theory, the many-electron wavefunction for a system is 

expressed as a linear combination of spin-flee VB functions 

K 
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Clearly Ox may be a BT, defined by Eq. (13). The Hamiltonian and overlap matrix 
elements are now written as 

P~S~ 
(21) 

and 

�9 - -  
~'11 

P~SN 
(22) 

respectively. The coefficients Cx in Eq. (20) are easily determined by solving the 
usual secular equation I-IC = EMC. The orbital products OK and I'lL in Eqs. (21) 
and (22) are given according to their corresponding VB structures. For the sake of 
convenience, they are supposed to be 

~ = u = u~(1)u~(2).., u~ ( N ) ,  (23a) 

f ~  = v = Vl(1)v~ (2). . .  v ,  ( N ) ,  (23b) 

and follow the notations 

s,=(+lv,). (24) 

It is evident that the matrix elements of the Hamiltonian and overlap are 
independent of the index r of BT in Eq. (13) and only the first diagonal element of 
the irreducible representation matrix, D(~J(P), is required, which has been well 
discussed [31, 33, 42, 43], and is easily determined. It is worthwhile to emphasize 
that Eqs. (21) and (22) are the unique formulas of the matrix elements in the 
spin-free approach, even though one can take some other forms of VB functions. 
For example, it is possible to construct VB functions by Young operator [2], but 
the forms of the matrix elements are identical to Eqs. (21) and (22) [44]. 

Both of Eqs. (21) and (22) involves N~. terms due to N! permutations of the 
symmetric group SN, which is similar to a determinant expansion or a permanent, 
except for different coefficients. If one-electron functions are orthogonal, only a 
few terms are non-zero and make contributions to the matrix elements [42], and 
consequently the matrix elements are conveniently obtained. However, the use of 
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non-orthogonal orbitals is one of the most important characterstics of a VB 
approach, and thus all N! terms make contributions to the matrix elements. There 
have been very efficient algorithms for the evaluation of a determinant, and it is 
not too difficult to evaluate a permanent. Unfortunately, there is still no efficient 
algorithm for the evaluation of Hamiltonian and overlap matrix elements. This is 
the well-known "N!" difficulty in valence bond theory. In the next section, we will 
define a new function, called paired-permanent-determinant (PPD) [39], to 
discuss how to calculate Hamiltonian matrix elements as efficiently as possible, 
which will enable one to implement a spin-free VB program. 

3. PAIRED-PERMANENT-DETERMINANT A L G O R I T H M  
NONORTHOGONAL VALENCE BOND METHOD 

FOR 

In this section, a new function, called paired-permanent-determinant (PPD), is 
introduced, which is an algebrant. An overlap matrix element in the spin-free VB 
method may be obtained by evaluating a corresponding PPD, while the 
Hamiltonian matrix element is expressed in terms of the products of electronic 
integrals and sub-PPDs. 

3.1 Paired-permanent determinant (PPD) function 
Given an N• square matrix A = {ao., i, j = 1,2,..., N}, the PPD of A for the 

irreducible representation [ 2 ] is the number 

ppd(A, A) D [~1 = ~ 11 (P)alplazp2 ""aNpu, 
P~ SN 

(25) 

where 

I 1 2 ... N / 
P = (26) 

P~ P2 " '"  P N  

and the summation extends over all N]. permutations of SN. In a similar fashion to 
a determinant, one can denote a PPD by 
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ppd(~, A) = 

al  1 a12 "'" al ,n  al,n+l "'" a l N  

O21 022 . . .  a2, n a2,n+l - ' .  a 2 N  

an,l  an,2 " "  an,  n an,n+l "'" an,  N 

an+l,1 an+l,n+l "'" an+l,  n an+l,n+l "'" an+l,  N 
�9 , ,  , .  o , ,  

�9 , ,  , ,  , ,  , ,  

aN,1 aN,2  . . .  a N ,  n aN,n+l  " "  a N ,  N 

(27) 

where n = N -  2S. The fight hand side of Eq. (27) may be divided into 4 zones. 
Two diagonal zones of nxn  and ( N -  n ) x ( N -  n) are, respectively, the "paired 
zone" [39], which describes bonding electron pairs in the VB method, and the 
"unpaired" zone, which is for unpairing electrons. Two off-diagonal zones are for 
the interactions between paring and unparing electrons. For simplicity, one may 
also denote ppd(;~, A) as 

ppd(~,A) Ila (~'2 ..... ~,i ..... ,,;,,+~ ..... u) ='l (1,2 ..... i,i" ..... n;n+l ..... N)[ I ' (28) 

where the superscript (1, 2, ..., n; n + 1, . . . ,  N) of a is the order of the row in array 
A, and the subscript ( 1, 2, ..., n; n +1, ..., N) is the order of the column. In a 
similar fashion to a determinant or a permanent, the PPD is an algebrant that 
depends not only on the matrix A, but also on the irreducible representation [L]. 
For S = 0, only the "paired" zone exists, which is also called paired-permanent 
[38], while for [;~] = [IN], only the 'hmpaired" zone exits, which is exactly a 
determinant. 

According to the symmetry properties of D~](P), one can divide row and 
column indices of a PPD into two sets: paired symmetry indices (PSI) i, i < N -  2S, 
and anti-symmetry indices (ASI) i, i > N-2S. Furthermore, 2k- 1 (2k) is refered to as 
the partner of i = 2k (2k-1), denoted as 7, if i is a PSI. Evidently, PPDs shares 
symmetries similar to the BTs, as follows: 
1. ppd(2, A) is invariant under transposition, and one may write 

ppd(A, A) = ppd(2,AT), (29) 

. ppd(2,A) is invariant under exchange between row (column) i and row 
(column) i ,  



1 5 3  

[ a ( l , 2  ..... i ,[ ..... n ; n + l  ..... N)[[ [[a(1,2 ..... ~,i ..... n ; n + l  ..... N) [  I 
[ (1,2 ..... i,i . . . . .  n ; n + I  ..... U )  [[ ~---[[ (1,2 ..... i , i  ..... n ; n + l  ..... N )  1[' 

(30) 

. ppd(2,A) is invariant under exchanges between row (column) i and row 
(column)j and between row (column) f and row (column) j ,  

[[a (1,2 ..... i,i" ..... j , . /  ..... n ; n + l  ..... N )  H a ( l , 2  ..... j , j  ..... i , i  ..... n ; n + l  ..... N )  (31) 

4. ppd(2,A) changes its sign under exchange between row (column) i and row 
(column) j, if i, j ~ API. 

Various PPDs may be obtained by exchanging the row (column) indices for a 
given matrix A. The total number of the PPDs is 

N! 
2 N/2-S (N / 2 - S)! (2S)! 

(32) 

due to the row (column) symmetries of the PPD. Like BTs, all PPDs obtained 
from a given A form an overcomplete set. One can refer to the independent PPDs 
as canonical PPDs. The definition of canonical PPD may be given by either the 
standard Young tableaux or the Rumer rule. 

Eq. (25) may be rewritten as 

ppd(/~, A) = ~ ~,ntZl(P)Pf~01 , (33) 
P e  S N 

where 

0 -"  a l  l a 2 2  "" " a N - 1 , N - 1  a N , N ,  (34) 

and permutation P operates on the second index of ao.. Exchanging the columns of 
the matrix A, one can have various PPDs, 
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~ ( g )  = ppd(~, Ag) - ~-'D[~](P)pg-l~o, 
Pe Sly 

(35) 

where g is the permutation permuting the column indices of the matrix A to get the 
new matrix Ag. It is clear that the canonical PPDs may be defined as 

(I)i ~ (I)(o"il) "-- Z x"'l/-')[3']l ( P ) P o ' I i ~ O  , (36) 
PeS N 

where a~ is the permutation permuting the index numbers of the first Young 
tableau to those of Young tableau i. It can be shown that a PPD associated with 
permutation g may be expressed as 

_ ntX](g)~ (37) o(g)   ,jl .jl , ,  

i , j  

where the matrix B is defined as 

B O. = D~lA](O' j l ) ,  (38) 

which is in upper triangular form [44]. Thus, O(g) may be expressed in terms of 
the linear combination of canonical PPDs, 

r  = ~ C~ (g)r (39) 
i 

where 

Ci (g) - ~ n-l r~[;t] ~0---jl (g)- (40) 
J 
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3.2 Evaluation of PPDs 
It is clear from the above discussion that the difference between a PPD and its 

corresponding determinant solely lies in the coefficients of the permutation P. 
Unfortunately, this makes PPDs unable to share many of the nice properties of 
determinants. For instance, the basic multiplicative law valid for determinants 

det(AB) = det(A) det(B) (41) 

is flagrantly false for PPDs. Also, the addition of a multiple of one row (column) 
of A to another does not leave ppd(2, A) invariant. These facts greatly limit the 
exploration of computational techniques for ppd(A,A). Fortunately, the Laplace 
expansion for determinants has a simple counterpart for PPDs. A procedure for 
evaluating ppd(2, A), which is similar to the Laplace expansion method, has been 
presented. We now briefly describe the procedure and give an example. 

It can be shown that a PPD of order N may be obtained by evaluating N(N- 1)/2 
PPDs of order N-2 as follows, 

ppd(2,A) = ~]dktAii ppd(2 a ) (42) ' "~( i i )  ' 
k < l  

where dkt = 1, if k, l E PSI, and l = k ; dkt = - 1/2, if k ~ PSI, but 1 ;~ k ; dkt = 0, 
if k, l ~ ASI, Ai~ t is a PPD with order 2 

laid aid 
ali a fi  

= akiat7 + ak~ati, (43) 

and ppd(21,A~/~t) )) is a sub-PPD of[21]=[2N/2-S-l,12s] obtained by removing 

rows k, I and column i,i of A, whose order is such that the column indices remain 
unchanged, and the row indices remain unchanged if 1 = k ,  otherwise l is 
replaced by k.  

Example.  A PPD with N -  6 and S = 1 is expanded as 
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1 2 4  1 4 6  
ppd([22'12 ]'A) = mlEA12 + ma4A34 --2i~1 ~mOAO'= j=3 -- -2 ~-'~"~m~176 j=5 

where m o. is a minor, defined as 

m/j Jlail ~ = A~J2 =llaj I aj2 ' 

and A o. is its corresponding complement ppd([21,12 ], •(0)..(12)). 

Furthermore, a complementary minor can be evaluated as follows: 

A(12 ) Fla33 a34]][a55 a56] 1 [[a33 a3411[a45 a46 ppd([21,12 ], "*(12) ) = 
Ila43 aaallla65 a661 -211a53 a541lla65 a66 

__, i1o~ a~4 
211a63 a64 

a55 a56 

a45 a46 
_llla~ a~41]la~ a~6 

21]a43 a441lla65 a66 
(44) 

__,11063 o~Ello~ a~6 
21[a43 a44[lla35 a36 

With Eq. (42), one expands a PPD by choosing a PPD of order 2 as a minor, 
and the complementary minor is still a PPD. One can also take a minor from the 
ASI part. 

It can be shown [39] that a PPD can also be expanded as follows: 

N 
ppd(2 ,A)=) -~ak tcppd(22 ,~) ) ,  l~ ASI, (45) 

k=l 

and 
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1 . Z ( _ 1 ) q p p d ( A 2 , A ~ > ) ,  k ~  P S I  
~ ' + 1  q~Q 

cppd(22, A~ ) - - ppd(22, ~ ) ) ,  k ~ ASI, but k r 1, 

d (z) PP (~2,~l)), k - l 

(46) 

where cppd (22 , /~  )) may be considered as the complementary minor of akt, 
[22] = [2N-2S,lES-1], ~ ) i s  an ( N - 1 ) x ( N - 1 )  array obtained by interchanging 

the kth and the lth rows of A and then removing the kth row and the Nth column, 
Aq is an N x N array obtained by operating q on the row indices of A, and the Q 
contains all transposition (k/), l ~ ASI, which is to act on the row indices of A~ > . 

Clearly, Eq. (45) reduces to the formula for the Laplace expansion of a 
determinant, if [/~] = [ l  N ] .  

Example. A PPD with N = 6 and S = 1 is also expanded as 

1 4 
ppd([2:,12],A)=--~_~ai6(ppd([22,11],A~6~)-ppd([22,11],a~~ ~ 56)(6) )) 

i=1 

_ a56 ppd([22,11 ], A(5)a 1 "'(6) J + a66 ppd([22,1 ], A ~ )  

Generally, Eq. (45) is much more troublesome than Eq. (42) and it is not 
essential to the evaluation of a PPD. However, it is of great importance to the 
application in the VB approach. Using Eq. (45) successively, one can expand a 
PPD by taking a determinant with order 2 as a minor [39], which is also required 
in the VB approach. 

The discussion so far is applicable to any given spin number S. It is clear that 
the expansion of a PPD, Eq. (42), will be greatly simplified if the spin number S = 
0. In this case there are not ASI indices any more, and only two values, 1 or-1/2 ,  
are taken for dk/. Furthermore, it is possible to choose a PPD with any even order 
m as a minor. 

It can be shown that 

ppd(3,, A)= '~ d(m ) ppd(gq,A~m)) ppd(~,A~N_m)) , 
(m) 

(47) 

where [21] = [2m/Z], [22] = [2(N'ml/2], A(m) is an mxm array by taking m rows and m 
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columns 1, 2, ..., m from A, the summation runs over all possibilities of choosing 
m indices from N indices and all possibilities of the index arrangements of the m: 
indices that partner each other in A still remain in pairs, while indices that are 
unpaired in A should be paired with each other, ppd(22,A(N_m)) is the 
complementary minor of ppd(2~, A(m)), whose index order is such that indices that 
partner each other in A still remain in pairs, indices should be paired if their 
partners are paired in A(m) but not in A. d(m ) is given by 

= (--1)m' (48) 
d(m) ( m ' - l ) !  ' 

where m' is the number of pairs whose indices are unpaired in A. 

3.3 Formulas for Hamiltonian and overlap matrix elements in the PPD 
algorithm 

It is evident from the definition of the PPD, Eq. (25), that the spin-free form of 
VB function, Eq. (13), is a PPD associated with matrix V= {vj(i)}, i.e., 

�9 /~ = ppd(2,V), (49) 

where the normalization factor Nx is neglected, and the overlap is also a PPD, 
given by 

M ~  = ppd(~, S), (50) 

where S is the matrix of orbital overlap, S = (so.). 
Clearly, the overlap matrix elements can be simply obtained by the procedure 

for evaluating a PPD discussed above. 
The expression of the Hamiltonian matrix elements is a little complicated. For 

simplicity, only the case ofS = 0 is discussed here. The treatment for systems with 
arbitrary spin number has been described elsewhere [39]. 

The Hamiltonian operator is 
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N N 

H - ~ ~  f ( i ) + ~ g ( i , j ) .  
i=1 i , j  

(51) 

Using the definition of partner indices, Eq. (51) is rewritten as 

N N 

H = ~ " H ( i ) + ~ - ' G ( i , j ) ,  
i=l  i , j  

(52) 

where 

H(i)  = f (i) + f ([) + g(i,[) , 

G(i, j )  = g(i, j )  + g(i, j )  + g({, j )  + g(-{, j )  , 

(53) 

(54) 

and the summation runs over i, j = 1,3,..., N -  1. 
Using Eq. (42), the contribution from H(i) to the Hamiltonian matrix element 

H/~ is 

,.~(k_o Hi~(i  ) - Z d k t H i ~  t ppd(~ ~'(ii~ ), (55) 
k<l 

where 

k/ 
Hi~ = f iks~t + f itsik + f i-ksit + f i-tsik + giT,kt + gii,tk , (56) 

and S~t~ is an (N-2)x(N-2) array obtained by removing rows k and l and columns 
i and i of the overlap matrix S. 

Using Eq. (42) successively, the contribution from G(i,j) to Hxz is 



1 6 0  

"~  ,4 t'7 klmn klmn G ~ ( i , j ) =  Z_takl,mnV, i(l} ppd(A2,S~b~7 ). (57) 
k<l,m<n 
k <m,l~:m,n 

In the above equation, [/~2] = [2N/2-e], Si{5~." is an (N-4)x(N-4) array obtained by 

removing rows k,l ,m, and n and columns i,i, j ,  and j ,  The value ofdkt, m, is given 

as follows: 

i 

a. dkl,m n : 1, if l = k, n = ~ ;  

b. dklmn--------1 , i f  l ,  k-,n = ~ , o r l  = k n , ~ ;  
' 2 ' 

C. dkl mn -------- 1, if k = ~ ,  l = K; 
' 2 

(58a) 

(58b) 

(58c) 

d. dkt mn ---- 1 ,  if l ,  K,~, m ,  ~, (58d) 
' 4 

and ~"JJ involves 32 terms as follows: �9 a klmn 

t"T uJJ : 
"'klmn Z(gt t ' , rsSir 'S?s,  q- gtt',srSis'S~r,) �9 (59) 

t=i,i,t'=j,] 
r=k,l,s=m,n 

With Eqs.  (55 )  and (57) ,  the Hamiltonian matrix elements are finally written in 
the form of PPDs as 

k! k! E dkl,mn Z Gi(13 ppd(22, Si(l~ i ) HK L = ~ dkt ~_Hi i ppd(AI,Sii )+  klmn klmn 

k<l i k<l,M<,, i<j (60) k,m,l~m,n 

4. X I A M E N - 9 9  - A N  A B  I N I T I O  S P I N - F R E E  V A L E N C E  B O N D  

P R O G R A M  

Xiamen-99 is an ab initio spin-flee valence bond package. It is based on the 
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paired-permanent-determinant algorithm. The Hamiltonian and overlap matrix 
elements are derived from the evaluation of PPDs. In this section, a description of 
the package is briefly given, including the algorithm and its capabilities. 

4.1 The implementation of the evaluation of a PPD 
As shown in the last section, Hamiltonian and overlap matrix elements are 

expressed in terms of PPDs. A practical VB package highly depends on an 
efficient routine for the evaluation of a PPD. Although a PPD may be expressed in 
terms of sub-PPDs of any given order and their complementary minors, in the 
present version of Xiamen-99, an algorithm of 2• expansion is used. This is 
because the 1-e and 2-e electron integrals may be built as "effective" 2• PPDs. 

A procedure for the evaluation involves two parts: one being the numerical 
operations of matrix elements, the other being the index operations of the 
sub-PPDs. It is obvious that the index operation is independent of the system that 
is being studied. To save CPU time in VB applications, all index operations are 
pre-computed and stored in the file that accompanies the source code of the 
package. In addition, all sub-PPDs that are required in the evaluation are 
computed first and are labeled. This will enable one to avoid repeated 
computations of sub-PPDs and minimize the computational effort in the 
calculation. 

4.2 The evaluation of the energy and its gradient vector 
From Eq. (50), an overlap matrix element is exactly a PPD and can easily be 

evaluated from the routine for PPDs, while Hamiltonian matrix elements may be 
obtained by a similar routine to that for PPDs, where 2• sub-PPDs are replaced 
with "effective" sub-PPDs of one-electron and two-electron integrals. 

As mentioned in Section 1, in a traditional VB treatment, a VB wavefunction 
is expressed as the linear combination of 2 m Slater determinants, where m is the 
number of covalent bonds in the system. For some applications in which only a 
few bonds are involved in the reaction, it is too luxurious to adopt the PPD 
algorithm, as the number of Slater determinants is still not too large to deal with. It 
would be more efficient to use a traditional Slater determinant expansion 
algorithm than the PPD algorithm. Therefore, as a complement, a Slater 
determinant expansion algorithm is also implemented in the package. 

It is well known that energy gradient vectors play an important role in orbital 
optimization procedure. Because analytical energy gradient vectors in 
nonorthogonal VB approach are much more complicated than those of canonical 
molecular orbital method, and it is difficult to evaluate exact energy gradient 
vectors, in Xiamen-99, an approximate energy gradient vector is derived by using 
the generalized Brillouin theorem [45]. It is shown from our applications that this 
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approximation works well and removes much computational effort. 

4.3 Valence bond orbital optimization 
The most important feature of modem VB theory is that orbitals are allowed 

to optimize flexibly. The use of overlap-enhanced orbitals (OEOs) provides the 
key to the construction of VB functions of considerable accuracy and 
compactness. The disadvantage of OEOs is that they obscure the classical 
interpretation of covalent and ionic structures. Hybrid atomic orbitals (HAO), 
which are purely localized, provide a clear understanding of the nature of 
chemical bonding and are widely applied to VB studies of chemical reactions. But 
the VB function with HAOs is usually not as compact as that of OEOs, unless the 
breathing orbital valence bond (BOVB) [46] approach is applied. Bond-distorted 
orbital (BDO) sets are a balance between OEO and HAOs, where only bonding 
orbitals are allowed to mix. A wavefunction for a covalent structure using BDOs 
covers 3 localized VB structures: one being covalent, and the other two being 
ionic. Therefore, it provides a very clear and compact VB wavefunction for 
diabatic curve in a valence bond state correlation diagram (VBSCD) [47]. In the 
Xiamen-99 package, VB orbitals may be defined and optimized flexibly. One can 
take OEOs, HAOs, or BDOs as VB orbitals, or any other forms for some special 
purposes in applications. 

The orbital optimization method adopted in the package is based on the 
Davidon-Fletcher-Powell (DFP) family of variable metric methods [48]. In these 
methods, only the energy and its gradient vector are required, with information 
from successive line minimizations being accumulated and used to build up an 
approximate Hessian matrix. It is necessary but time consuming to perform the 
line minimization needed in most multidimensional optimization methods. A 
simple algorithm is implemented in the package, in which only one evaluation of 
energy and gradient vector is required in each iteration (except on rare occasions - 
which are tested for and corrected). In addition to the use of the generalized 
Brillouin theorem to build approximate gradient vectors, a routine using a 
numerical difference algorithm is also available in the package to evaluate 
gradient vectors. Furthermore, Powell's steepest descent algorithm is also 
implemented, but our experience shows that it is inferior to other options. 

4.4 Capabilities of Xiamen-99 
Xiamen-99 is a "pure" ab initio valence bond program. One can use the 

package to do any types of VB calculations with any forms of VB orbitals. This 
means that VBSCF, BOVB, and VBCI calculations may be carried out with the 
package, and it is also feasible to combine the valence bond method with some 
advanced molecular orbital methods, like VB-DFT [49]. 
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Coefficients and weights of VB structures are given in the output file, and 
optimized orbitals and charge population analysis are also available from the 
output file. 

5. APPLICATIONS 

5.1 Resonance 

5.1.1 Synopsis 
Resonance was introduced when it was found that there are many molecules 

whose properties cannot be accounted for by means of a single electronic 
structure of the VB type, but rather by a combination of several structures [ 1 ]. 
Although there is an element of arbitrariness in the resonance theory, in the sense 
of choosing VB structures, Wheland [50] systemized the basic principles to select 
the important resonance structures as well as to estimate their relative 
contribution to the ground state of a molecule. In fact, the qualitative resonance 
theory enjoyed such a great success due to its convenience and usefulness that 
resonance has become one of the most fundamental concepts in chemical theory. 

With the advent of the computer era, it is now possible to reexamine and 
rethink the resonance theory at the ab initio level. For example, throughout 
Pauling and Wheland's books, benzene is supposed to be a hybrid of two Kekul6 
structures, by noting that Dewar and other ionic structures make little contribution 
to the resonance in benzene. However, classical ab initio VB calculations with all 
possible 175 resonance structures by Norbeck et al. [51] and Tantardini et al. [3], 
where strictly atomic orbitals are used to construct VB functions, manifested that 
the five covalent Kekul6 and Dewar structures make even less contribution to the 
ground state of benzene than the other 170 ionic structures. This prompts us to 
reconsider the mathematical formulations for resonance structures [52]. 

From the viewpoint of classical VB, a bond between two atomic orbitals )~A 
and )~A centered on atoms A and B, respectively, can be expressed as a 
combination of a covalent structure and two ionic structures 

~PA8 = Cl~(A  : B ) + C z ~ ( A + B - ) + C 3 ~ ( A - B + ) ,  (61) 

where 

(I)(A " B)  = Nle[~ ] (XAXB), 

O(A + B-) = N 1 ..t21 (ZsZs) e:ll 

(62) 

(63) 
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r~(A-B + ) = N, eI~](XAZA) . (64) 

In the case of A = B, it was previously presumed that the two ionic structures 
are unimportant, but ab initio calculations verified the necessity to include the two 
ionic structures to describe accurately the A-B bond dissociation energy profile. 

Bearing in the mind that a real bond should be described by three classical VB 
structures, we return to the case of benzene. Across the whole history of 
resonance theory, Kekuld structure has been treated as the hypothetical 
1,3,5-cyclohexatiene whose double bonds are comparable to ethylene. However, 
it is clear from the previous paragraph that the n bond in ethylene should be 
expressed as a sum of three classical VB structures. Furthemore, there are three rt 
bonds in a Kekuld structure. Consequently, from the mathematical point of view, 
the wave function for a Kekuld structure should be expanded by 33=27 classical 
VB structures as follows: 

+ + 

0 : 0  :O+ :0+ :0 :0 :  :0: 
_ _ + - + 

(1) (6) (3) (6) (3) (2) (6) 

where the number in parentheses indicates the equivalent structures. In other 
words, there is no one-to-one correspondence between resonance structures and 
classical VB structures. This clarification is important since otherwise we can 
derive very different resonance energies with difference interpretations of the 
resonance theory. 

The only notable difference between classical ab initio VB  and modem ab 

initio VB lies in the one-electron orbitals. As we already mentioned, in the 
classical ab initio VB  method, all one-electron orbitals are strictly atomic orbitals. 
In contrast, in modem ab initio VB methods, one-electron orbitals are not 
restricted to atomic orbitals anymore and are allowed to extend over the whole 
molecule in the form of OEOs 

Z'/~ - Zz + ~ 2z~Xv. (65) 
v~:/.t 

The significant advantage of this type of MO-like orbitals is that most of the 
correlation energy can be recovered with only a small number of VB structures. 
For example, for benzene, use ofjust the five covalent structures can recover 93% 
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of the correlation energy [53]. However, due to the delocalized nature of OEO's, 
they are not suitable for the construction of an individual resonance structure, e.g., 
when the resonance energies are to be evaluated. In that case, we proposed a type 
of localized orbitals called bond-distorted orbitals (BDOs) as[54] 

X'~, = Zu +/~u~Z~, (66) 

where A/~v=0 if there is no bond between Z~ and Zv. By adopting BDO's as 
one-electron orbitals, we are able to achieve almost the same energy as a VB-CI 
calculation with the 27 classical VB structure as shown above with only one VB 
structure. 

5.1.2 Benzene vs. cyclobutadiene 
Benzene and cyclobutadiene are the well-known examples for aromaticity 

and antiaromaticity, which have been the subject of extensive studies [55, 56]. 
While many criteria based on geometry, magnetism or energy have been proposed 
to discern the aromaticity/antiaromaticity, all of the energetic criteria are based on 
the design of model homodesmic and isodesmic reactions, where both the steric 
effect and the hyperconjugation effect are inevitably involved and cannot be 
distinctly screened from the reaction enthalpies. A more suitable refmement is to 
determine the aromaticity or antiaromaticity by the difference of the resonance 
energies, which are based on the Pauling-Wheland definition, between a cyclic 
conjugated compound and its corresponding linear polyene. Here we show the 
calculated results of resonance energies, which by definition are always positive, 
in benzene and cyclobutadiene. 

In the framework of ab initio classical VB method, totally there are 175 and 
20 VB structures for benzene and cyclobutadiene, respectively. On the other hand, 
for the hypothetically localized 1,3,5-cyclohexatriene and 1,3-cyclobutadiene, 27 
and 9 classical VB structures are needed to run the VB-CI calculations. For all 
calculations, a STO-6G basis set is employed. 

At first we define two types of resonance energies, namely vertical resonance 
energy (VRE) and theoretical resonance energy (TRE). The former is the energy 
difference between the optimal delocalized molecule such as benzene and the 
localized reference molecule such as 1,3,5-cyclohexatriene whose geometries are 
kept the same. The latter is the energy difference between the delocalized 
molecule and the optimal localized reference molecule, whose geometries are not 
kept the same. Fig.1 shows the relationship between VRE and TRE. The 
computed results are listed in Table 1. 
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Table 1 
Optimized bond lengths and (Rcc) resonance energies (RE) in benzene and cyclobutadiene 

Rcc (A) Number of RE 
Short Long VB structures (kcal/mol) 

Benzene 1.404 1.404 175 
Rigid 1,3,5-cyclohexatriene 1.404 1.404 27 
Stable 1,3,5-cyclohexatriene 1.343 1.521 27 

-74.3 
-44.5 

Cyclobutadiene 1.369 1.538 20 
Rigid 1,3-cyclobutadiene 1.369 1.538 9 
Stable 1,3-cyclobutadiene 1.355 1.555 9 

-3.7 
-3.2 

benzene 

I ~ ~ ~  compression,.._ [ i / ~  

energy 

rigid 1,3,5-cyclohexatriene stable 1,3,5-cyclohexatriene 

Fig. 1 Definitions of vertical resonance energy (VRE) and theoretical resonance energy (TRE) 

The optimal bond lengths in the delocalized forms of benzene and 
cyclobutadiene are in good agreement with experimental or high-level 
computational data. However, the optimal bond lengths in the localized forms are 
nevertheless experimentally unavailable, and thus of particular interest. In 
1,3,5-cyclohexatriene, the double bond length is 1.343 ./~, almost identical to that 
of ethylene at the same full n-CI level. The single Csp2-Csp 2 bond length, 1.521 
A, is somewhat shorter than the Csp3-Csp 3 bond length in ethane [54]. Compared 
with 1,3,5-cyclohexatriene, both double and single bond lengths in 
1,3-cyclobutadiene are longer, indicating the ring strain in the rectangular 
cyclobutadiene. 

Experimentally, the estimation of resonance energy is based on the heat of 
hydrogenation or combustion, and the value for benzene is -36 kcal/mol, which is 
comparable to the TRE of-44.5 kcal/mol. The small discrepancy between the 
experimental resonance energy and TRE is due mainly to the hyperconjugation 
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effect in the reference system, cyclohexene [57]. 

5.1.3 R e s o n a n c e  effect in formamide  

An understanding of the internal rotation about the amide bond is important 
because of its relevance to protein structure. Formamide is the simplest amide. 
The coplanarity and the remarkable rotational barrier about the C-N bond in 
formamide can be rationalized by resonance between the n electrons of the 
carbonyl group and the lone pair of the nitrogen atom [ 1, 50]. According to VB 
theory, the n electronic structure of formamide may be described by six resonance 
structures. 

m 

O O O 
\\ ../ \+ ../ \ +/ 

C ~ N  C ~ N  C N 
/ \ / \ / \ 

1 2 3 

0 +. 0 § 0- 
\ - - - . . . . /  \_ ../ \_ 

C ~ N  C ~ N  C ~ N  
/ \ / \ / \ 

4 5 6 

Contribution from resonance structure 3, which contains a formal double 
bond between carbon and nitrogen, is considered to be primarily responsible for 
the coplanarity and the high rotational barrier about the amide bond [58]. The 
introduction of resonance structure 3 also implies that there is significant 
charge-delocalization from the nitrogen lone pair to the carbonyl oxygen. 

However, the validity of the VB resonance model for formamide has been 
challenged on the basis of various population analyses. Wiberg et al. [59] found 
that the population on the carbonyl oxygen, which was calculated via integration 
of charge density difference maps, was essentially unchanged as a function of the 
torsional angle about the amide bond, and that the charge variation mainly occurs 
on the amide nitrogen and the carbonyl carbon. The oxygen is essentially a 
spectator during the rotation. It was further suggested that the VB resonance 
theory was not valid for formamide [60]. In contrast, Fogarasi and Szalay [61 ] 
analyzed geometric changes, charge shifts from Mulliken population analysis and 
NMR data as a function of rotation, and suggested that there is compelling 
evidence to support the simple amide resonance model, which was also confirmed 
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by the natural atomic orbital population analysis [62]. Lauvergnat and Hiberty 
[63] usefully probed the validity of the resonance model in formamide and 
thioformamide using the ab initio VB method, which allows one to turn on or off 
the electronic delocalization in these two molecules. The electronic 
delocalization energies are measured by comparing the fully delocalized 
(adiabatic) ground state and the localized, diabatic state, in which the nitrogen 
lone pair is constrained to remain strictly localized. 

Here we revisit the VB resonance model in formamide by taking all six 
resonance structures into account. Such a study allows us to compare the 
individual contributions from resonance structures 1-6 to the resonance effect in 
formamide. For comparison, the isoelectronic systems vinylamine and 
formamidine are also investigated to gain insights into the trends of resonance 
stabilization. A 6-31G(d) basis set is employed in the calculations, and the 
orbitals in the VB functions are self-consistently determined for each resonance 
structure, but restricted to be atomic orbitals. The structural weights of the six 
resonance structures are listed in Table 2. 

To derive the VRE's in these three conjugated systems, calculations with the 
three resonance structures 1, 2 and 5 are also performed and the results are 
presented in Table 2. 

It is clear that the covalent structure 1 makes the largest contribution to the 
ground state of the planar HCXNH2 (X=O, CH2 and NH) and its structural weight 
increases with the decreasing electronegativity of X or the polarization of the 
C=X bond. On the contrary, as the second most important resonance structure, 
the structural weight of 2 decreases in the order of X=O > NH > CH2. The 
resonance structure 3, which is essential to highlight the partial double bond 
between C and N, contributes only 13.1%, 9.8% and 7.0% to the ground states of 
formamide, formamidine and vinylamine, respectively. However, energetically 
the importance of the structure 3 cannot be overlooked. In fact, both resonance 
structures 3 and 4 are responsible for n electronic delocalization and the hindered 
rotational barrier in formamide. Our calculations are slightly different from the 
VB study on formamide by Felgg and Harcourt [64] using the minimal basis set, 
where the structural weights of 2 and 3 are underestimated (about 0.180 and 0.051, 
respectively) and the latter is even lower than that of structure 4 (0.074). However, 
the overall conclusions derived from the present VBSCF calculations are similar 
to those of Felgg and Harcourt, namely structures 1-4 should all be used to 
describe formamide. It is interesting to point out that numerous studies reported 
in the literature included only structures 1 and 3 to describe the resonance in 
formamide. Pauling[ 1 ] estimated that these two resonance structures contribute 
60% and 40%, respectively, to the ground state of formamide, whereas 
Glendening et al. [62] found that the structural weights of 1 and 3 are 65.4% and 
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Table 2 
Individual structural weights, total energies and VRE's from the VBSCF calculations with the 
6-31G(d) basis set 

Resonance 
structure 

x=o  X--NH X=CH 2 
6VBSCF 3VBSCF 6VBSCF 3VBSCF 6VBSCF 3VBSCF 

X 

/C--Nx 1 0 . 4 6 0 8  0 . 6 0 0 7  0 . 5 4 4 8  0 . 6 7 7 5  0.6106 0.7250 

X- 
\+  ../ 

C--  N 2 0 . 3 1 8 0  0 . 3 6 6 3  0 . 2 4 6 3  0 . 2 6 7 7  0.1902 0.1962 / \ 
x- 
\ + /  

C~---N 3 0.1313 0.0976 0.0696 \ 
xr 
\"_-.. / 

C--N 4 0.0649 0.0698 0.0689 
\ 

x + 
\ _  ../ 

C--  N 5 0.0234 0.0330 0 . 0 4 0 6  0 . 0 5 4 8  0.0607 0.0788 / \ 
x-  
\ _  2+/ 

000 6 0 0.0000 
/ \ 

Total energy (a.u.)-168.95863 -168.91937 -149.10165 -149.06855 -133.08376 -133.05673 

VRE (kcal/mol) -24.6 -20.8 -17.0 

28.5%, respectively. The difference between the latter results and our present ab 
initio VB calculations is due to the definition of the one-electron orbitals used to 
construct the VB wave function. If the one-electron orbitals are not strictly 
atomic orbitals, the basis set polarization contribution can lead to the mixing of 
various classical VB structures. Thus, the "localized" structures of  the forms 1 
and 3 in modern VB can actually be expanded into the classical VB  structures 1, 2, 
5 and 3, 2, 6, respectively. 

Energetically, the resonance effect in the three systems decreases in the order 
of formamide > formamidine > vinylamine, which is consistent with the rule of 
atomic electronegativity. It is worthwhile to note that Wheland [50] estimated the 
resonance energy of formamide based on the heats of combustion and gave a 
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value of 22 kcal/mol, which is very close to our data. The significant resonance 
stabilization energy in formamide validates the applicability of the resonance 
model to formamide. 

5.2 SN2 reactions 
The SN2 reactions are good examples to highlight the different merits of VB 

and MO theories in quantum chemistry [65]. In the VB method, the atomic 
features are preserved and the focus is the two-electron-two-center bonds, and 
each molecule is formed with bonds (plus the lone and core pairs). Whereas one 
resonance structure is not enough to describe a molecule, multi-resonance 
structures are adopted. In fact, the resonance theory can also be applied to 
illustrate the reactions in an intuitive way. For example, for the 
chloride-exchange reaction 

CI + CH3C1 "-) C1CH3 + CI 

normally three resonance structures are used to describe the whole reaction 
potential energy profile, 

CI CH3-C1 C1-CH3 CI CI CH3 + CI 
a b c 

where a is the reactant structure and there is no chemical interaction between the 
left hand chloride anion and the carbon atom, and b is the product structure where 
no bond exists between the hand fight chloride anion and the carbon atom. The 
last resonance structure c, whose energy is the highest in the gas phase, may play 
an important role in solutions due to its high ionicity. A useful qualitative 
description of the SN2 reactions has been presented by Shaik and Pross using their 
empirical VB configuration-mixing model [66], which shows qualitatively how 
various substituents in different solvents may affect the reaction barrier [22]. 
Warshel and his coworkers [25] proposed an empirical VB (EVB) approach, 
which uses experimental information to evaluate the energies of the VB 
resonance structures and then calculate the environment-dependent stabilization 
of the ionic structures in the enzyme and in solutions. 

Here we employed modem ab initio VB method to study several typical SN2 
reactions including chloride, fluoride and hydrid exchanges with the three 
resonance structures a, b and c, whose VB wave functions are expressed as 

.. ,- [ 2  2 ] 

':I:'a -- ~V,,e11 (ZctlZcllZcZc12), (67) 
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~b = Nbe~(Zct~ZcZ'c Zc~2), 

CI) c M e [22] =-'c ~ (ZctlZcY'ct2Zct2), 

(68) 

(69) 

where we omit the remaining electrons and orbitals which do not take part in the 
reaction explicitly. However, in our present code all orbitals are optimized 
simultaneously. The whole reaction path is explored along the reaction 
coordinate (x n) that is the difference between the CX1 and CX2 bond lengths. To 
get the accurate adiabatic energy profile, we performed VBSCF with two 
resonance structures a and b with the breathing orbitals (BOs) (2BOVB in short). 
The reason not to include the resonance structure c is due to the delocalized nature 
of BOs, since BOs are expanded in the whole system. Consequently, the 
resonance structure c has already implicitly been taken into account. For a 
diabatic state, nevertheless, only 1VBSCF is performed and the orbitals are 
strictly localized. At each point, the geometry of the whole supermolecular 
system is optimized at the HF level. Then a BOVB calculation is performed to get 
the reaction energy profile, and 1VBSCF calculations are rtm to derive individual 
energy curves of O~, ~b and ~ ,  respectively. In all calculations, the 6-31G(d) 
basis set is adopted. 

Fig.2 shows the state correlation digrams for the three identity SN2 reactions, 
and the major numerical results derived from Fig.2 are reported in Table 3. In 
both Fig.2 and Table 3, AE r denotes the reaction barrier, B represents the coupling 
between two covalent resonance structures a and b, and Tmeasures the magnitude 
of the participation of the ionic resonance structure c. 

It is of interest to note that the chloride exchange reaction has the lowest 
coupling term B, although it has a similar reaction barrier from the stable ion 
complex to the transition state as the fluoride exchange reaction. While for both 
chloride and hydride reactions, their ionic structure c has a minimum energy at the 
transition state, the ionic structure for the fluoride exchange reaction has two 
minimum at x n = +0.86/~, due to the strong electrostatic interaction resulting from 
the small ionic radii of fluoride anion. 

Table 3 
VBSCF computation results for the X- + CH3X--)XCH3+X reactions (kcal/mol) 

X AE r B T 
C1 17.8 21.0 29.6 
F 19.3 33.2 45.7 
H 52.6 33.2 72.5 
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Fig. 2. State correlation diagrams for the X- + CH3X "-) XCH3 + X- SN2 reactions based on ab 

initio VBSCF computations: (1) X - C1; (2) X = F; (3) X = H 

5.3 The visual VB rule for chemical  reactions 
A chemical reaction always involves bond-breaking/making processes or 

valence electron rearrangements, which can be characterized by the variation of 
VB structures. According to the resonance theory [1, 50], the evolution of a 
system in the elementary reaction process can be interpreted through the 
resonance among the correlated VB structures corresponding to reactant, product 
and some intermediate states. Because only symmetry-adapted VB structures can 
effectively resonate, all VB structures involved in the description of a reaction 
will thus retain the symmetry shared by both reactant and product states in the 
elementary process. Therefore, we postulate that the VB structures of the reactant 
and the product states for concerted reactions should preserve 
symmetry-adaptation, called the VB structure symmetry-adaptation (VBSSA) 
rule. 

In fact, chemical reactions are generally very localized, and most parts of the 
reactants and products are therefore conserved. This feature lingers in VB 
structures, e.g., only partial VB structural segments are directly involved in the 
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reaction. The valence electrons forming these segments, as the electrons in the 
frontier orbitals of Fukui [67], would be the most important and essentially 
dominate the reaction pathway. As a consequence, the VB structure 
symmetry-adaptation analysis should be concentrated on these VB structural 
segments. Considering the possibility of energy partitioning and the geometrical 
conformation constraint, we can divide a resonance structure into certain sub-VB 
structures. For different sub-VB structures, the symmetry analysis of the VB 
structures can be independently carried out, i.e. interactions among different 
sub-VB structures could be ignored. For example, we could presume no 
resonance interaction between the ~ electrons and r~ electrons in a C=C double 
bond in the fixed nucleus approximation, and these four bonding electrons can be 
divided into two sub-VB structures corresponding to one ~ bond and one r~ bond, 
respectively. 

5.3.1 Symmetrization of the VB wavefunction 
In VB theory, all electrons are assigned to localized two-centered bonds, lone 

pairs and unpaired components. Each collective pattern of such components 
constitutes a VB structure. The corresponding VB structure function can be 
expressed as ~r ,  namely, a bonded tableau (BT) state as mentioned before. The 
wavefunction for the whole system is defined as the superposition of all possible 
VB structure functions 

q~v8 = ~--'~ CKOK. (70) 
K 

Usually, an individual VB structure assembled from the localized bonding 
components does not share the point group symmetry of the molecule anymore. 
However, the overall VB wavefunction, WVB, should retain the same symmetry 
properties as the MO wavefunction (in the sense of full CI, they are in fact 
identical). Therefore, WvB can be classified by an irreducible representation 
associated with a given point group. In order to sort {WvB} by symmetry, a project 
operator can be introduced as follows: 

Pi - n-L ~-'~z~(R)R, (71) 
g i 

where R is the symmetry operation, z i (R)  is the character of the point group, g is 
the order of the point group,/'/i is the dimension of the irreducible representation 
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F~. Combining the symmetry properties of the bonded tableau [68] and applying 
the projection operation P~ to a bonded tableau (or a VB basis function) 
corresponding to a VB structure, we can construct the symmetry-adapted BT 
function (SABTF) and the synmaetrized VB-type wavefunction. 

5.3.2 A p p l i c a t i o n  o f  the V B S S A  rule  

We now consider the isomerization of Dewar benzene into benzene: 

1 1 x 

6 ~ 2  ~ 6 ~  2 

5 3 5 3 y C2 v 

In the above reaction, the product benzene is of D6h symmetry, but only C2V 
symmetry elements are common for both Dewar benzene and benzene. We can 
perform therefore the symmetry analysis of the VB structures within the Czv point 
group framework. There are 6 essential valence electrons involved in the reaction, 
numbered from 1 to 6. These six valence electrons form three localized bonds 

6 delocalized bond in (two rt bonds and one ~y bonds) in Dewar benzene, and a 176 
benzene, which can be described by five independent BTs within the OEO 
formalism (see Eq.(65)). Their corresponding BTs are 

Dewar benzene 1141,1231,1561 

Benzene 
1 

:(): 
4 

() O G 
1351 ~21 I~ 1 ~61 I~ 1 ~411541  ~61 I~ 13421 

Applying the projection operators associated with C2v point group on these BTs 
results in Dewar benzene 

Ax: 11 4 I, 12 31 + 15 61 B2:12 3 I -  15 61 
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Benzene 

11352461 I1~ 6~1 I1~ 4~11154 6231 I1~ 2~1 AI" + , , + 

1 1:61 

A2:15412361--1~1 ~21 

Obviously, the conversion from Dewar benzene to benzene is forbidden by the 
VBSSA rule because no A2 symmetrized VB structure segment in the reactant 
Dewar benzene can match the A2 symmetrized VB structure segment of benzene. 
More examples, including generally allowed and forbidden chemical process, can 
be found in our previous study[69]. 

The VBSSA rule can be used to select relevant VB structures and construct the 
semiquantitative and quantitative curve-crossing VB diagram. Combining the 
MO method and VB calculations, we investigated atom exchange reactions: H + 
HLi ~ H2 + Li and H + LiH---~HLi + H, and discussed the effect of energy 
differences between the VB structures on the activation energy and properties of 
the transition state [70]. 

5.4 Excited states 
In the MO formalism it is quite straightforward to deal with the excited states 

of a molecule. An adequate wavefunction of an excited state can be constructed 
according to the resultant configuration and its symmetry arising from electron 
promotion among MO series. Compared with numerous MO-based methods, VB 
approaches are far less employed to study excited states due to the difficulty in 
VB computations. Recently, by observing the correlation between MO theory and 
resonance theory, as well as the symmetry-adapted VB wavefunction described in 
the last section, we performed VB calculations on low-lying states of some 
molecules [71, 72]. 
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5.4.1 V-B-type wavefunctions of excited states 
For simplicity, the o-rt separation is imposed in the VB calculations for the 

ground and excited states since low-lying excitations only involve the n electrons 
in selected species O3, C3 and C3H5. After the ~-rc separation, the symmetry of 
both the ground electronic state and the n excited states only depends on n 
valence electronic structures because a doubly occupied ~ core within the MO 
formalism is always total symmetric, and does not affect the symmetry of 
electronic states. If the three p orbitals forming rt bonds in 0 3  are numbered as 

1 
r y  

the three possible VB structures and corresponding BTs for O3would be 

o ~  . o  o / o  /% /o~, 
- :0  O- .0 0:- - :0  0:- 

i1  101 1 2  103 
Applying projection operators PA,, PA~, Pc, and Pel to the above BTs 01, 0z and 

03, respectively, we obtain 

1 111  li 1 -'31 I1: PAx = -~Zfl(AI (R)R4)I = ~(1 + 1 3 + 1 
R 2 

1 1 1 1 1 3 1 i-I  1 1+!3  31-1  

- 1  - 1  

+11_, 3 2 !) 
(72) 
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P~r = P~,r - / ' ~ 3  - P ~ r  - P~O3 - 0 ,  

1 

1 PA~Ol =PA2O2 =-~(Ol - q)2), 

(73) 

(74) 

(75) 

(76) 

Similarly, the SABTFs for 03 and 03 + are 

03 

S = 0  ~,.11~ 1~ I, 1,11~ 1~1+1; (77) 

S = I  
1 1 

A,. z (  + ), B~: z (  - ), 
Z 

(78) 

03 + 

1[1 
S=1/2  A2" 2(3  ~I-IL 31, ~,~,]~ ~l+rL 31)or I~ 3] (79) 

For the case of linear C3 , the symmetries of the ground and n excited states 
are determined by five n valence electrons in the sixp orbitals numbered from 1 to 
6 as 

2 1 3 x t 

/y 
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Here the p orbitals are OEOs, and they have the same symmetry as the localized 
one-center p orbitals. Thus, the chemical bond generated byp orbitals 1 and 2 can 
be described by one covalent structure 1121; the ionic structures l111 and 1221 can be 
ignored. The five rc valence electrons and sixp orbitals can form 4 BTs as follows 

i1 :lo  I: 1 :lo  I: 13, I: 1 ',10, 
For the D~oh point group, we can use the projection operators from the 

subgroup D4h. Applying the project operators PEg and PEu to the above 4 primary 
BTs, we obtain 

eEgO1 "- 2 ~R J'~Eg (R)RO1 "-1(01--03) (80) 

1 1 1 
PEg02 =~(02--04), PEuOI--~(O1 +03), PEu02 =~-(02 +04). (81) 

Other projection operators on the primary BTs from (~1 to ~4 result in a null 
outcome, suggesting that these BTs have no contribution to other irreducible 

representations in the subgroup D4h. In fact, the SABTFs �89 (01- 03) and �89 (r ~4) 
are equivalent, so are �89 (~1 + r and �89 (02 + ~4), and they account for the states 2Eg 
and 2Eu, respectively, i.e. 2Hg and 2Flu corresponding to the D=h point group. 

5.4.2 rc-electron excitation energies 
The excitation energies of the transitions 2B! ---> 2A 2 for O3, 2A2 ---> 2B1 for 

C3H5 and 2Hg --> 2Hu for C3- were calculated by different methods. A comparison 
of calculated results with available experimental data is presented in Table 4. In 
these calculations, optimized geometries of the ground and n electronically 
excited states are located by the restricted open-shell Hartree-Fock (ROHF) 
energy-gradiem method in GAMESS [73]. In subsequent VB calculations only 
the rc electrons are involved, and the ~ electron contribution to the total energy 
was considered within the ROHF formalism. 
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Table 4 
x electron excitation energies 
species/method transition Ie (eV) basis set 
O3" X2B1 --) 12A2 
ROHF 
VB(3, 2)" 
VB(15,10) 
CASSCF b 
Expt? 
C3" X21-Ig ---) 12IIu 
ROHF 
VB(2, 2) 
MCSCF d 

C3H5 xEA2 ---) 12B1 
ROHF 
VB(2, 2) 
CI e 
Expt. f 

2.71 6-311 +G 
2.71 6-311+G 
2.15 6-311+G 
2.13 11 s7p2d/7s4p2d 
2.03 

5.16 6-31G 
3.69 6-31G 
4.18 6-31G 

4.86 6-31G 
3.28 6-31G 
3.13 DZ+P 
3.07 

a Numbers in parentheses are the numbers of bonded tableaus used in the VB calculations for 
the ground and excited states, respectively. 
b reference [75] 
c reference [76] 
d The MCSCF wavefunction is generated by the CISD method, and the active space is 

composed of 17 lower MOs in energy exclusive of three core orbitals. 
e reference [77] 
f reference [78] 

For 03", there are five x electrons in three p orbitals, and there is no typical 
2-electron 2-center bond. Primary VB and ROHF calculations predict the same 
transition energy of 2.71 eV, which is larger than the experimental value of 2.03eV. 
When the VB wavefunction is expanded with additional bonded tableaus formed 
by the split valence orbitals along with the inclusion of single excitations of x 
electrons from 2p to diffuse p basis functions, a reasonable excitation energy of 
2.15 eW is obtained. For C3H5, VB calculation gives a better excitation energy of 
3.28 eV compared with 4.86 eV from ROHF calculations. VB calculations of x 
electrons in C3ca n recover partial correlation energies, and obtain lower total 
energies, especially for the excited state 12I-lu in comparison with the ROHF 
calculation. 

Alternatively, the correspondence between MO theory and resonance theory 
in the description of electronic structures can be used to construct VB 
wavefunctions for the low-lying states of diatomic molecules. Test calculations 
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on transition energies of excited states in B2 [74] and in LiB [72] molecules have 
been performed, and comparisons of VB calculations with other post-SCF 
calculations and available experiments show that these approaches are promising 
for the VB study of excited states. 

5.4.3 Bonding features of the ground and 7c excited states of $3 

$3 is the simplest poly-sulfur cluster, whose valence electronic structure is 
similar to 03 and SO2, and four 3p valence electrons contribute to rc bonding. The 
visual picture of bonding for $3 can help us understand the chemistry of 
polysulfides. In order to ensure an unambiguous def'mition of a covalent or an 
ionic description of the bonding, the active orbitals forming n bonds are restricted 
to an expansion in a set of symmetry-adapted primitive functions from one atom. 
The o-n separation was used to reduce computational cost, and six fully occupied 
2p orbitals after the c-n separation were frozen in the VB calculation. Possible 
singlet and triplet VB structures and corresponding BTs for $3 in singlet and 
triplet states are as follows (with the same orbital numberings as for 03  shown 
before): 

S = O  

+ + 

.s/k,,s. /%s. _:s/%s 
I II III 

!~~ 131o~ 1~3 ~1~ I1~ 3~1~ 

/%s~ ~/%s / ~  
IV V VI 

I1~ 1~104 b13 1310~ I~ :106 
S = I  
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1 

~1' 

i . 

ll' III' 

03'. 

Table 5 lists the computed results for the ground and first r~ singlet and triplet 
excited states with the 6-31G basis set. The weights in Table 5 demonstrate the 
significant differences in chemical bonding amongst the ground and ~ excited 
states. E.g., in the ground state, the VB structure I (biradical in singlet) has a large 
weight of 54.30%, and the dipolar structures II and III have also a significant 
contribution of 41.16%. This bonding feature implies that $3 in the ground state is 
active for radical, nucleophilic and electrophilic processes. The dipolar structures 
II and III are predominant for the excited state 1 ~B2. The structure I' (biradical in 
triplet) has a weight of  90%, and dominates the excited state 13B 2. 

Table 5 
Optimized geometries and bonding features of $3 
State VB structure coefficient weight geometry" 
X I A1 ~ 0.6673 0.5430 

r -0.3724 0.2058 r = 2.052 
~3 -0.3724 0.2058 0 = 115.1 

-0.0526 0.0089 
-0.0528 0.0089 

06 -0.0865 0.0275 
liB2 ~ 0.6951 0.4874 

~3 -0.6951 0.4874 r = 2.267 
0.0647 0.0126 0 = 97.9 
-0.0647 0.0126 

13B2 ~' 0.9240 0.9000 r = 2.186 
~ '  -0.1625 0.0500 0 = 106.0 

03' 0.1625 0.0500 
a Bond lengths in Angstrom, angles in degree. 
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6. SUMMARY 

With the persistent efforts for one and half decades, we have developed a 
state-of-the-art ab initio VB code, Xiamen-99, which is based on our proposed 
paired-permanent algorithm. This algorithm makes use of the symmetries in the 
spin-free VB wavefucntions in an attempt to ease the N! problem which has 
hampered the development of ab initio methods for a long time. The applications 
of the ab initio VB method by our group and other groups have already generated 
numerous interesting and fruitful findings, and more studies by the means of ab 
initio VB calculations are highly expected. Computational results have 
demonstrated the different merits of the VB method and MO method, and confirm 
the necessity to pursue ab initio VB approaches, separately from MO-based 
approaches. While continuous efforts to expand the applicability of ab initio VB 
methods are guaranteed, we also anticipate the combination of the VB method 
with high level MO methods, in an attempt to derive accurate results with 
reasonable computational resources. 
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Chapter 7 

B O V B -  A valence bond method incorporating static and 
dynamic correlation effects 
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The BOVB method is aimed at combining the qualities of interpretability and 
compactness of valence bond wave functions with a quantitative accuracy of the 
energetics. The fundamental feature of the method is the freedom of the orbitals 
to be different for each VB structure during the optimization process. In this 
manner, the orbitals respond to the instantaneous field of the individual VB 
structure rather than to an average field of all the structures. As such, the BOVB 
method accounts for the differential dynamic correlation that is associated with 
elementary processes like bond forming/breaking, while leaving the wave function 
compact. The use of strictly localized orbitals ensures a maximum corres- 
pondence between the wave function and the concept of Lewis structure, and 
makes the method suitable for calculation of diabatic states. 

1. INTRODUCTION 

Despite the quantitative victory of molecular orbital (MO) theory, much of 
our qualitative understanding of electronic structure is still couched in terms of 
local bonds and lone pairs, that are key conceptual elements of the valence bond 
(VB) picture. VB theory is essentially the quantum chemical formulation of the 
Lewis concept of the chemical bond [1,2]. Thus, a chemical bond involves 
spin-pairing of electrons which occupy valence atomic orbitals or hybrids of 
adjacent atoms that are bonded in the Lewis structure. In this manner, each 
term of a VB wave function corresponds to a specific chemical structure, and 
the isomorphism of the theoretical elements with the chemical elements creates 
an intimate relationship between the abstract theory and the nature of the 
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chemical structure and its transformation. As such, VB theory and its simplest 
variant, resonance theory [3], have given rise to fundamental concepts such as 
hybridization, covalency, ionicity, hybrid nature of resonance structures, 
resonance stabilization, and so on. These concepts served chemists extremely 
well and enabled them to rationalize and predict reaction mechanisms or 
molecular properties by simply writing down VB structures on a back of an 
envelope. 

Alongside this conceptual aspect, VB theory offers the quantitative facility 
that enables us to study a variety of problems and thereby extract unique 
chemical insight that is not available by standard ab initio MO based 
computations. Such a wide ranging use of VB theory is the generation of 
diabatic states, which represent electronic structures that must remain as 
invariant as possible throughout a reaction coordinate. The so generated 
diabatic states apply to numerous problems, such as : (i) Chemical dynamics, in 
cases where the Born-Oppenheimer approximation breaks down; (ii) chemical 
reactivity, with the Shaik-Pross diagrams, in which a reaction barrier originates 
in the avoided crossing of two diabatic state curves, one representing the 
bonding scheme of the reactants and the other that of the products [4]; (iii) 
photochemistry, with the harpooning and charge transfer mechanisms [5]; (iv) 
fundamental principles of organic chemistry, e.g. the role of electronic 
delocalization as a stabilizing factor [6,7,8,9]; (v) solvation, with theoretical 
models treating the solvation effects separately on covalent and ionic 
components of a bond [ 10]. For such applications, it is not only important to be 
able to interpret the wave function in terms of chemical structural formulas 
(Lewis structures), but also to be able to estimate the energy of each of these 
individual Lewis structures and their variations along a reaction coordinate 
prior to their interaction to form the adiabatic states. Clearly, the usefulness of 
a quantitative VB method derives from the combination of quantitative rigor 
and conceptual lucidity. These desirable qualities typify the breathing orbital 
VB (BOVB) method that has been proposed recently [11-13], and is being 
reviewed here. 

2. ELECTRON CORRELATION IN VB THEORY 

The term "electron correlation energy" is usually defined as the difference 
between the exact nonrelativistic energy and the energy provided by the 
simplest MO wave function, the mono-determinantal Hartree-Fock wave 
function. This latter model is based on the "independent particle" 
approximation, according to which each electron moves in an average potential 
provided by the other electrons [14]. Within this definition, it is customary to 
distinguish between non dynamical and dynamical electron correlation. 
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2.1 Non dynamical electron correlation 

Non dynamical electron correlation is the part of the total correlation that is 
taken into account in a CASSCF calculation that correlates the valence electrons 
in valence orbitals. Physically, the non dynamical electron correlation is a 
Coulomb correlation that permits the electrons to avoid one another and reduce 
their mutual repulsion as much as possible with respect to a given zero order 
electronic structure defined by the Hartree-Fock wave function. In VB terms, 
the non dynamical correlation ensures a correct balance between the ionic and 
covalent components of the wave function for a given electronic system. The 
dynamical correlation is just what is still missing to get the exact nonrelativistic 
wave function. 

The essential part of non dynamical correlation energy for polyatomic 
molecules is the " left-right electron correlation ", which is concerned with the 
ionic-covalent balance within a given two-electron bond. Let us therefore 
discuss this type of correlation. 

2.1.1. Left-right electron correlation in the MO and VB theories 
Historically, the first calculation of the electronic structure of a neutral 

molecule was carried out by Heitler and London [ 15], who treated H2 using the 
valence bond (VB) method. In this early paper, the molecular wave function 
for H2 was considered to be purely covalent, and constructed from the atomic 
orbitals (AO's) Za and Zb of the separate atoms. Dropping the normalization 
constant hereafter, the wave function is given in equation 1. 

tlJHL = ~a(1)~b(2)  - Zb( 1 )Za(2)  (1) 

This simple wave function, so called the Heitler-London (HL) wave 
function, was able to account for about 66% of the bonding energy of H2, and 
performed a little better than the rival MO method that appeared almost at the 
same time. 

In the MO framework, The Hartree-Fock wave function tI~HF takes the form 
of an antisymmetrized orbital product, which in the case of H2 is the Slater 
determinant involving the spin-up and spin-down counterparts of the bonding 
orbital Cyg, as in eq 2: 

~IJHF - I O'g ~g  i" .O-g - Xa + Zb (2) 

The physical constitution of the Hartree-Fock wave function appears most 
clearly by expanding the MO determinant of eq 2 as a linear combination of 
determinants constructed from pure AO's, 'eq 3: 
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I O'g ~u I - I Za ~ 'bl+ IZb ~'a l+ IZa ~'a l+ I%b ~'b I (3) 

Here the first two determinants are the determinantal form of the Heitler- 
London function (eq 1), and represent a purely covalent interaction between the 
atoms. The remaining determinants represent zwitterionic structures, H-H + 
and H+H -, and contribute 50% to the wave function. The same constitution 
holds for any interatomic distance. This weight of the ionic structures is clearly 
too much at equilibrium distance, and becomes absurd at infinite separation 
where the ionic component is expected to drop to zero. Qualitatively, this can 
be corrected by including a second configuration where both electrons occupy 
the antibonding orbital, ~u, i.e. the doubly excited configuration. The more 
elaborate wave function ~PcI is shown in eq. 4, where C1 and C2 are 
coefficients of the two MO configurations: 

W c I -  C1 I O ' g ~ g l +  C 2 l o" u ~ u l  (4) 

O'g = Za + Xb ; O'u = X a -  2'b 

This is the essence of the configuration interaction (CI) method. When both the 
coefficients of the configurations and their orbitals are optimized 
simultaneously in flexible basis sets, the method is called multi-configuration 
SCF (MCSCF). The doubly excited configuration in eq. 4 also involves too a 
50:50 mixture of covalent and ionic components but with a negative sign 
between them. Consequently the combination of the two configurations deletes 
the excess ionic character of ~PHF, thereby leading to the wave function in eq 5. 
The corrected wave function displays a qualitatively correct behavior, with an 
optimal covalent/ionic ratio of typically 80:20 at equilibrium distance [16] all 
the way to 100"0 at infinite separation. 

-  (IXa I+ IXb I> + ,~a I+ IXb I> (5) 

The early VB point of view was based solely on the purely covalent HL 
wave function. In this wave function the electrons are never allowed to 
approach each other and therefore their electron repulsion is minimized and 
their Coulomb correlation is at maximum. Thus, while the Hartree-Fock model 
has no electron correlation, giving equal weight to covalent and ionic 
structures, the early VB models overestimated the correlation. The true 
situation is about half-way in-between. In the same way as the Hartree-Fock 
wave function is improved by CI, the purely covalent VB function can be 
improved by admixture of ionic structures as in eq 5, in which the coefficients 
~. and la would be directly optimized in the VB framework. Both improved 
models thus lead to wave functions that are strictly equivalent and physically 
correct, even though their initial expressions appear entirely different. This 
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statement can be generalized: Since both ab initio VB and ab initio MO 
theories exploit a subspace of the same configuration space, the VB and MO 
wave functions of a given electronic structure are mutually interconvertible and 
become equivalent when both theories are driven to their higher level of 
refinement. 

A severe inconvenience of describing each bond of a polyatomic molecule 
by one covalent and two ionic components is that the number of VB structures 
grows exponentially with the size of the molecule. Coulson and Fischer [17] 
proposed a very elegant way to incorporate left-right correlation into a single 
and formally covalent VB structure of the HL type. To this end they used 
deformed or rather slightly delocalized orbitals as exemplified in eq 6 for H2. 

~IJcF = ]q)l ~r]+]q)r ~l] 
q~l = Xa + EXb, rPr = Zb  + '~Xa 

(6) 

Here each orbital, q~/or q0r, is mainly localized on a single center but involves a 
small tail on the other center, so that the expansion of the Coulson-Fischer 
wave function ~ c v  (eq 7) in AO determinants is in fact equivalent to ~cI  in eq 
5, provided the coefficient e is properly optimized. 

~CF : (1 + E2)([Z~ ~b[+ [Zb ~'~l) + 2E(IZa X~I +tZb Xbl) (7) 

The Coulson-Fischer proposal gave rise to the "separated electron pair 
theory" which was initiated by Hurley, Lennard-Jones and Pople [18]. Its 
further development by Goddard [19], resulted in the "Generalized Valence 
Bond" (GVB) method. In the latter method, each bond in a polyatomic 
molecule is considered as a pair of non-orthogonal and spin-coupled orbitals, as 
in the HL wave function. The different GVB pairs can in turn be constrained to 
be mutually orthogonal, without much loss in numerical accuracy. Much as the 
Coulson-Fischer orbitals, each GVB orbital is centered on one atom with 
delocalization tails on the neighboring atoms. The resulting GVB wave function 
that formally displays purely covalent bonds implicitly contains ionic 
structures, necessary for a reasonable description of the bonds. The most 
popular version of GVB theory is the so-called "perfect pairing" 
approximation, which considers a single spin-coupling scheme in which spin 
pairing is restricted to the electrons and orbitals of the bonded atoms in the 
Lewis structure. For example, in methane, the perfectly paired GVB wave 
function couples the electrons of each sp 3 hybrid of carbon to the hydrogen that 
faces it. In fact, for this case of 8 electrons in 8 orbitals there are 14 possible 
spin coupling schemes in all rigor. As such, the perfectly paired GVB 
approximation constitutes a tremendous simplification of the wave function, 
often with no serious loss of accuracy. The closely related method is the Spin- 
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Coupled (SC) theory of Gerratt, Raimondi and Cooper [20]. This method 
removes any orthogonality restrictions and consider all possible spin-coupling 
schemes between the singly occupied orbitals. Note that the shape of the 
orbitals (e.g. sp3-1ike in the carbon atom of methane) and their degrees of 
delocalization are not a priori imposed, but naturally arise from the 
optimization of the orbitals for self-consistency. The lone pairs can be treated 
either as doubly occupied localized orbitals, or as pairs of strongly overlapping 
singly occupied orbitals. 

2.1.2 Remaining part of  non dynamical electron correlation 
The GVB and SC methods take care of the left-right correlation for each 

bond of a polyatomic molecule. However, these methods do not include the 
totality of the "non-dynamical" correlation since the various local ionic 
situations are not interconnected with these methods. For example, the two 
ionic situations 1 and 2 below are expected to have different weights, 2 being 
more important than 1, 

U~ H~ 
H ....... -+ H ........ + 
H ~ +  H- t ~  C- H + 

1 2 

but this feature is not taken into account in the wave functions of Coulson- 
Fisher type. To include all non dynamical electron correlation, one should 
abandon the Coulson-Fisher idea and go back to VB structures constructed with 
strictly atomic orbitals, without any delocalization tails, and generate all 
possible VB structures, allowing their coefficients and orbitals to be optimized 
simultaneously. 

Technically, the simultaneous optimization of orbitals and coefficients for a 
multistructure VB wave function can be done with the VBSCF method due to 
Balint-Kurti and van Lenthe [21,22]. The VBSCF method has the same format 
as the classical VB method with an important difference. While the classical VB 
method uses orbitals that are optimized for the separate atoms, the VBSCF 
method uses a variational optimization of the atomic orbitals in the molecular 
wave function. In this manner the atomic orbitals adapt themselves to the 
molecular environment with a resulting significant improvement in the total 
energy and other computed properties. 

2.2 Dynamical  electron correlation 
The importance of left-right correlation for the description of the bond is 

best appreciated in the case of the F2 molecule. Here the experimental bonding 
energy is 38 kcal/mol, while the Hartree-Fock bond energy is negative, -36 
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kcal/mol [23], i.e., the energy of the molecule is found higher than that of the 
separated fluorine atoms. The situation improves considerably at the GVB or 
CASSCF levels (see Tables 1 and 2 below) which are nearly equivalent for this 
molecule. Despite the improvement, the calculated bonding energy is still 
disappointingly small, reaching only half of the full CI estimation with the 
same basis set. Thus, while GVB (and CASSCF) calculations take care of the 
Coulomb correlation, they do not treat the dynamic correlation which is 
accounted for in the extensive CI calculation. The qualitative defect of the GVB 
or CASSCF wave function of F2 appears instantly once the wave function is 
expanded in terms of covalent and ionic VB structures with strictly localized 
AOs, in a manner similar to eq 7, and as pictorially represented in eq 8: 

(8) 

F . - - F  F -  F + F + F -  

In the GVB wave function the orbitals and coefficients of the covalent and 
ionic structures are optimized. However, the atomic orbitals are nearly identical 
for the covalent and ionic structures, i.e. the orbitals are adapted to the mean- 
field of the three structures. In fact, all the orbitals are optimized for an average 
neutral situation, which is about correct for the covalent structure but disfavors 
the ionic ones. However, common sense suggests that the molecular energy 
would be further lowered if the AO's were allowed to assume different sizes 
and shapes, depending on whether they belong to the neutral atoms in the 
covalent structure or to the ionic atoms in the ionic structures. This is dictated 
not only by common sense but also from the wave-like property of the electron. 
Thus, as a wave the electron wave function should exhibit an instantaneous 
response to the local fields of the VB structures rather than to their mean-field. 
One can therefore anticipate that the mean-field constraint of GVB 
underestimates the weight of the ionic structures, leading to a poor description 
of the bond. Relaxing this constraint during the orbital optimization should 
allow each VB structure to have its own specific set of orbitals, different from 
one structure to the other, and would improve the description of the bond 
without increasing the number of VB structures. In such a wave function, the 
orbitals can be viewed as instantaneously following the charge fluctuation by 
rearranging in size and shape. Such orbitals were dubbed "breathing orbitals" 
and the method itself was named the "breathing-orbital valence bond" (BOVB) 
method. Our working hypothesis is that the qualitative improvement brought by 
this breathing-orbital effect closely corresponds to the contribution of 
dynamical correlation to the formation of the bond. 
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3. THE BREATHING ORBITAL VALENCE BOND METHOD 

The idea of using different orbitals for different VB structures is not new, 
and has been successfully applied to molecules qualitatively represented as a 
pair of resonating degenerate Lewis structures, e.g., formyloxyl radical, 
carboxylate anions, etc. [24-26]. In this context, the non orthogonal CI of 
Jackels and Davidson for the formyloxyl radical [24], the RGVB method of 
Voter and Goddard [25], and the generalized multi structural wave function of 
Nascimento [26] should be mentioned. What we advocate here is just the 
systematic application of this principle to the description of the chemical bonds 
in reacting systems, with the aim of defining a VB method that possesses the 
following features: (i) Unambiguous interpretability of the wave function in 
terms of Lewis structures. (ii) Compacmess of the wave function. (iii) Ability 
to calculate diabatic as well as adiabatic states. (iv) Reasonable accuracy (say a 
few kcal/mol) of the calculated energetics. (v) Consistency of the accuracy at 
all points of the calculated surfaces. The latter two points require that the 
method is able to describe the elementary events of a reaction, i.e. bond- 
breaking Or bond-forming, in a faithful manner. Thus, a crucial test for the 
method will be its ability to reproduce dissociation curves, for two-electron as 
well as odd-electron bonds. 

3.1 General principles 
The general philosophy is that the representation of an electronic state in 

terms of Lewis structures is not just a model but rather an intimate picture of 
the true nature of the chemical interactions. The picture needs only a rigorous 
quantum mechanical formulation to become a quantitative computational 
method. The procedure that derives from this philosophy and underlies the 
BOVB method is straightforward. It consists of generating all the Lewis 
structures that are necessary to describe a reacting system in VB terms, and 
providing the corresponding VB structures with the best possible orbitals to 
minimize the energy of the final multi-structure state. This kind of "absolute" 
optimization of the orbitals is attained by getting rid of the above discussed 
mean-field constraint (e.g., of GVB, VBSCF, etc.), and allowing different 
orbitals for different VB structures. The method is thus grounded on the basic 
postulate that i f  all relevant Lewis structures o f  an electronic state are generated 
and i f  these are described in a balanced way by a wave function, then this wave 
function should accurately reproduce the energetics o f  this electronic state 
throughout a reaction coordinate. 

The requirement that all Lewis structures be generated requires in turn that 
both covalent and ionic components of the chemical bonds have to be 
considered. As the number of VB structures grows exponentially with the 
number of electrons, it is already apparent that the BOVB method will not be 
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applied to large systems of electrons, but rather to that small part of a 
molecular system that effectively "takes part" in a reaction, so called the "active 
subsystem". The rest of the electrons are considered as spectators and treated at 
the MO level. These MO's do undergo however optimization during the 
BOVB procedure. 

3.1.1. Choice o f  an active subsystem 
Consider a typical SN2 reaction as an example (eq 9). The reaction consists 

of the breaking of a C-F bond followed by the formation of a new C-C1 bond. 

C1- + CH3-F ~ [C1...CH3...F]- ---> C1-CH3 + F- (9) 

The four electrons and three orbitals involved in the C-F bond and in the 
attacking lone pair of C1-will constitute the heart of the reaction, and will form 
the "active" system. Three lone pairs of fluorine, three other lone pairs of 
chlorine and three C-H bonds of carbon will keep their status unchanged during 
the reaction and will form the "spectator" or "inactive" system. More generally, 
the active system will be composed of those orbitals and electrons that undergo 
bond-breaking or bond-forming in a reaction. While the inactive system will be 
treated at the simple MO level, i.e. the corresponding lone pairs or bonds will 
be described as localized doubly occupied MOs, the active system will on the 
contrary be subject to a detailed VB treatment involving the complete set of 
chemically relevant Lewis structures. 

In the above example, this would mean consideration of the full set of the 
six VB structures (3-8) that one can possibly construct for a system of four 
electrons in three orbitals. 

I I I I I I 
C1- C--oF C1,--C F- C1- C + F- C1- C- F + C1 + C- F- C1, C- F- 

/ \  / \  / \  / \  / \  / \  

3 4 5 6 7 8 

The active electrons are thus explicitly correlated, while the inactive electrons 
are not. One expects that the lack of correlation in the inactive subsystem will 
result in a constant error throughout the potential surface and therefore just 
uniformly shift the calculated energies relative to fully correlated surfaces. 
Note that in this model the inactive electrons are still affected by the progress 
of the reaction, since their orbitals rearrange and optimize at all points of the 
reaction coordinate. It is simply their mutual correlation that is considered as 
constant. 

The above definitions of active/inactive subsystems is of course not 
restricted to the study of reactions but can be generalized to all static systems 
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whose qualitative description can be made in terms of resonating Lewis 
structures, like conjugated molecules, mixed valence compounds, etc. 

3.1.2. VB formulation of the Lewis structures 
After the choice of the relevant Lewis structures has been made, the 

following step involves their quantum mechanical formulation. Each Lewis 
structure corresponds to a set of atomic orbitals which are singly or doubly 
occupied, as illustrated in 9-11 for the F2 molecule. 

9 10 11 

Each such Lewis structure is represented by a single VB spin-eigenfunction 
(~9-~11),  hereafter called a "VB structure". These VB structures are linear 
combinations of Slater determinants involving the same occupied AOs as the 
corresponding Lewis structures, as in eqs 10-12. 

-I'" i"'LnRnl+l'" i'"gn nl 
~IJl0 -I...q)i' ...LaLal 
~11 -[---(Di' ...RaRa[ 

(10) 

(11) 

(12) 

Here % qY and q~" represent the set of inactive orbitals for each VB structure, L 
and R are the active orbitals of the left and right fragments, respectively, and 
the subscripts n and a stand for neutral and anionic fragments, respectively 
(recall that the cationic fragments have only inactive orbitals and no active 
ones). Note that the inactive orbitals (Di, (Di' and (Pi" of tl~9-~Pl 1 a re  all different 
from each other, as are the active orbitals Ln, La, or Rn, Ra. These differences 
are pictorially represented in 9-11 by drawing orbitals with different sizes 
depending on the identity of the species as neutral, cationic or anionic. 

An important feature of the BOVB method is that the active orbitals are 
chosen to be strictly localized on a single atom or fragment, without any 
delocalization tails. If this were not the case, a so-called "covalent" structure, 
defined with more or less delocalized orbitals like, e.g., Coulson-Fischer 
orbitals, would implicitly contain some ionic contributions, which would make 
the interpretation of the wave function questionable [27]. The use of pure AOs 
is therefore a way to ensure an unambiguous correspondence between the 
concept of Lewis structural scheme and its mathematical formulation. Another 
reason for the choice of local orbitals is that the breathing orbital effect is 
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effective only when the charge fluctuation is truly reflected in the VB 
structures. This means that the ionic structures are really ionic and the covalent 
ones really covalent. When the orbitals are not local, a formally ionic structure 
is in fact contaminated by covalent ones and can at best reflect some damped 
charge fluctuation. Moreover, since one uses the full set of the VB structures, 
allowing the orbitals to delocalize would lead to artificial redundancy of the VB 
structures. It follows therefore that, the choice of purely localized active 
orbitals is in fact not a restriction on the orbital optimization, but rather a way 
to ensure a correct procedure. 

On the other hand, there is no conceptual problem in letting the inactive 
orbitals be delocalized. For example, either the local Px lone pairs of F2 (in 9- 
11) or their doubly occupied bonding and antibonding combinations represent 
two lone pairs facing each other. Thus, qualitatively both representations keep 
the same physical picture of this four-electron interaction. However, in flexible 
basis sets, the delocalized representation has more degrees of freedom over the 
localized one, since the building block AOs of the bonding and antibonding 
combinations can be different, thereby leading to a slightly better description of 
the four electron interactions. Therefore, the delocalization of inactive orbitals 
will be used as one of the possible options in the BOVB method. 

3.1.3. BO VB levels 
Several theoretical levels are conceivable within the BOVB framework. At 

first, the inactive orbitals may or may not be allowed to delocalize over the 
whole molecule (vide supra). To distinguish the two options, a calculation with 
localized inactive orbitals will be labeled "L", as opposed to the label "D" that 
will characterize delocalized inactive orbitals. The usefulness and physical 
meaning of this option will be discussed below using particular cases. 

Another optional improvement concerns the description of the ionic VB 
structures. At the simplest level, the active ionic orbital is just a unique doubly 
occupied orbital as in 10 or 11. However this description can be improved by 
taking care of the radial correlation (also called "in-out" correlation) of the two 
active electrons, and this can be achieved most simply by splitting the active 
orbital into a pair of singly occupied orbitals accommodating a spin-pair, much 
as in GVB theory. This is pictorially represented in 12 and 13 which represent 
improved descriptions of 10 and 11. 

12 13 
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This improved level will be referred to as "S" (for "split") while the 
simpler level will carry no special label. Combining the two optional 
improvements, the BOVB calculations can be performed at the L, SL, D or SD 

levels.? 
These levels are tested below on bond energies and/or dissociation curves of 

classical test cases, representative of two-electron and odd-electron bonds. 

3.2. Dissociation of 2-e bonds 

3 .2 .1 .  T h e  d i f l u o r i n e  m o l e c u l e  

The dissociation of difluorine is a demanding test case used traditionally to 
benchmark new computational methods. In this regard, the complete failure of 
the Hartree-Fock method to account for the F2 bond has already been 
mentioned. Table 1 displays the calculated energies of F2 at a fixed distance of 
1.43 A, relative to the separated atoms. Note that at infinite distance, the ionic 
structures disappear, so that one is left with a pair of singlet-coupled neutral 
atoms which just corresponds to the Hartree-Fock description of the separated 
atoms. 

Since extensive basis sets are required to reproduce properties of this 
molecule, and we are using only 6-31G*, we cannot hope to reproduce the 
experimental bond energy. Therefore the best bonding energy is taken as the 
full CI value, in the region of 30 kcal/mol. The classical VB level, referred to 
in the Table as iteration 0, is a simple non-orthogonal CI between one covalent 
and two ionic structures, the orbitals being the pure atomic orbitals of fluorine 
as optimized in the free atoms. As can be seen, the bonding energy at this latter 
level is extremely poor (though better than Hartree-Fock) and does not even 
have the right sign. The GVB level, which nearly corresponds to the same VB 
calculations but with optimized orbitals (all VB structures sharing the same set 
of orbitals), is much better but still far from quantitative. However, as soon as 
the orbitals are allowed to adapt themselves to the individual VB structures 
(entries 1-5), the bonding energy increases and converges rapidly to a value 
close to the full CI estimation. Thus, the breathing orbital effect just 
corresponds to that part of the dynamical electron correlation that vanishes as 
the bond is broken. This provides a clear picture for the physical meaning of 
the dynamical correlation associated to the single bond, which is nothing but 
the wave-like quality of the electron manifested as the instantaneous adaptation 
of the orbitals to the charge fluctuation experienced by the two bonding 
electrons. Table 1 displays also the weights of the covalent and ionic 
structures, as calculated by means of the popular Chirgwin-Coulson formula,+ + 

~ The L, SL and SD levels were referred to as levels I, II and III in ref. 12. 
The weight W n of a VB structure V n is calculated as: W,~ = Z~ C, TC,~S,,,,,, where C n and C m are 

?n 
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Table 1 
L-BOVB calculation on the F2 molecule at a fixed interatomic distance of 1.43 A. The 
6-31 G* basis set has been used. See Ref. 11 for more details. 

Iteration Energy (au) De (kcal/mol) Coefficients (Weights) 

Covalent 9 Ionic 10 or 11 

0 -198.71314 -4.6 0.840 (0.813) 0.194 (0.094) 
1 - 198.75952 24.6 0.772 (0.731) 0.249 (0.134) 
2 -198.76494 27.9 0.754 (0.712) 0.258 (0.144) 
3 - 198.76572 28.4 0.751 (0.709) 0.260 (0.246) 
4 -198.76600 28.5 0.752 (0.710) 0.259 (0.145) 
5 -198.76608 28.6 0.750 (0.707) 0.261 (0.146) 

Projected GVB a -198.74554 15.7 (0.768) (0.116) 

a The VB weights are calculated after projecting the GVB wave function onto a basis of 
pure VB functions defined with strictly localized AOs. 

thus emphasizing the imbalanced ionic/covalent ratio that characterizes low 
levels of calculation. The classical VB calculation, with its orbitals taken from 
the free atoms, severely disfavors the ionic structures with a weight that is 
much too small when compared with the best calculation, entry 5. The GVB 
wave function (projected on a basis of  VB functions defined with pure atomic 
orbitals), with its orbitals optimized for the bonded molecule, is a little better, 
but it still suffers from the mean-field constraint. Now, when full freedom is 
given to the ionic structures to have their orbitals different from the covalent 
ones, the ionic weights gradually increase after each iteration. This clearly 
supports the above stated intuitive proposal that the lack of  dynamical 
correlation, that characterizes the classical VB, GVB, SC or valence-CASSCF 
levels, results in an imbalance in the treatment of  covalent v s  ionic situations, 
and disfavors the latter structures. 

The above best calculation [1 1] corresponds to the simplest level of the 
BOVB method, referred to as L-BOVB. All orbitals, active and inactive, are 
strictly local, and the ionic structures are of closed-shell type, as represented in 
10 and 11. However the theory can be further improved, and the corresponding 
levels are displayed in Table 2. It appears that the L-BOVB/6-3 I+G* level, 
yields a fair bonding energy, but an equilibrium distance that is rather too long 
compared to sophisticated estimations. This is the sign of  an incomplete 
description of the bond. Indeed this simpler level does not fully account for the 

the coefficients of V n and V m in the wave function and Snm is their overlap. 
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Table 2 
Dissociation energies and optimized equilibrium bond lengths for the F2 molecule. 

Method Req (A) De (kcal/mol) Ref. 

6-3 I+G* Basis Set 
GVB 1.506 14.0 [12] 
CASSCF 1.495 16.4 [12] 
L-BOVB 1.485 27.9 [12] 
SL-BOVB 1.473 31.4 [12] 
SD-BOVB 1.449 33.9 [12] 
Estimated full CI < 33 [23] 

Dunning-Huzinaga Basis Set a 

SD-BOVB 
Estimated full C I 

1.443 31.6 [12] 
1.44 + 0.005 28 - 31 [28,29] 

Experimental 1.412 38.3 [30] 

a A modified Dunning-Huzinaga basis set used by Laidig, Saxe and Bartlett [28]. The 
normal (4,1) p contraction is extended to (3,1,1) and a set of six d functions of 
exponent 1.58 is added. 

correlation of  the active electrons, which are located in doubly occupied 
orbitals in the closed-shell ionic structures 10 and 11. Splitting the active 
orbitals of the ionic structures as in 12 and 13, i.e., the SL-BOVB level, 
remedies the deficiency. The corresponding SL-BOVB level displays an 
increased bonding energy and a shortened bond length as compared to L-BOVB 
in Table 2. 

The optimized equilibrium distance is still too large, however, and now the 
interactions between inactive electrons have to be considered. In the F2 case, 
the inactive electrons involve the three lone pairs of each atom, facing each 
other. While their local AO or delocalized MO descriptions would be strictly 
equivalent in a minimal basis set, this is not the situation in more flexible basis 
sets. In a flexible basis set the delocalized MO description implicitly allows 
some charge transfers from one lone pair of an atom to some outer-valence 
orbitals of the other atom [31]. Most of this charge transfer corresponds to 

some back-donation in the ionic structures, i.e. the fragment F- that has an 
electron excess in its sigma orbitals donates back some charge to the F + 
fragment through its ~ orbitals. Indeed, allowing the Tc lone pairs to delocalize 
(SD-BOVB entries in Table 2) results in a significantly shortened calculated 
bond length which is now in the expected range. 
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For the sake of comparison, Table 2 displays also some full CI estimations 
by Laidig, Saxe and Bartlett [28] (LSB), along with SD-BOVB calculations 
using the same basis set. The BOVB bonding distance appears perfectly correct, 
while the bonding energy seems slightly too large, but still within an acceptable 
error margin. 

3.2.2. The hydrogen fluoride molecule 
Hydrogen fluoride is another classical test case, representing a typical polar 

bond between two atoms of very different electronegativities. As such, the 
molecule is expected to possess one ionic structure, F-H + (14) that is nearly as 
important as the covalent one (15). Thus, any deficiency in the description of 
ionic structures should result in significant error in the bonding energy and 
dissociation curve. Another distinctive feature of the F-H bond is its very high 
experimental bonding energy of 141 kcal/mol. With such strength of the 
bonding, one may wonder if the inactive electrons may still keep their identity, 
as assumed by the basic hypothesis of the BOVB method. For these two 
reasons, hydrogen fluorine is a challenging case, especially when the BOVB 
method can be assessed vis g~ vis benchmark full CI calculations that are 
available for the bond energy and the full dissociation curve. 

As usual, the single bond is described by three VB structures, 14-16. 

14 15 16 

The F+H - (16) structure is expected to be very minor but is nevertheless 
added for completeness. Table 3 displays the optimal bond lengths and bonding 
energies calculated at various theoretical levels, in the 6-3 I+G** basis set and 
in an additional basis set comparable in quality to the one used by Bauschlicher 
and Taylor [32]. 

Dynamic electron correlation effects appear once again to be an important 
component of the bonding energy, since the GVB/6-3 I+G** calculation yields 
a value of only 113 kcal/mol, quite far from the experimental value. However 
the simple L-BOVB level also proves to be quite insufficient, with a bonding 
energy that is still much too small. This is expected (vide supra), owing to the 
importance of the F-H + ionic structure 15 that is rather poorly described 
without splitting the doubly occupied orbitals. Splitting the active orbital of this 
structure, as in 17, leads to a spectacular improvement of the bonding energy, 
by ca 12 kcal/mol, (SL-BOVB/6-3 I+G** entry in Table 3). As in the F2 case, 
further improvement is gained by delocalizing the rc inactive orbitals to reach 
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Table 3 
Dissociation energies and optimized equilibrium bond lengths for the FH molecule 

Method Req (A) De (kcal/mol) Ref. 

6-31 +G** Basis Set 
GVB(1/2) 0.920 113.4 [12] 
L-BOVB 0.918 121.4 [12] 
SL-BOVB 0.911 133.5 [12] 
SD-BOVB 0.906 136.3 [12] 
Extended SD-BOVB 0.916 137.4 [ 12] 

B T Basis Set a 

SD-BOVB 0.906 136.5 [12] 
Extended SD-BOVB 0.912 138.2 [ 12] 
Full CI b 0.921 136.3 [32] 

.Experimental 0.917 141.1 [30] 

a A double-zeta + polarization + diffuse basis set used by Bauschlicher and Taylor [32]. 
b The 2s orbitals are not included in the CI. 

H 

17 

the SD level that yields a bonding energy of  136.3 kcal/mol, in very reasonable 
agreement with the experimental value. 

Due to its polar nature, hydrogen fluoride is a stringent test for the key 
assumption that the correlation of the inactive electrons remains nearly constant 
throughout the dissociation process. Since the inactive electrons of F-  in the 
F-H + structure feel a different electric field than those of  the neutral F 
fragment at infinite separation, one might have expected the intra-pair 
correlation energy of  the active electrons to vary with the interatomic distance, 
owing to the importance of  the ionic structure at the equilibrium geometry. To 
probe whether the assumption breaks down, we pushed the BOVB calculation 
to a higher level. Here, all doubly occupied orbitals, in the two main VB 
structures, are splitt, leading to 18 and 19. 
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This test calculation, referred to as "Extended SD-BOVB" in Table 3, 
results in an improvement of only 1.1 kcal/mol of the bonding energy relative 
to the standard SD level, thus confirming the assumption of near-constancy of 
the correlation within inactive electrons. It follows therefore that going beyond 
the SD-BOVB level is not necessary. 

C ~ n  

18 19 

Table 3 displays also a comparison of a full CI calculation by Bauschlicher 
and Taylor [32] with the best BOVB levels using a common basis set. Once 
again the SD-BOVB level is entirely sufficient, while its extended version leads 
to a meager improvement. In any case, both levels are in excellent agreement 
with the full CI results. 

By nature, the BOVB method describes properly the dissociation process. 
As a test case, the dissociation curve of the FH molecule was calculated at the 
highest BOVB level (extended SD-BOVB), and compared with a reference full 
CI dissociation curve calculated by Bauschlicher et al. [33] with the same basis 
set. The two curves, that were compared in Ref. 12, were found to be 
practically indistinguishable within an error margin of 0.8 kcal/mol, showing 
the ability of the BOVB method to describe the bonding interaction equally 
well at any interatomic distance from equilibrium all the way to infinite 
separation [ 12]. 

3.2.3. First row transition metals hydride cations 
Bonds that involve transition metals are difficult to handle computationally, 

owing to two factors: (i) The reshuffle of electronic configurations that 
accompanies the dissociation, and (ii) the presence of a large number of 
inactive electrons that exert a great influence on the bonding electrons. In this 
context, previous theoretical studies of transition metal hydride cations (TMH +) 
showed that accurate predictions of bond dissociation energies require extended 
wave functions, which account for both static and dynamic electron correlation 
effects [34,35]. Goddard et al. [34] showed that the GVB function by itself is 
unable to provide quantitative accuracy, but it predicts correct trends and 
elucidates the bonding patterns in first-row TMH +. The factors which 
determine the bonding patterns [35] are the promotion energy of the metal 
cation from the 3d n+l state to the bond-forming 4s13d n state, the loss of 
exchange in the 4s13d n state following bond-formation, and the ground state 
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symmetry determined by the electrostatic repulsion between the d electrons. It 
is apparent therefore that VB theory is capable of providing very useful insight 
into bonding because it involves a compact, easily interpretable wave function. 
Further insight can be gained by employing the BOVB method that uses 
explicit covalent and ionic structures and can provide bonding patterns in terms 
of covalency, covalent-ionic resonance energy and orbital relaxation of the 3d 
and 3s23p 6 shell electrons. Can the BOVB wave function, despite its extreme 
simplicity, still provide reasonable bonding energies in such difficult cases? 

To answer this question, Galbraith et al. [36] used BOVB to study the bond 
energies of TMH + species (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn). 
The basis set involved a relativistic effective core potential for the l s22s22p 6 
core and a triple-~ (8s,7p,6d//6s,5p,3d) basis for the 3s, 3p, 3d and 4s shells of 
the metal, augmented with an f-type polarization function. For hydrogen, the 
triple-~ (5s//3s) basis of Dunning was augmented with a p-type polarization 
function. At the dissociation limit the BOVB wave function correlates with the 
restricted open-shell Hartree-Fock (ROHF) states of TM + and H. This level 
treats poorly the atomic states and especially the 3dn+lstate. To correct for this 
non-VB-related deficiency, Galbraith et al. [36] used the technique 
recommended by Goddard [34,35] and Bauschlicher [37], of shifting the 
energies of the TM § fragment using experimental data. Thus, the TMH § species 
are first dissociated into the atomic state most closely resembling their situation 
in the molecule (i.e. the 4sl3d n state for TM+), and whenever necessary, the 
experimental atomic state splitting is used to correct the energy of the TM + 
fragment to the corresponding atomic ground state. 

The bond dissociation energies, calculated at the various computational 
levels, are displayed in Table 4 and compared with experimental values. The 
VBSCF results are seen to be slightly better than the GVB results. Both results 
qualitatively reproduce the characteristic zigzag pattern of the experimental 
trends across the first TM row. However these two sets of bond energies are 
systematically too weak, by 10-20 and sometimes by more than 30 kcal/mol, 
thus projecting the importance of dynamic correlation. Accordingly, a 
significant improvement is found upon moving from GVB or VBSCF to L- 
BOVB. The added flexibility of the BOVB method is seen to bring the 
predicted bond dissociation energies closer to the benchmark CCSD(T) values 
and to experimental results. Thus, while VBSCF (as well as GVB or SC 
methods) captures the essential non dynamic correlation effects due to the 
bonding event, the BOVB retains this qualitative picture, but adds the dynamic 
relaxation of all the electrons in response to bond pairing. 

Still, the BOVB bonding energy for Cull § remains too small, by c a  10 
kcal/mol, a rather unusually large error for this method. However, Cull + is a 
particularly difficult case as can be judged by the VBSCF and GVB values 
which are in error by 38 and 44 kcal/mol, respectively. Another source of 
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Table 4 

Bond dissociation energies (kcal/mol) of TMH + species, at the GVB, VBSCF, L-BOVB 
and CCSD(T) levels. The M-H bond lengths are optimized at the VBSCF level. 

GVB VBSCF L-BOVB CCSD(T) experimental 

ScH + 47.4 46.4 57.5 55.2 57 + 2 

Till + 43.4 44.2 54.3 54.6 54 • 3 

VH + 33.8 41.6 53.1 48.0 48 4- 2 

CrH + 8.9 9.5 26.1 37.3 32 + 2 

MnH + 25.9 30.6 44.0 44.2 48 + 3 

Fell + 31.2 36.0 53.9 51.9 50 + 2 

Coil + 21.3 27.2 48.8 39.5 47 • 2 

NiH + 9.7 16.1 40.3 39.3 40 + 2 

Cull + -22.2 - 16.3 11.4 24.4 22 + 3 

ZnH + 46.5 46.2 55.7 56.0 55 + 3 

inaccuracy comes from the use of  VBSCF-optimized bond lengths, which were 
found generally too long by an average of  0.09 A at this crude level [36]. 
Moreover,  the BOVB calculation was limited to the simplest L-BOVB. It 
would be interesting to test the SD-BOVB level on these systems, with proper 
geometry optimization, to make a more critical evaluation of  this unusual case. 

3.2.4. General procedure for low-symmetry cases 
Up to now we have dealt with molecules which makes the distinction 

between active and inactive orbitals an obvious task based on simple symmetry 
considerations. Such symmetry is not always present in the general case, and 
this poses a danger that there could be flipping between the sets of  active and 
inactive orbitals during the BOVB orbital optimization, 

The simplest level, L-BOVB, presents no particular practical problem. Fast 
convergence is generally obtained by using well adapted guess orbitals, that can 
be chosen as the Hartree-Fock orbitals of  the isolated fragments with the 
appropriate electronic charge. Thus, the guess orbitals for the covalent structure 
are those of  the isolated radicals, while the orbitals of  the isolated anions and 
cations can be taken for the ionic structures. 

Moving to the more accurate SL-BOVB level, merely requires checking 
that the orbital that is being split (in an ionic structure) is indeed an active 
orbital, and that the pair of  singly occupied orbitals does not end up belonging 
to the inactive space after the optimization process. While this condition is 
generally met by choosing an appropriate guess function in high symmetry 
cases (F2 or HF above), in the general case nothing guarantees a priori that this 
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exchange between the active and inactive spaces will not take place, leading for 
example to 20 instead of the correct structure 21 in the case of H2N-NH2. 

<zc>  
20 21 

To circumvent this difficulty, a general procedure was developed. After the 
L-BOVB step, the orbitals are initially subject to localizationt using any 
standard method, then the active orbital are split while the inactive ones are 
kept frozen during the optimization process. 

Delocalization of the inactive orbitals (D-BOVB or SD-BOVB) is important 
for getting accurate energetics, especially in cases where the inactive orbitals 
are not lone pairs but are instead bonding orbitals (e.g. C-H bond in H3C-F). 
This is because this degree of freedom allows for charge transfer to take place 
between inactive orbitals of the two fragments. The antibonding orbitals of a 
bond like C-H are better suited than high-lying outer-valence lone pair orbitals 
to accept an extra electron from the neighboring fragment e.g., F in H3C-F. 
Once again, it is important to make sure that the orbitals that are delocalized are 
the inactive ones, while the active set remains purely localized which is the 
basic tenet of the method. Otherwise, any artefactual solution might be found. 
To avoid any spurious exchange between the active and inactive spaces during 
the orbital optimization process, it is possible to start from an L-BOVB or D- 
BOVB wave function, then allowing delocalization of the inactive orbitals 
while freezing, this time, the active orbitals during the subsequent optimization 
process that leads to the D-BOVB or SD-BOVB levels, respectively. 

3.3. Dissociation of Odd-e Bonds 
Alongside electron-pair bonds, odd-electron bonds play an important role in 

chemistry, and constitute therefore a compulsory test case for any 
computational method. Odd-electron bonds can be represented as two 
resonating Lewis structures that are mutually related by charge transfer, as 
shown in (13) for two-center, one-electron (2c, 1 e) bonds and in (14) and (15) 
for typical two-center, three-electron (2c,3e) bonds. 

A~  + ~ A + ' B  (13) 
A "+:B ~ A : ' B  + (14) 
A" :B- ~ A:- "B (15) 

t This requires prior orthogonalization of the orbitals within each fragment. 
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According to qualitative VB theory, such bonds owe their strength to the 
resonance energy associated with the mixing of the two limiting structures. A 
significant resonance energy requires degeneracy of the two resonating 
structures, or nearly so. As a result most of the observed odd-electron bonds are 
homonuclear (A=B). 

In MO theory the stability of these bonds is readily understood by 
inspection of orbital interaction diagrams 22 and 23, where cy and r are 
bonding and antibonding combinations of active orbitals, respectively. Both 

C% .... , ~ - - T - - - - -  
j t 

t 

A e t  ~ t , >B. .  A . <  
x ss x x s t  

22 23 

diagrams display one net bonding electron. These diagrams can be further 
considered to question the role of left-right electron correlation. In 22, the 
active space reduces to a single electron, and this eliminates the need for 
electron correlation within this space. On the other hand, the active space of 23 
involves three electrons; however, the only configuration one might have added 
to improve the simple Hartree-Fock wave function is the singly excited c~lcy* 2 
one, which by virtue of Brillouin's theorem does not mix with (y2~,1. It 
follows that the concept of left-right correlation is meaningless in such systems, 
and that the description of both one-electron and three-electron bonds is already 
qualitatively correct at the Hartree-Fock level, contrary to two-electron bonds. 

In view of the preceding analysis, the complete failure of Hartree-Fock ab 
initio calculations to reproduce three-electron bonding energies might seem to 
be a paradox. Clark [38] and Radom [39] carried out systematic calculations on 
series of cation radicals involving three-electron bonds between atoms of the 
second and third rows of the periodic table, and showed that the Hartree-Fock 
error is always large, sometimes of the same order of magnitude as the bonding 
energy itself. Thus, F2- that is experimentally bound by 30 kcal/mo! is found to 
be unbound at the ROHF level [23]. The error is much smaller in the case of 
one-electron bonds [38], yet it may be as large as 13 kcal/mol in the H3CoCH3 + 
cation. Interestingly, the Hartree-Fock error is not constant, but gradually 
increases as the bonded atoms are taken from left to right or from bottom to top 
of the periodic table. 
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Focusing on the three-electron case, the puzzling Hartree-Fock deficiency 
can be analyzed by expanding the corresponding wave function into its VB 
constituents, as we did above in the two-electron case. Taking the F2-case as an 
example, the Hartree-Fock wave function ~IJHF (3-e) reads: 

qJHF (3 - e) - [...(pi ...O'g~g O'u I (18) 

where q)i represent the inactive orbitals, and the active orbitals Og and Ou are 
defined already in eq 4 above. Expanding (~g and Ou leads to eq 19: 

WHF(3 - e) -[...q0 i -..ZaZaZb I + [-.-q0i ..(ZaZbZb ] (19) 

Thus, the Hartree-Fock wave function is equivalent to a two-configuration 
VB wave function. The same VB structures, 24 and 25, were in fact used in the 
original VB treatment of three-electron bonds by Pauling [40]. 

24 25 

Even though it is physically correct, the ROHF wave function suffers from 
the same defect as the GVB wave function for two-electron bonds. Thus, the 
active AOs are common for the two structures and are not adapted to their 
instantaneous occupancies, while the inactive orbitals are not adapted to the 
instantaneous charge of the fragments. Once again, this defect can be removed 
by use of the BOVB wave function that allows for different orbitals for 
different structures, as in eq 20 : 

T B O V B ( 3 - e ) -  Cl[...qo i . . .LaLaRr l  + C21 ...qo i . . .LrRaRal  

La 4: Lr; Rr 4: Ra; tpi 4: q0i' 

(20) 

Here the orbitals are defined in the same way as in eqs 10-12. 
representative test cases are discussed below. 

Some 

3.3.1. The F2- radical anion 
As is the case for its neutral homologue, the difluorine radical anion is a 

difficult test case for the calculation of its bonding energy. At the ~ Hartree-Fock 
level, the bonding energy is about + 4 kcal/mol, depending on whether the 
ROHF or UHF method is used. The experimental bond energy is 30 kcal/mol. 
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In contrast, the MP2 and MP4 methods of  theory are successful, and this 
success emphasizes the dynamic nature of electron correlation for this molecule. 

The computed equilibrium distance and bonding energy of  F2- are 
displayed in Table 5. To appreciate better the sensitivity of  active v s  inactive 
orbitals to the breathing orbital effect, the latter has been introduced by steps: 
In the first step no breathing orbitals are used (La = Lr, Ra = Rr, qli--- qli'): this 
VBSCF calculation is nearly equivalent to the ROHF level. In the second step, 
only active orbitals are included in the breathing set (La r Lr, Ra :/: Rr), while 
in the next step full breathing is permitted (La :/: Lr, Ra :/: Rr, q0i @ q~i'). The 
latter wave function, at the L-BOVB level, can be represented as in 26, 27 
below. 

26 27 

The breathing orbital effect, restricted to the active orbitals that are directly 
involved in the three-electron bond, already improves the bonding energy by 
some 17 kcal/mol relative to the ROHF value (Table 5). Extension of  the 

Table 5 

Calculated equilibrium distances and dissociation energies for the F2-radical anion, 
(6-31+G* basis set). BOVB calculations are performed with all valence orbitals being 
included in the set of breathing orbitals (fully-breathing option) unless otherwise specified 
(entry 2). 

Entry Method Req (]~) De (kcal/mol) Ref. 

1 ROHF -4 [231 
2 L-BOVB (active set only) 1.954 13.3 " 
3 L-BOVB 1.964 29.7 [13] 
4 D-BOVB 1.954 30.1 " 
5 SD-BOVB 1.975 28.0 " 
6 SD-BOVB (4-structure) 1.976 28.0 " 
7 MP2 1.916 26.2 [13] 
8 PMP2 1.935 29.5 " 
9 MP4 1.931 25.8 [41] 
10 Experiment 30.2 [30] 
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breathing orbital effect to the inactive orbitals brings another 16 kcal/mol, 
yielding a final bonding energy of 29.7 kcal/mol, in excellent agreement with 
the experimental bonding energy of 30.2 kcal/mol [30]. 

The Hartree-Fock error is thus completely corrected by the breathing orbital 
effect. On a "per orbital" basis, each active AO contributes for 8.6 kcal/mol to 
the overall BO stabilization, while the inactive lone pairs have a lesser 
influence, about 2.8 kcal/mol each. 

The calculation can be further improved by allowing the inactive rt orbitals 
to delocalize over the molecule, at the D-BOVB level. As a result, the 
equilibrium bond length is shortened by 0.01 A, and the bonding energy is 
increased by 0.4 kcal/mol relative to the L-BOVB level (Table 5). This rather 
meager return from increasing the level of theory indicates that the fully 
localized atomic orbitals are, right at the outset, well adapted to the description 
of the three-electron interaction, contrary to what is observed in two-electron 
bonds. This difference may be due in part to the long equilibrium distance that 
characterize three-electron bonds, which results in weak interatomic repulsions 
between inactive lone pairs. Another reason for the ineffectiveness of rt 
delocalization is that neither of the VB structures 24 or 25 displays a polar o 
bond that needs to be counter-polarized by rt back-donation as in two-electron 
bonds. 

Somewhat more significant is the effect of splitting the active orbitals, 
leading to structures 28 and 29 at the SD-BOVB level, where the local singlet 

28 29 

spin-couplings are indicated by curved lines. However this improvement does 
not lead to an increase, but rather to a small decrease (1.7 kcal/mol) of the 
bonding energy. This is because the effect of splitting the active orbitals 
stabilizes both the separated fragments and the bonded molecules, so that both 
stabilizations nearly compensate each other and may lead to a small correction 
of any sign in the bonding energy. In contrast, in the case of two-electron 
bonds, splitting the doubly occupied active orbitals always benefits the ionic 
structures that are present at equilibrium distance but which vanish at infinite 
separation, leading thereby to an increased bonding energy. 

Up to now we have dealt with the two Lewis structures that a chemist might 
write down to describe the three-electron interaction. However, mathematically, 
there are two spin-coupling modes of three electrons in three orbitals both 
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leading to doublet spin eigenfunctions. Thus, the complexity of the SD-BOVB 
wave function could be further increased by adding structures 30 and 31. These 
structures exhibit the same orbital occupancy as 28 and 29 but exhibit different 
spin couplings. The calculation using 30 and 31 is referred to as "SD-BOVB 
(4-structure)" in Table 5, and is seen to give a bond energy virtually the same 
as the standard SD-BOVB level. This result fully confirms the validity of 
Pauling's simple model based on chemical intuition. 

30 31 

The performances of the various BOVB levels can be compared to those of 
Moller-Plesset (MP) perturbation theory, yet with some caution since the 
various MP orders do not converge well. This is due to a rather large spin 
contamination at the unrestricted MP2 level, which leads to a wave function 
with an <$2> value of 0.78. Keeping in mind that the breathing orbitals of F2- 
are not much polarized [13], the bonding energy is not expected to be very 
basis set dependent, so that the SD-BOVB value of 28.0 kcal/mol is entirely 
reasonable relative to the experimental value of 30.2 kcal/mol. The BOVB 
calculated equilibrium bond lengths are rather long relative to the values 
calculated at the various MP levels (no experimental value is available), and 
both sets of values display significant variations from one level to the other. 
This inaccuracy is however normal, owing to the extreme flatness of the 
potential surface near the energy minimum. Indeed, at the MP4 level the force 
constant is only 0.55 mdyn/A, which means that stretching the bond by 0.02 A 
away from equilibrium results in an energy rise of only 0.03 kcal/mol. 

A final point is in order concerning the avoidance of symmetry-breaking 
artefacts by the BOVB method as opposed to others. Three-electron bonds, just 
like any electronic system that must be described by more than one Lewis 
structure, are subject to the symmetry-breaking artefact with most 
computational methods of MO type: Hartree-Fock, MP2 or MP4, and even 
CCSD and CCSD(T)) [42,43]. This symmetry breaking is observed beyond a 
critical interatomic distance which may actually happen to be shorter than the 
equilibrium bond length, and it is due to a competition, during orbital 
optimization, between the resonance effect and the breathing orbital effect 
(called " size effect " by other authors [44,45] in this case). Assuming for 
example that the orbital optimization is performed at the Hartree-Fock level, 
the wave function is subject to the so-called " symmetry dilemma ": that is, if 
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the symmetry of the wave function is broken, it converges to a solution like 26 
alone, in which the orbitals are adapted to their occupancy but where the 
resonance is lost. On the other hand, if the symmetry is maintained, the wave 
function converges to a solution of the type 24~--~25; this benefits from the 
resonance energy, but the orbitals are optimized in a mean field, and are 
consequently poorly adapted to their instantaneous occupancy. In cases "where 
the resonance is dominant, the wave function displays the correct symmetry. 
However, as soon as the resonance becomes too weak to overcome the 
breathing orbital effect, the wave function departs from the molecular 
symmetry and leads to unphysical geometries, frequencies and energetics. This 
problem, which is rather difficult to overcome with standard computational 
methods, vanishes at the BOVB level: as the wave function involves both the 
size effect and the resonance effect at any molecular geometry, the root cause 
for the symmetry breaking disappears. The BOVB method is, by nature, entirely 
free from the symmetry breaking artefact. 

3.3.2. The Cl2-radical anion 
The valence orbitals of C12- are spatially larger than those of F2-. 

Accordingly, the breathing orbital effect is expected to be less important in C12- 
than in F2-, since two electrons occupying the same orbital are now less 
confined than in the compact orbitals of F2-. 

Table 6 displays some bonding energies for C12-, as calculated at the D- 
BOVB level and at other theoretical levels, including Hartree-Fock and Moller- 
Plesset perturbation theory. Unlike the F2-case ,  the Moller-Plesset series 
converges well around the values of 24-25 kcal/mol which can be taken as 
references for the bonding energy in this basis set. 

The fully breathing D-BOVB result is once again in good agreement with 
the various Moller-Plesset values and with the POL-CI calculation of Wadt and 
Hay [46] in a similar basis set. The breathing orbital effect of the inactive 
orbitals, estimated by comparing the bonding energies in entries 1 and 2 in 
Table 6, only amounts to 7.1 kcal/mol, which is significantly smaller than the 
corresponding value of 16.4 kcal/mol in F2-. Moreover, the effect for the 
active orbitals alone (compare entries 2 and 3) brings only 4.5 kcal/mol of 
stabilization in C12-relative to the Hartree-Fock level, to be compared to the 
value 17.3 in F2-, thus fully supporting the qualitative expectations based on 
orbital size. 

Basis set effects begin to be important in three-electron bonds involving 
atoms of the third-row, since polarization functions are important for 
reproducing atomic polarizabilities, which are important in atom-ion 
interactions. For this reason, the BOVB result that was calculated in the modest 
6-3 I+G* basis set yields a bonding energy which is some 4-5 kcal/mol smaller 
than more accurate G2 [47] and CPF [48] calculations, using a close to 
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Table 6 

Calculated dissociation energies for the C12-radical anion, in 6-3 I+G* basis 
set, with an MP2-optimized bond length of 2.653 A, except otherwise 
specified. 

Entry Method De (kcal/mol) Ref. 

D-BOVB 
1 fully-breathing 22.6 [ 13 ] 
2 active set only 15.5 [13] 
3 ROHF 11.0 [13] 
4 MP2 24.7 [13] 
5 PMP2 25.5 [13] 
6 MP4 24.4 [13] 
7 POL-CI a 24.0 [46] 
8 6 2  b 27.5 [47] 
9 CPF/6s5p4d3 f2g c 27 [48] 

a Optimized bond length of 2.69 A. b Optimized within the G2 procedure. 
c Optimized bond length of 2.59 _A. 

complete basis set. It is clear that using a more sophisticated basis set for C12- 
would have brought the BOVB calculated bonding energy close to the accurate 
value. In support of this assertion, Archirel [49] has calculated the bonding 
energy of another three-electron-bonded molecule of the third-row, Ar2 +, and 
got disappointing results with a simple double-zeta polarized basis set. Then, 
using a better basis set of  4s4p2dlf  quality, he obtained a bonding energy of  
30.2 kcal/mol at the D-BOVB level, in good agreement with the experimental 
value of 30.7 kcal/mol, or 32.0 kcal/mol after compensating for the estimated 
spin-orbit interaction [50]. 

3.3.3. The (NH3) 2 + radical cation 

The atomic orbitals of nitrogen are larger than those of fluorine, with 
optimized exponents of 1.96 for NH3 vs 2.40 for F-, in a minimal basis set. 
Therefore, one can once again predict a smaller breathing orbital effect for both 
the active and inactive orbitals of (H3NNH3) +, relative to F2-. However, the 
inactive orbitals in this case represent single N-H bonds as opposed to the lone 
pairs in the F2-case.  It is clear that the inactive electrons are on average closer 
to the nuclei for lone pairs than for bonds, and are therefore more sensitive to 
the charge fluctuation of the active space. This effect, together with the orbital 
size effect, leads to the expectation that the breathing orbital effect should be 
definitely weaker in (H3NNH3) + compared with F2-, and probably even more 
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Table 7 
Calculated dissociation energies for the (H3N-NH3) + radical cation in its D3h 
conformation (6-31G* basis set). MP2-optimized geometries are used 
throughout. 

Method De (kcal/mol) Ref. 

D-BOVB 
fully-breathing 37.9 [ 13 ] 
active set only 30.8 . . . .  

ROHF 20.3 . . . .  
MP2 40.0 . . . .  
PMP2 41.4 . . . .  
MP4 38.9 . . . .  

so in the inactive orbital space. 
The bonding energies of the (H3NNH3) + cation, calculated at the D-BOVB 

level and at various levels of MO theory, are reported in Table 7 and support 
the above qualitative deductions. The total breathing orbital effect amounts to 
17.6 kcal/mol, that could be decomposed into 7.1 kcal/mol for the 
inactiveorbitals and 10.5 kcal/mol for the active ones, which is much less than 
in F2-. As in the preceding case, the BOVB-calculated bonding energy of 
(H3NNH3) + is in satisfying agreement with the results of the Moller-Plesset 
series which is rather well converged and probably reflects the basis set limit. 

3.3.4. One-electron bonds 
As shown by Clark [38] in a comprehensive computational study of 

(HnX~ + radical cations (X = Li to C, Na to Si), one-electron bonds are 
already rather well described by simple Hartree-Fock theory. This is because 
the active system contains a single electron, so that the breathing orbital effect 
is ineffective in the active subspace, where each orbital is either empty or singly 
occupied as illustrated in 32, 33 for the C~ bond. 

\ / \ / 
c ~ c  ~ c ~ c  

4  oo. 4  o.o 
32 33 

Therefore, the effect is restricted to the inactive space and, accordingly, the 
Hartree-Fock error is nearly proportional to the number of inactive orbitals. It 
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increases gradually in the series (X = Li to C), reaching 13 kcal/mol in 
(H3CoCH3) +, compared with the total bonding energy of 51.0 kcal/mol [51], 
calculated at the MP4/6-31G* level. In accord with the above qualitative 
analysis of the breathing orbital effect in terms of orbital size, compounds of 
the third row atoms (X = Na to Si) exhibit less correlation effects than analogs 
of the second row of the periodic table. 

The (H3CoCH3) + radical cation was selected, to test the ability of the BOVB 
method to describe one-electron bonds, since this bond exhibits the largest 
correlation effect in the series. The bonding energy, calculated at the D-BOVB 
level, amounts to 48.7 kcal/mol, in fair agreement with the MP4 value. 

3.4. Summary of the Computational Tests 
The BOVB method has not been subject to systematic tests of accuracy, 

except for the F2, HF, F2-, C12-and (NH3)2 + species. However, some bonding 
energies have been calculated here and there in studies dedicated to other 
aspects of bonding, e.g., charge-shift bonding in H3M-C1 (M = C, Si, Ge, Sn, 
Pb) [52,53], the lone pair bond weakening effect [54], etc. These studies 
provide additional tests of the accuracy of the BOVB method. However it must 
be kept in mind that in these studies, the best accuracy was not the aim and 
hence was not sought. In particular, basis sets of modest size were used, so that 
the calculated dissociation energies should not be compared directly to 
experimental values. 

Naturally then, the accuracy of the results, displayed in Table 8, follows the 
adequacy of the basis set that has been used. As a rule, basis sets involving 
high-ranking polarization functions are needed for third-row atoms and/or for 
atoms involving lone pairs. Accordingly, the calculated C-H bonding energy is 
quite close to the experimental value for CH4, a molecule made of first and 
second-row atoms and devoid of lone pairs, for which the 6-31G** basis set is 
sufficient. For NH2 and H20, which bear lone pairs, the lack of f-type 
polarization functions begins to down-grade the numerical accuracy, and the 

Table 8 
Some BOVB-calculated bonding energies in double-zeta polarized basis sets 

BOVB level Basis set De (theor.) De (exp.) Ref. 

H3C-H SL 6-31G** 114.5 112.0 [54] 
H2N-H SL 6-31G** 114.4 116.0 [54] 

HO-H SL 6-31G** t 19.1 125.4 [54] 
H3C-CI SD 6-31 G* 79.9 87.3 [52] 
H3Si-C1 SD 6-31G* 101.7 110.7 [52] 
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basis set deficiency gets more severe in H3C-C1 and H3Si-C1 that involve lone 
pairs as well as third-row atoms. Nonetheless, the bonding energies remain very 
reasonable in all cases, as has been found above for transition metal hydrides 
[36]. 

This generally good performance demonstrates that the BOVB wave 
function, despite its very small size, captures the essence of the chemical bond, 
be it of the odd-electron or two-electron type, polar or non-polar. The complete 
neglect of Coulomb correlation within the inactive space has no significant 
consequences for the relative energies. This in turn means that the inactive 
electrons require dynamic correlation, associated with the fact that their orbitals 
undergo changes in size, polarization or hybridization. However these electrons 
have some nearly constant Coulomb correlation energy. In fact, just the bare 
minimum electron correlation is taken into account since the method becomes 
equivalent to a Hartree-Fock calculation of the separated fragments at the 
dissociation limit. Thus, the method only calculates the differential electron 
correlation, that involves the left-right electron correlation of the active 
electrons, and the dynamical correlation associated with the formation of the 
bonds. Since the latter term is nascent from the instantaneous adaptation of the 
orbitals to the charge fluctuation of the active electrons, dynamical correlation 
effects are particularly important in three-electron bonds, because in such 
systems the stabilizing interaction originates only in the charge fluctuation 
between the two VB structures. 

While all levels provide nearly equally good bonding energies for the three- 
electron bonds, the same does not hold true for two-electron bonds which often 
require the best levels for an accurate description. Splitting the active orbitals in 
the ionic structures is important when the bond is polar. Moreover, the 
interatomic interactions between inactive orbitals are important in two-electron 
bonds, owing to their short equilibrium bond lengths. Such interactions are 
adequately taken into account by delocalizing the inactive orbitals.t This effect 
is particularly important when the bond is very polar as in H3C-C1 and H3Si- 
CI. Thus polar bonds are better described at the SD-BOVB level while bonds 
that are mainly covalent in nature are less demanding. 

Finally, a few remarks are in order concerning the non dynamic correlation 
of the inactive electrons. Normally, these electrons are left uncorrelated (except 
in the extended SD-BOVB calculation for H-F, above) in the molecule as well 
as in the dissociated fragments or in any conformation of a molecular system 
throughout a potential surface. However, since the inactive orbitals are 
somewhat different in the HL and ionic VB structures, it is impossible to avoid 

t It has been checked by counterpoise calculations that the stabilization due to the 
delocalization of the inactive orbitals is much larger than the spurious basis set superposition 
effect [12,13]. 
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the fact that such a difference in a multistructure wave function will bring in 
some correlation of the inactive electrons. This explains why, when medium 
basis set are sufficient or when the calculation is compared to estimated full CI 
(as for H3C-H or F-F above), the SD-BOVB dissociation energy tends to be a 
few kcal/mol too high. This is a rather fortunate systematic error, since 
generally the basis set that is used is far from complete and the slight BOVB 
overbinding compensates for the basis set deficiency. However, some cases may 
be encountered in which this spurious correlation of the inactive electron 
replaces the breathing orbital effect of the active electrons, leading to 
nonsensical bond energies. This may happen, for example, if the active orbitals 
were allowed to delocalize freely as in the GVB method. The outcome might be 
that the active orbitals are all the same in the HL and ionic structures, being of  
Coulson-Fisher type, thus representing a triplicate active system of GVB type. 
On the other hand, the degree of freedom of the BOVB wave function would 
be used to make the inactive orbitals very different from each other in the three 
structures, so that the resulting wave function would display some correlated 
inactive electrons. This would bring an additional correlation effect that 
stabilizes only the molecule but not the fragments because, at the asymptotic 
geometry, the HL structure is the only VB configuration that remains. This 
stresses the importance of keeping the active orbitals as strictly localized on 
their respective atom or fragment. A BOVB calculation would become 
meaningless i f  the active orbitals were freely allowed to delocalize. 

The energy collapse due to spurious correlation of inactive orbitals may be 
exceptionally encountered, even if the active orbitals are not delocalized, as has 
been observed for ZnH + above [36]. Such an artefact is however easy to detect, 
based on the fact that an inactive pair in an ionic structure occupies an orbital 
that is mostly virtual in the HL structure, e.g. an orbital displaying a node. The 
remedy consists of effectively giving the inactive electrons the level of 
correlation that they try to achieve. This can be done by going to the extended 
SD level as in FH above, however this rigorous solution makes the calculation 
rather cumbersome. A much easier corrective procedure is to double the major 
VB structure at any point of a potential surface all the way to the dissociated 
products, if any. In this way, the " excess " stabilization of  the inactive orbitals 
carries over to the whole potential surface, which deletes any artefactual 
overbinding effect. This procedure has been used successfully in the ZnH + case. 

3.5. Diabatic  states 
One of the most valuable features of theoretical methods based on classical 

VB structures is their ability to calculate the energy of a diabatic state. For 
practical uses, some diabatic bond energy curves of chemical interest can be, 
for example, the separate dissociation energy curves of the ionic and covalent 
components of a bond, or the energy curves of  the effective VB structures of  a 
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chemical reaction which are traced individually along a reaction coordinate. 
Such diabatic curves are plotted in the curve-crossing VB diagrams which are 
used to predict and interpret reaction barriers [4]. Diabatic states have also 
some applications related to the concepts of organic chemistry, like resonance 
energy. 

3.5.1. Definition 
While the definition of an adiabatic state is straightforward, as an 

eigenfunction of the Hamiltonian within the complete set of VB structures, the 
concept of diabatic state is less clear-cut and accepts different definitions. 
Strictly speaking, a basis of diabatic states (0, 0 ' . . . )  should be such that eq 21 
is satisfied for any variation c3Q of the geometrical coordinates. 

<Ola / aQIO '>=  o (21) 

However this condition is impossible to fulfill in the general case with more 
than one geometrical degree of freedom, so that one has to search for a 
compromise in the form of a function whose physical meaning remains as 
constant as possible along a reaction coordinate. Clearly, a single VB structure, 
that keeps the same bonding scheme irrespective of the geometry of the system, 
is the choice definition for a general diabatic state. For example, if we consider 
the A-B molecule in the BOVB framework, the ground state (made of three VB 
structures) will be adiabatic, while the three VB structures, respectively 
A o ~ . B ,  A+B - and A-B +, will be the diabatic states. Note however that a 
diabatic state can possibly be made up of more than one formal VB structure. 
For instance, in the SN2 reaction (eq. 9), one diabatic state could be the 
bonding scheme of the reactants, C1- + H3C-F, while the other would represent 
the products, C1-CH3 + F-. In this case, each diabatic state would be made of 
three VB structures, respectively 3, 5, 6 and 4, 5, 7, corresponding to the 
covalent and two ionic components of the carbon-halogen bond. Such diabatic 
states constitute the crossing curves of the VB correlation diagrams of Shaik 
and Pross [4]. 

3.5. 2. Practical calculation 
Having defined a diabatic state as a unique VB structure, or more generally 

as a linear combination of a subset of the full VB structure set that describes the 
adiabatic state, in the next step one has to specify the orbitals needed to 
construct the VB structure(s) of this diabatic state. One first possibility is to 
keep for the diabatic state the same orbitals that optimize the adiabatic state. 
This has the advantage of simplicity. Practically, once the orbitals have been 
determined at the end of the BOVB orbital optimization process, the 
hamiltonian matrix is constructed in the space of the VB structures and the 
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adiabatic energies are calculated by diagonalization of the hamiltonian matrix 
while the energies of the diabatic states are just the respective diagonal matrix 
elements. 

An inconvenience of this practical procedure is that it does not guarantee 
the best possible orbitals for the diabatic states. Indeed, the BOVB orbitals are 
optimized so as to minimize the energy of the multi-structure ground state and 
are therefore the best compromise between the need to lower the energies of the 
individual VB structures and to maximize the resonance energy between these 
VB structures. This latter requirement implies that the final orbitals are not the 
best possible orbitals to minimize each of the individual VB structures taken 
separately. It follows that the diabatic states calculated in this way are not the 
best possible diabatic states to represent the respective bonding schemes and, in 
practical calculations, they may appear surprisingly high in energy. For 
instance, the purely covalent H3C~C1 bond appears to be repulsive, if 
calculated this way, which is unreasonable. 

An alternative approach which we recommend consists of optimizing each 
diabatic state separately, in an independent calculation. As a result, the orbitals 
of the diabatic states come out different from those of the adiabatic states, and 
we now get for each diabatic state its best possible set of orbitals. The diabatic 
energies are obviously lower compared with those obtained by the previous 
method. Using again the H3C-C1 bond as an example, the second procedure 
now yields an energy profile for the purely covalent structure, with a bonding 
energy of 34 kcal/mol, in agreement with common sense as opposed to the 
repulsive covalent interaction obtained in the first procedure. We therefore 
believe that the separate calculations of the diabatic states yields the best 
possible results in terms of chemical interpretation. 

It might be argued that the diabatic states, calculated separately as we 
recommend, are subject to basis set dependency. It is true that, in the limit of 
an infinite basis set, there would be so many and so diverse polarization 
functions that the optimized orbitals could not be considered as localized, so 
that the diabatic state would converge to the ground state rather than to a 
specific VB structure. However, some tests have been done which show that, as 
long as standard basis sets are used, such basis set dependency remains 
marginal. As an example, adding a set of diffuse functions to the 6-311 G* basis 
set was found in one of our applications to change the energy of the diabatic 
state by only 0.1-0.2 kcal/mol relative to the ground state [55]. 

3.5.3. Resonance energies 
Many molecules are represented as a set of resonating structures. For 

example, the ground state of formamide is the optimized mixture of the VB 
structures 34 and 35. The resonance energy, which is responsible for the 
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rotational barrier, is the energy difference between the major VB structure 34 
and the ground state. 

Thus, the resonance energy characterizes the insufficiency of structure 34 
for accurately representing the ground state. It is clear therefore that this 
concept is best quantified by comparing the energy of the optimized ground 
state with that of the best possible wave function for 34, and this is meaningful 

/H -O~/c ---- N + 

34 35 

only if the orbitals of the diabatic state that represents structure 34 are 
optimized for this specific state alone, as recommended above. Accordingly, the 
method for calculating resonance energies in the BOVB framework consists of 
separate optimizations of the ground state and of the major VB structure (the 
one that has the largest weight in the wave function). The resonance energy is 
the difference between the variational energies of the full state and the 
reference VB structure. In this manner the resonance energy itself is variational. 

4. SUMMARY AND CONCLUSION 

It is striking that, while the great majority of quantitative calculations are 
done in the framework of MO theory, the language of chemists has remained 
faithful to the valence bond theory with its Lewis structures, hybrid orbitals, 
mesomeric stuctures and so on. In a way, one might say that MO theory has 
won the battle of computations while VB has won the battle of language and 
epistemology, so that the most commonly employed computational tool is not 
fully commensurate with the chemical concepts. This has occasionally created 
some confusion with respect to the great paradigms of chemistry. To take only 
a few examples, the role of electronic delocalization in aromaticity, the role of 
resonance in the rotational barriers of the peptide bonds in a protein or in the 
strength of carboxylic acids has long been debated, mainly because of the 
inadequacy of MO methods to settle these questions. 

Clearly, there has been a need for a computational method that would speak 
the language of chemists while being reasonably quantitative as far as 
geometries, force constants and energetics in general are concerned. The BOVB 
method is an endeavour to fill this gap by bringing together the qualities of 
lucidity, compactness and reasonable accuracy. The requirements necessary to 
achieve the goal were as follows : 

(i) As a first condition, it is necessary to ensure a maximum 
correspondence between the mathematical formulation and the 
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(ii) 

concept of Lewis structure displaying a specific bonding scheme. 
This requirement leads to the use of strictly localized orbitals, at least 
in the active space. 

A second condition was that the method should be capable of 
describing the elementary events that characterize a chemical process: 
the breaking and forming of chemical bonds, be they of the one- 
electron, two-electron or three-electron type. This is a requirement 
for a balanced description of an electronic system throughout a 
potential surface. To achieve this balance, it is essential to take care 
of the differential electron correlation types associated with the bonds 
that are created or broken along the reaction coordinate. A unique 
feature of the BOVB method is that it brings not only the non 
dynamic but also the dynamic part of this differential correlation, 
which can be very significant in some cases. 

The leading principles of the method are straightforward. To calculate a 
given electronic state, all the Lewis structures that are relevant for the 
qualitative VB description of this state are generated, and the covalent forms 
are distinguished from the ionic ones. Each of these Lewis structures is 
represented by a single VB function which has its specific set of orbitals. The 
orbitals and the coefficients of the VB structures are optimized simultaneously, 
to minimize the energy of the final multi-structure state. 

Practically, only a small part, called the active part, of a molecular system 
is treated in the VB framework, while the rest is treated at the ordinary MO 
level. The active part includes these orbitals and electrons that undergo 
effective changes throughout a potential surface, like bond-breaking or bond- 
forming. The inactive part undergoes orbital optimization to follow the changes 
of the active part, but its electrons are not explicitly correlated, in keeping with 
the assumption that the absolute error so introduced is quasi-constant 
throughout a potential surface. This ensures an extreme compacmess of the 
wave function. As a typical example, the study of an SN2 reaction would 
necessitate a BOVB wave function involving only six VB configurations, from 
the reactants to the products via the transition state. 

The VB structures can be defined in different ways according to the desired 
level of accuracy, but all levels agree on the principle that the active orbitals 
should be strictly localized on their specific atom or fragment, and not allowed 
to delocalize in the course of the orbital optimization process. This latter 
condition is important for keeping the interpretability of the wave function in 
terms of Lewis structures, but also for a correlation-consistent description of 
the system throughout a potential surface. 

The computational tests that have been performed in a variety of difficult 
cases show that the description is consistent and reasonably accurate, in view of 
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the compactness of the wave functions. Some applications of  the BOVB method 
to effective chemical problems have already been made by various authors. 
Langenberg et al. [56] have used the BOVB method as a mean to solve the 
symmetry-breaking artefact in the potential energy surface of the glyoxal 
cation. This property of the method has also been exploited by Humbel et al. in 
the investigation of the H202-potent ia l  surface [57]. Basch et al. applied the 
method to study the SiH3-F bond [58] and to calculate the covalent vs ionic 
dissociation curves of CH3-Y molecules (Y = F, OH, NH2, CH3, BH2, CN, 
NO) [59]. Calculations of diabatic states were performed by Lauvergnat et al. 
to characterize the lone pair bond weakening effect in the H-NH2, H-OH and 
H-F bonds [54]. The diabatic states were also used in the generation of VB 
curve crossing diagrams for hydrogen transfer reactions between X groups (X = 
H, CH3, Sill3, GeH3, SnH3, PbH3) [60], and for identity radical exchange 
reactions of the type H + XH'--+ HX + H' and X + HX'--+ XH + X' (X = F, 
C1, Br) [61 ]. The covalent vs ionic nature of homonuclear and heteronuclear rc 
bonds was investigated [55], and a new type of bonding, in which the strength 
of the bond is primarily due to an exceptional energy of resonance between the 
covalent and ionic forms, has been discovered [5 5,61 ]. The reader is referred to 
the original papers. 

The BOVB method does not of course aim to compete with the standard ab 
initio methods. BOVB has its specific domain. It serves as an interface between 
the quantitative rigor of today's capabilities and the traditional qualitative 
matrix of concepts of chemistry. As such, it has been mainly devised as a tool 
for computing diabatic states, with applications to chemical dynamics, chemical 
reactivity with the VB correlation diagrams, photochemistry, resonance 
concepts in organic chemistry, reaction mechanisms, and more generally all 
cases where a valence bond reading of the wave function or the properties of 
one particular VB structure are desirable in order to understand better the 
nature of an electronic state. The method has passed its first tests of credibility 
and is now facing a wide field of future applications. 
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Chapter 8 

The Biorthogonal Valence Bond Method 

Joseph J.W. McDouall 

Department of Chemistry, University of Manchester, Oxford Road, 
Manchester M13 9PL, United Kingdom 

The theoretical basis and certain computational aspects of the biorthogonal 
valence bond (BOVB) method are presented. A number of calculations on 
small molecules are used to illustrate the description of electronic structure and 
bonding that can be obtained from BOVB calculations. Calculations are 
reported that include up to 30 electrons in nonorthogonal orbitals outside a 
closed shell. It is suggested that calculations involving up to 60 electrons, 
accommodated in nonorthogonal singly-occupied orbitals, can be contemplated 
realistically. The combination of the BOVB method with layering techniques, 
in which a molecule is partitioned into different layers and each layer is treated 
at a different level of theory, provides a viable route to valence bond studies on 
large molecular systems. Recent calculations on the pseudohalide acid HCS2N3 
and a large diphosphaallene radical anion are also reported. 

1. INTRODUCTION 

The biorthogonal valence bond method has its origins in the work of 
Moshinsky and Seligman on group theory and second quantization for 
nonorthogonal orbitals [1]. Essentially, by introducing a dual (biorthogonal) 
orbital space, they showed how the difficult problem of evaluating matrix 
elements of the electronic hamiltonian, between functions built from 
nonorthogonal orbitals, could be simplified. Moshinsky and Seligman applied 
their formalism to the potential energy surface of H3 using a minimal basis of 
orbitals, with the resultant complete configuration basis expressed as Gelfand 
states. Following this seminal work, Cantu, Klein, Matsen and Seligman [2] 
discussed the use of this formalism in a valence bond context using a Rumer- 
Weyl basis [3, 4] of configuration state functions (CSF). However, these 
authors did not provide any examples of numerical calculations. The 
biorthogonal technique was investigated in the context of classical valence bond 
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wavefunctions, including varying numbers of covalent and ionic terms with 
fixed orbitals, for H2, LiH and H20 by Norbeck and McWeeny [5]. Payne [6] 
also provided a theoretical exposition on the biorthogonal method for general 
configuration interaction (CI) calculations in a nonorthogonal orbital basis. 
The biorthogonal approach was introduced in the context of modem valence 
bond calculations by McDouall [7]. Initial biorthogonal valence bond (BOVB) 
studies on HF, H20 and F202 involved optimizing the nonorthogonal orbitals 
involved in bond formation for a single spin-coupling mode (perfect-pairing 
approximation) with all other electrons assigned to doubly-occupied molecular 
orbitals, which were simultaneously optimized. Following this work, 
optimization for more general wavefunctions was considered [8], with special 
emphasis on the requirements for accurate evaluation of the dynamic electron 
correlation energy in an extended biorthogonal CI. Malcolm and McDouall [9] 
implemented a BOVB method in which the configuration expansion in the 
nonorthogonal orbital space was complete. This yields energies identical to the 
corresponding N-electron/N-orbital orthogonal complete active space self- 
consistent field (CASSCF) wavefunctions, thus ensuring a variational bound. 
Application of this method to the electronic structure of some 1,3-dipoles [ 10] 
showed that the results obtained, in terms of nonorthogonal orbital shapes and 
overlaps, are essentially identical with those of spin-coupled valence bond 
studies [11, 12]. However, the realm of applicability of this approach is 
limited to the same size of problem as can be handled in CASSCF calculations 
(~ 12-14 electrons) since the configuration expansion increases very rapidly 
with N. Despite this limitation, a major advantage of this approach is that it is 
a simple matter to evaluate derivatives of the energy with respect to geometrical 
parameters, thus enabling geometry optimizations and reaction path searches to 
be carried out. Indeed the simplest way to do this is to use an efficient 
CASSCF procedure and then transform to the BOVB representation. A similar 
idea has been used more recently in the CASVB methodology [12]. 
Thorsteinsson and Cooper [13] have also discussed the implementation of the 
biorthogonal method using techniques similar to those used in their spin- 
coupled valence bond studies. 

In the next section we review some of the theoretical and practical details 
of the BOVB method. In particular we consider means by which much larger 
calculations may be attempted. In section 3, we present some illustrative 
calculations to expose the properties of BOVB wavefunctions and familiarize 
the reader with the BOVB description of electronic structure. This is followed 
by a description of some recent calculations on the pseudohalide acid HCS2N3 
and a large diphosphaallene radical anion. We conclude by summarizing the 
strengths and weaknesses of the BOVB method as a general quantum chemical 
tool and suggest areas for future development. 
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2. PRINCIPLES OF BIORTHOGONAL VALENCE BOND THEORY 

2.1. Theory 
In most modem valence bond calculations the wavefunction takes the form 

of a multiconfigurational expansion 

'I'=Ec v  (1) 
K 

in which ~tx is an antisymmetrized space-spin product. The set {~t} is usually 
constructed from an orbital set, {r which contains a number of doubly- 
occupied orbitals which accommodate the energetically low lying electrons. 
Above the doubly-occupied orbitals sit a group of orbitals which are allowed 
different occupancies and spin-couplings in different members of {~}. {~)} 
also contains a number of virtual orbitals which are not occupied in {~}. The 
doubly-occupied orbitals are chosen to be orthogonal amongst themselves and 
to all other orbitals. In contrast, the orbitals which are allowed variable 
occupancies and spin-couplings are allowed to be nonorthogonal amongst 
themselves, but are required to remain orthogonal to the doubly-occupied 
' core'. 

The main difficulty in performing calculations with an orbital set 
containing nonorthogonal orbitals is that of evaluating matrix elements over the 
hamiltonian. These matrix elements contain complicated products of orbital 
overlap integrals [ 14]. In the BOVB approach, the set {~} is used in setting up 
the electronic Schrfdinger equation 

<2> 

but when integrating for the energy (taking scalar products from the left) a 
second set of functions { ~t } is introduced to expand the wavefunction 

�9 (3) 
K 

giving 

- ( 4 )  

The members of { ~t } have a one-to-one correspondence with the members of 
{gt} with respect to orbital occupancy and spin-coupling, except that the 
orbitals used in their constra3ction belong to a dual set defined by 
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- ~ T -  ~S -1 (5) 

where S is the orbital overlap matrix. The set { {} } can always be defined in 
this way provided the set {~} is not linearly dependent. The two sets of 
orbitals {~ } and { ~ } possess a biorthogonality property 

(~p ld~q)= Spq (6) 

Thus the reduction of the matrix element ( ,IHI  )ina nonorthogonal 
valence bond calculation, which contains complicated products of orbital 
overlap integrals, (~p [(~q ), is replaced by the corresponding element 

(~K[HI~L) which contains the biorthogonal overlaps in Eq. (6) and 

consequently may be evaluated as if the orbitals were orthonormal. The matrix 
elements, using conventional notation, may be written as 

pq pqrs 
pq pqrs 

(7) 

The integrals over the one- and two-electron operators have the dual basis to 
the left of the operator and the primary basis to the right. The one- and two- 

kL and Fpqs respectively, may be electron vector coupling coefficients, '~pq 
evaluated as though over orthogonal orbitals but it must be remembered that the 
introduction of the dual basis reduces the symmetry properties of these to 

LK RL and LK gL (8) 
y qp --  y pq Fqpsr -- Fpqrs 

These quantities may be evaluated by a variety of techniques [ 15-18]. In the 
dual basis the one-electron integrals have no exploitable symmetry and the two- 
electron integrals possess only a two-fold symmetry 

(9) 

A consequence ofthis  is that and we must dea, with 
w 

an unsymmetric eigenvalue equation 

L L 
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or in matrix notation 

H C = S C E  (10b) 

In general Eq. (10) is not equivalent to the secular equations obtained from the 
variation method, unless {~} is complete. An analysis of the error in the 
energy obtained from Eq. (10) was given by Boys [ 19]. Error vectors may be 
defined for the left and right eigenvectors of Eq. (10) as 

A = C - C o o  (11) 

A =C-Coo (12) 

where I~, C are the left and right eigenvectors in a truncated expansion and 0=, 
Coo are the corresponding eigenvectors of Eq. (10) in a complete basis, 
respectively. Boys showed that the error in the energy is proportional to e, 
defined as 

e = ~/A A~/A. A (13) 

The significance of this is that the error contains the product of both error 
vectors. Hence, if {g t} is a good set for representing W, then the norm of A 
will be small and an accurate energy should be obtained since it will not depend 
too heavily on the set { qt }. However it is not possible to know how the error 
will decrease as the set {gt} is systematically extended. 

2.2. BOVB wavefunctions 
Given the preceding discussion of the error in the energy obtained from 

Eq. (10) it is clear that complete expansions, analogous to orthogonal CASSCF 
methods, provide a useful limiting case against which to explore the properties 
of more general BOVB wavefunctions. We have recently been interested in 
using highly truncated expansions which, if necessary, can be systematically 
improved to the limiting case. To this end it is useful to introduce a notation 

BOVB(N,M+X) (14) 

which we use to clearly label different wavefunctions. In this notation, N is the 
number of electrons accommodated in N nonorthogonal orbitals. M is the 
number of spin-couplings of the N electrons included in the wavefunction and 
X is the level of orbital replacements (Single, Double, etc. excitations) 
generated from each of the M spin-couplings. All other electrons in the system 
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are deposited in doubly-occupied molecular orbitals. 
BOVB wavefunction for water describing the 
nonorthogonal orbitals 

For example, consider a 
two O ~ H  bonds in 4 

H H 

With the orbitals numbered as shown above, two linearly independent spin- 
couplings would be 

4 1 
4 1 1 2 1 4 

3 2 3 4 3 ~ - ~ 2  2 3 

Ig 1 = A[~l~2(0~-~00 ~3*4(cx~-~00l /[/2 = A [ ~ l I ~ 4 ( 0 ~ - ~ I ~  ) ~ 2 ~ 3 ( ~ - ~ ( X ) ]  

and these would be denoted BOVB(4,2). If we were to include all single 
orbital replacements (necessary in our scheme for optimizing the nonorthogonal 
orbitals) the corresponding wavefunction would be denoted BOVB(4, 2+ S). If 
a complete expansion was to be used we would simply denote this as 
BOVB(4, V) indicating the variational limit (equivalent to a 4-electron/4-orbital 
CASSCF wavefunction). In general the total number of CSF of ionicity, i, 
which may be constructed from N electrons distributed in n orbitals with total 
spin, s, is [20] 

2s + 1)n! 
DNn~ = )! i+1)!( 1N S O! (15) i : (n  + i -  U ( 1 U  + - - 

i, the ionicity gives the number of orbitals which are doubly occupied. 
(15) the values of i are restricted to lie in the range 

In Eq. 

( N - n ) < i < N / 2  (16) 

Another set of configurations which it is sometimes useful to add to each spin- 
coupling is based on the restricted CI (RCI) ideas of Goddard and coworkers 
(e.g. see [21]). We have found that on some problems the variational bound is 
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violated when the BOVB wavefunction is limited to a small number of spin- 
couplings and their single excitations. This sometimes happens when a BOVB 
orbital optimization is started from a particularly poor set of orbitals. In such 
cases spurious lower energy roots appear in the solutions to Eq. (10), making 
any type of orbital optimization a hazardous undertaking. Clearly, under these 
conditions, the eigenspectrum of Eq. (10) does not lie close to that of Eq. (2). 
We have found that a stabilization (elimination of spurious lower roots) can be 
achieved by increasing the number of functions included in the BOVB 
wavefunction, in accord with the expectations of Eq. (13). In particular, the 
RCI expansion allows up to (N-2s)/2 simultaneous single excitations. While we 
have been unable to provide a rigorous proof of the efficacy of the RCI type 
expansion in BOVB calculations, we have not observed any problematic cases 
which have not been tamed by the use of a RCI expansion. The RCI expansion 
is generated by allowing each spin-coupled pair to have all possible occupations 
in the paired orbitals, i.e. 

The total wavefunction is then obtained by taking the direct product of all such 
structures. This leads, for P pairs, to a total of 3 p spatial configurations 

011- 021  031 041  
Q O O O 0 0  

The RCI expansion produces a relatively small number of additional terms and 
can be used for problematic cases to stabilize the energy obtained from Eq. 
(10). A wavefunction including these additional configurations for the example 
above would be denoted BOVB(4,1+ S+RCI). 
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2.3. Orbital optimization 
In the BOVB procedure the orbital space is partitioned into three 

subspaces: (1) a core of doubly-occupied orbitals which are orthogonal amongst 
themselves and also to all other orbitals, (2) an 'active' space of orbitals which 
are mutually nonorthogonal but are orthogonal to the core orbitals, and (3) a 
complementary virtual space which is orthogonal within itself and also to all 
other subspaces. With this partition of the orbital space, the optimization may 
be formulated in terms of a general rotation, R, of the orbitals. R may be 
separated into the product of a transformation, Ro, amongst orbitals which are 
required to remain orthogonal to each other and a general transformation, RN, 
amongst the nonorthogonal orbitals 

R = Ro RN (17) 

Ro is usually expressed as an exponential transformation 

1X2 R o = e  x = I + X +  7 +. . .  (18) 

Where X is an antisymmetric matrix containing the independent (orthogonal) 
rotation parameters. Expanding the energy in X about the origin 

~X+GX (19) 

allows X to be obtained from 

X = - G - l g  (20) 

where the components of g, the gradient vector, are given by 

dE 
d g  - Z pq -]- s pq - Z qp - s qp (21) 

pq 

The matrices L and L are defined as 

r rst 

r rst 

(22) 
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The one- and two-body density matrices are formed by contraction of the 
vector coupling coefficients with the left and right eigenvectors of Eq. (10) 
(assuming CSC = I) 

Y Pq --" E OK ~LLpq CL 
KL 

I"pqrs E ~ f~L = CKFpqrsC L 
KL 

(23) 

Further details of the evaluation of Ro, such as approximate expressions for the 
hessian matrix, G, in Eq. (20), may be found in Ref. 10. 

In our earlier work the transformation, RN, was evaluated using a super CI 
method [7-9]. Super CI includes single excitations from the reference 
wavefunction into the expansion space and uses the eigenvector from this 
extended CI calculation to rotate the orbitals [22]. The super CI strategy is not 
without problems in optimizing BOVB wavefunctions. When the expansion 
space is complete the energy is invariant to the nonorthogonal orbital rotations. 
If a truncated expansion is used, the energy is not variational and minimization 
is not necessarily the best way to proceed. However, the super CI formalism is 
particularly simple to implement and lends itself to large scale application. 
Consequently, we now develop a projection criterion for optimizing the 
nonorthogonal orbitals in a BOVB calculation which is motivated by the super 
CI method and reduces to super CI exactly in the limit of a single reference 
function. As we have mentioned previously, we wish to be able to extend the 
configuration expansion systematically to the complete limit. This means that 
it is most convenient to work with uncontracted configuration expansions. 
However, the super CI formalism (for more than a single reference function) is 
a contracted CI method in which single excitation operators are applied to the 
reference wavefunction rather than to individual configurations. Furthermore 
if we wish to expand the configuration space systematically, it is necessary to 
use some form of 'standard' expansion functions to avoid linear dependence. 
To illustrate this consider the application of an excitation operator (a product of 
creation and dual annihilation operators which transform as the generators of 
GL(N), see Ref.s 1 and 7) to a Rumer CSF (all our calculations employ the 

Rumer basis), ,Iv K ~, where N=6 and s=0 / 

6 1 1 

5 2 - 3 

. 4 

2 

6 IrK> 
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Now apply the excitation operator El4 

1 2 1 2 

_1_ 
El4 3 6 = 3 6 = 2 

4 5 1 5 

1 1 

2 5 - 5 2 

3 6 
4 3 

This produces a non-standard Rumer function as shown by the representation 
on the right hand side. These non-standard functions, which correspond to a 
Rumer diagram in which the lines cross, are not used in calculations. A 
standard set of  functions can be selected using the following procedure: the 
open shell orbitals are represented by a 1 if their number occurs in the left hand 
column of  the Weyl tableau or a 2 if it appears in the right hand column. 
Hence for the example above 

Orbital Number: 2 3 5 6 

Term" 1 1 2 2 

We now pair the left most "2" with the closest "1" to its left, i.e. 

Orbital Number: 

Term: 

Thus we obtain the standard function 

2 3 5 6 

1 1 2 2 

1 1 

2 6 - 5 2 

3 5 
4 3 

which is to be used in the calculation. Hence we can write 



2 3 7  

1 2 1 1 

" K 
El4 3 6 = P14 2 6 

4 5 3 5 

p~ indicates that this is the result of applying El4 to ]/1//~). The best way to 

keep track of such transformations is to calculate the overlap between the raw 
Rumer function generated and the standard Rumer function to be used in the 
super CI calculation. This phase/overlap must be included in the 
transformation process. In general all doubly-occupied orbitals are written 
first, in ascending order, then paired orbitals are ordered, first within each row 
of the Weyl tableau and then by the left column into ascending order, and 
finally the high-spin orbitals are inserted in ascending order. 

RN is obtained from the eigenvector of this pseudo super CI calculation. If 
we are optimizing the orbitals for M reference functions, RN is obtained as 

M 

R N = I + ~ X r (24)  
K 

where 

( X/~)pp =0 

= sigH(CK )A-1 K K (25) 

A 
M 

21c 1 
K 

In Eq. (25) CK is the right eigenvector component of reference function I rK)  
K and C pq is the eigenvector component corresponding to the application of E, pq 

to ]~K). With these definitions we can generate the rotation matrix, R, and 

assume convergence when R=I. In the case of a single reference function 
(M=I) Eq.s (24) and (25) reduce to the regular super CI procedure [23]. Other 
definitions of the projection for defining the nonorthogonal orbital 
transformation are possible. The transformation as defined in Eq.s (24) and 
(25) produces results which, in terms of orbital shapes and overlaps, are very 
similar to those obtained within the spin-coupled valence bond approach. Many 
examples illustrate that this process does converge, but we have found it 
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essential to include some form of convergence accelerator. In particular we 
have employed DIIS extrapolation [24] of the orbital coefficients using 
gradients of the orthogonal rotation parameters and the off-diagonal elements 
of RN to define the error vector. We have also implemented the space efficient 
form of the BFGS hessian updating method of Fischer and Alml/Sf [25]. By 
default our procedures use DIIS extrapolation, but we have found that the 
quasi-Newton technique can force convergence when extrapolation fails. More 
elaborate optimization techniques are certainly possible but only at an increased 
computational cost. 

2.4. Weights in BOVB wavefunctions 
Given that we intend to employ a wide range of different expansions in 

our BOVB calculations it is important to know which types of configurations 
dominate the wavefunction and which simply serve to condition Eq. (10). The 
usual way to analyze a wavefimction is to calculate the weight of each 
configuration within the total wavefunction. The most widely used definition 
of weight is that of Chirgwin and Coulson [26] 

W K = ~_~ CKSKL C L (26) 

in which SKL is a configuration overlap and C is the eigenvector. 
normalized such that 

C is usually 

Z CKSKLCL = 1 (27) 
KL 

In the BOVB approach, we must deal with both left and right eigenvectors. 
Hence we use a symmetric form for the weights 

- + (28) 

which given the normalization of the left and right eigenvectors 

Z CKSKL CL = 1 (29) 
KL 

implies 

=1 (30  
K 

All weights reported in this chapter were evaluated using Eq. (28). 
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3. ILLUSTRATIVE CALCULATIONS 

In this section we outline some simple calculations which illustrate the nature of 
the results we can expect from the BOVB method we have described. Our 
purpose here is not to report new applications, those will be given in the next 
section, but rather to illustrate the utility of what we have proposed and enable 
a comparison to be made with other valence bond schemes. 

All of our computer programs have been interfaced with the GAUSSIAN 
98 suite of programs [27]. All one- and two-electron integrals and integral 
derivatives over atomic basis functions are evaluated using standard procedures 
within GAUSSIAN 98. These are passed to our programs which have been 
coded as a link within the GAUSSIAN structure. All other standard ab initio 
and semiempirical calculations are performed with GAUSSIAN 98. Orbital 
surface plots presented in this chapter are produced with MOLDEN [28]. 

3.1. C2nH2n+2 Polyenes 
Polyenes provide a good example to illustrate BOVB calculations based on 

a single covalent configuration (perfect-pairing approximation). It is possible 
to treat a very large number of electrons within this type of approximation. 
For a BOVB(N,I+S) calculation the single excitations necessary for orbital 
optimization add only N(N-1) configurations to the super CI problem. This 
coupled with our use of essentially linear methods for the orbital optimization, 
which reduce the number of transformed two-electron integrals required to a 
minimum, prompts us to believe it is possible to treat perhaps up to N=60. In 
this work we report calculations for up to N=30 using our current code. For 
larger problems it will be necessary to write a very efficient direct biorthogonal 
two-electron integral transformation, since this process will now dominate the 
calculation. A revised strategy for this transformation is currently being 
developed. We also note that if we wish to include more than a single perfect- 
pairing configuration the extension of the super CI space goes roughly in steps 
of N(N-1) per additional spin-coupling. So several spin-couplings can be 
treated without difficulty. 

Since our purpose is to show the number of electrons/nonorthogonal 
orbitals that can be handled we have simply used a minimal STO-3G basis [29]. 
The polyene is set up with alternating double and single bonds. The double 
bond length is taken as 1.335 A, the single bond length as 1.45 It  and the C ~ H  
bond as 1.089 A, in all cases. The CCC and HCC angles are assumed to be 
120 ~ We also report, for comparison, Hartree-Fock energies and CASSCF 
energies. The CASSCF calculations are limited to up to N=12. In these 
C2nH2n§ systems there are 2n n-electrons and we include all of these in our 
calculations. The wavefunction used may be denoted BOVB(2n, I+S) in the 
notation of Eq. (14). As may be anticipated the outcome of the BOVB 
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~4 

Fig. 1. The innermost paired orbitals in C6H8 obtained at the BOVB(6,1+S)/STO-3G level. 
The molecule is oriented so that it lies in the plane of the paper. 

orbital optimization is a set of 2n carbon-centred, highly localized 2p-like 
nonorthogonal orbitals which are distorted towards their bonding partner. Fig. 
1 displays the innermost paired orbitals in C6H8 viewed from above the 
molecular plane. The overlap integral between these orbitals is 0.601. For the 
outer pairs the overlap integral is reduced slightly to 0.597. This pattern 
persists through all of the polyenes we have studied (N=2n=2-30). The overlap 
integrals between adjacent spin-coupled pairs is 0.329 indicating that our 
perfect-pairing calculation does not impose any type of inter-pair orthogonality 
restriction. 

It is interesting to look at the differences in energy between the Hartree- 
Fock, CASSCF N in N and BOVB(N, 1+S) calculations. The Hartree-Fock and 
CASSCF energies scale linearly with the number of electrons for these systems 
(size extensive). To be able to compare the BOVB and CASSCF energies, as a 
function of the number of electrons, these quantities are plotted in Fig. 2 as 
energies relative to the Hartree-Fock energy for each polyene. A straight line 
has been fitted to each set of data: in both cases, the correlation coefficient is 
1.0000. This shows the stability of the BOVB results even for very large 
numbers of electrons. A further point to note is that accurate energies can be 
obtained even with this very restricted type of BOVB wavefunction. The 
highly localized form of the orbitals introduces a large amount of electron 
correlation, despite the fact that only a single spatial configuration and spin- 
coupling are included. 

The energies reported are from the super CI calculation, as described in 
the previous section. The orbitals are transformed until the norm of the orbital 
gradient falls below 1 x 10 -5. In all cases, at convergence, the weight of the 
perfect-pairing configuration is 1 (see Eq. (28)). This illustrates that for a 
single configuration Eq. (25) is equivalent to the regular super CI method. 
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Fig. 2. Comparison of CASSCF N in N, BOVB(N,I+S) and Hartree-Fock energies for 
polyenes C2nH2n+2 (N= 2n= 2-30). 

3.2. Benzene 
The classic spin-coupled valence bond description of benzene [30] is by 

now well known. The description comprises six equivalent, carbon-centred 2p- 
like orbitals which are distorted equivalently towards neighbouring carbons. 
The BOVB description is qualitatively identical to that of the spin-coupled 
valence bond method. Using a cc-pVDZ basis [31] and allowing the six rc 
orbitals and electrons to become nonorthogonal we have performed 
BOVB(6, I0, B OVB ( 6, 5+ S) and BOVB(6,2+S) calculations. Fig. 3 shows one 
of the six equivalent carbon-centred orbitals which are obtained. The molecule 
has been tilted out of the plane of the paper to show clearly the 2p-like shape 
and the symmetric distortion towards both neighbouring carbon atoms. Table 1 
shows the total energies, and orbital overlap integrals between adjacent and next 
nearest orbitals, obtained at different levels. Also given is a breakdown of the 
weights from each class of function included: covalent, singly ionic, doubly 
ionic etc. The covalent functions comprise the two equivalent Kekul4 
structures and the three equivalent Dewar structures: 

() () @ @ @ 
Kekul4 Dewar 
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Fig. 3. One of the six equivalent carbon-centred benzene orbitals obtained from BOVB 
calculations. 

The energy of  the BOVB(6, V) calculation is identical to an orthogonal 
CASSCF 6-electron/6-orbital calculation. Note that the contribution of the 
singly ionic terms is not zero but, when combined via Eq. (25), a zero orbital 
rotation is obtained. Qualitatively the picture emerging from all three BOVB 
calculations is the same. It is useful to compare the BOVB wavefunctions with 
those in Ref. 32. Spin-coupled valence bond calculations do not contain any 
ionic configurations and so give summed weights for the Kekule and Dewar 
structures of 0.812 and 0.188, respectively. CASVB calculations do include 
ionic configurations but their weights are effectively reduced to zero and so 
yield weights in the range of 0.819-0.627 for the Kekul6 structures and 0.181- 
0.373 for the Dewar structures, depending on the type of optimization used. 

Table 1 
Total energies (a.u.), overlap integrals and configuration weights for benzene obtained with the 
cc-pVDZ basis with different wavefunctions. The geometr~ used is HF/cc-pVDZ 

Orbital overlap integrals 
Wavefunction Energy Adjacent Next nearest 
HF -230.702913 
BOVB(6, I0 -230.775933 0.526 0.112 
BOVB(6, 5+S) -230.771032 0.533 0.115 
BOVB(6,2+S) -230.756827 0.527 0.102 

Sum of weights 
Kekul6 + Dewar = covalent singly doubly 

ionic ionic 
remainder 

BOVB(6, V) 0.555 0 .277  0.832 0.129 0.038 
BOVB(6, 5+S) 0.573 0 . 2 5 4  0.827 0.173 m 
BOVB(6,2+S) 0.826 - -  0.826 0.174 m 

0.001 
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3.3. Dioxirane  
The next example we consider is the three-membered ring dioxirane. Here 

we treat the electrons involved in the bonds of the ring. The geometry we use 
was obtained at the HF/cc-pVDZ level. We carried out BOVB(6, V) and 
BOVB(6,1+S+RC1) calculations. In contrast to x systems, we have observed 
that nonvariational BOVB calculations are quite difficult to converge for 
systems. Faced with this problem, as we have discussed above, we include as 
well as all single excitations from the reference covalent function also the RCI 
configurations. This usually stabilizes the optimization process. Table 2 shows 
the energies obtained at various levels and the weights of different functions in 
the total wavefunction. The wavefunction is dominated by a single spin- 
coupling with a weight of 0.954" 

1 2 1 

3 4 5 

5 6 4 3 

V = A[t~l~2(txl3-13tx) '3~)4(~--~) t~5t~6(~--~)1 

Other spin-couplings have small but negative weights and so reduce the 
contribution of covalent functions in the BOVB(6, V) wavefunction to 0.892. 
This is a consequence of the Chirgwin-Coulson definition of weights which can 
produce negative weights. Fig. 4 shows the BOVB symmetry unique orbitals. 
There are three equivalent orbitals on the opposite side of the mirror plane 
perpendicular to the plane of the ring. The numbers of these orbitals are 
indicated in parenthesis in Fig. 4. Table 3 shows the matrix of orbital overlap 
integrals. The powerful oxidizing reactivity of the dioxirane molecule is 
generally initiated by rupture of the O---O bond rather than the C---O bonds. 

Table 2 
Total energies (a.u.) and configuration weights for dioxirane obtained with the cc-pVDZ basis 
with different wavefunctions. 

,, 

Wavefunction Energy 
HF -230.702913 
BOVB(6, V) -230.775933 
BOVB(6,1+ S+ RC1) -230.756827 

Sum of weights 
covalent singly d o u b l y  remainder 

ionic ionic 
. . . . . . .  

0.892 -0.007 0.079 
0.889 0.000 

. . . . . . . . . . .  

0.036 
0.111 

. . . . . . .  
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C 

H H  

J 

Fig. 4. Symmetry unique orbitals of dioxirane obtained with BOVB(6,1+S+RC1) 
wavefunction using a cc-pVDZ basis. Parts of the orbitals have been cut off by the bounding 
box used for plotting. 

This preference is reflected in the overlap integral of 0.627 between the O---O 
orbitals, compared with an overlap of 0.800 for the C ~ O  orbitals. The largest 
inter-pair overlap (0.128) is between the two symmetry equivalent carbon- 
centred orbitals (t~l and ~6). 

Table 3 
Overlap integrals obtained from BOVB(6,1+S+RC1) wavefimction for dioxirane in a 
cc-pVDZ basis 

(~l (~2 (~3 (~4 (~5 (~6 
~)l 1.000 

~)2 0.800 1.000 
~3 0.021 -0.054 1.000 
(~4 0.060 0.033 0.627 1.000 
~5 0.124 0.084 0.033 --0.054 1.000 
(~6 0.128 0.I24 -0.060 0.021 0.800 1.000 
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3.4. Methane 
Historically there have been many valence bond descriptions of methane. 

Here we report a BOVB(8,1+S+RC1)/cc-pVDZ calculation at the HF/cc-pVDZ 
geometry. The BOVB description is dominated by a single spin-coupling with 
a weight of 0.766. This spin-coupling corresponds to four equivalent spin- 
coupled pairs, each of which consists of the two orbitals shown in Fig. 5. The 
overlap integral between the paired orbitals is 0.810, with all other overlap 
integrals being < 1 x 10 -4. The singly-ionic terms do not contribute to the final 
wavefunction, but the additional RCI terms have a summed weight of 0.234. 
The RCI terms serve to condition the eigenproblem and produce a good 
estimate of the energy. The BOVB(8,1+S+RC1) energy lies approximately 
0.005 a.u. above the BOVB(8, V)energy. This is remarakbly close given the 
compactness of the BOVB(8,1+S+RC1) expansion (129 CSF) compared with 
the BOVB(8, V)expansion (1764 CSF). The bonding picture that emerges is 
consistent with the classical hybrid description which may be found in most 
undergraduate textbooks. It must be stressed that while the individual orbitals 
do not transform as irreducible representations of the molecular point group, 
the total N-electron wavefunction does possess full Td symmetry. 

H 
J 

HH 

Fig. 5. Symmetry unique orbitals of methane obtained with BOVB(8,1+S+RC1) wavefunction 
using a cc-pVDZ basis. 
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3.5. Water 
We have shown the BOVB description of n and o bonds in the previous 

examples. We conclude this section with the BOVB description of the water 
molecule in which we allow both the bonding and lone-pair electrons to be 
described in nonorthogonal orbitals. This leads to an eight electron problem 
which we describe with a BOVB(8,1+S+RC1)/cc-pVDZ wavefunction. Again 
the geometry is HF/cc-pVDZ. The BOVB(8,1+S+RC1) energy lies 
approximately 0.008 au above the BOVB(8, V) energy. 

H 

O H 

~1 (~4) 

~6 (~8) 

Fig. 6. Symmetry unique orbitals of water obtained with BOVB(8, I+S+RC1) wavefunction 
using a cc-pVDZ basis�9 
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It is well known that there are two viewpoints on the description of the 
lone-pairs in water. They differ in whether the lone-pairs are equivalent or not. 

H%,,,,,,,,,,,,, ~ H%%,,,,% ) 
...... ~C 

(a) (b) 

Both descriptions, depicted above, are equally valid and lead to a total N- 
electron wavefunction which possesses the full symmetry of the molecular point 
group. However, we note that we have found it impossible to converge our 
BOVB method to any solution mimicking (a) above. The description given in 
Fig. 6 is the only one we have been able to fully optimize. In this description 
we obtain two equivalent lone-pairs, one above and one below the molecular 
plane in radially split nonorthogonal orbitals. The matrix of overlap integrals 
is given in Table 4. The weight of the perfect-pairing configuration is only 
0.571. The singly-ionic terms have zero weight but the RCI terms contribute 
0.429 to the final wavefunction. Again, this large contribution from the RCI 
terms probably explains why the energy obtained is so close to that obtained 
with a complete expansion. Conversely, the energy obtained with just the 
perfect-pairing term can be expected to lie well above the variational limit. 

Table 4 
Overlap integrals obtained from BOVB(8,1+S+RC1) wavefunction for water in a cc-pVDZ 
basis (see Fig. 6 for numbering) 

r r r ~4 r r r r 
r 1.000 

02 0.773 1.000 
03 0.191 0.353 1.000 
~4 0.089 0.191 0.773 1.000 
r O. 106 0.226 0.226 O. 106 1.000 
~6 0.026 0.139 0.139 0.026 0.817 1.000 
(~7 0.106 0.226 0.226 0.106 0.054 0.015 1.000 
~)8 0.026 0.139 0.139 0.026 0.015 -0.074 0.817 1.000 
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4. APPLICATIONS 

4.1. The pseudohalide acid HCS2N3 
The term pseudohalogen is used to refer to strongly bound, linear or 

planar univalent radicals which can form anions, hydracids, neutral 
dipseudohalogens and interpseudohalogens. Recently the CS2N3 �9 radical has 
been shown to satisfy all these conditions and so is classed as a pseudohalogen 
[33]. It is the only cyclic pseudohalogen currently known. 

Our investigation is concerned with the electronic structure of the 
hydracid, H--(CS2N3). Early semiempirical calculations [34] indicated two 
stable geometric forms, 

H 
/ 

S S 
I II 

s/%N s/C"-N..- I-I 
\ / \ / 
~ N  N ~ N  

I II 

with the thiol form (I) being the more stable. However, recent experimental 
studies [33] have shown that the N ~ H  form (II) is the one adopted in the X- 
ray structure. There has also been much reference [33-35] to the "aromatic" or 
"pseudoaromatic" character of the underlying CS2N3- ion. We have 
investigated this system with our BOVB method using the cc-pVDZ basis. 

H-----(CS2N3) contains eight valence n electrons. It should be borne in 
mind that the sulfur atom outside the ring also contributes two electrons to the 
x system. We have optimized the geometries of both forms of the acid using a 
BOVB(8, V) wavefunction with no symmetry constraints. Both optimized 
structures are very slightly non-planar. Table 5 gives the total and relative 
energies of the two forms. We see accord with the experimental situation in 
that the N ~ H  form (II) is predicted to be the most stable. 

Table 5 
Total energies (a.u.) and relative energies (kcal mol -l) in parenthesis for the two forms of 
H---(CS2N3) obtained with the cc-pVDZ basis 
Wavefunction Form I Form II 
HF -996.785519 ( 7 . 1 )  -996.796858 (0.0) 
BOVB(8, V) -996.864375 ( 4 . 8 )  -996.872056 (0.0) 
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Fig. 7. BOVB(8, F)/cc-pVDZ orbitals of form I of H----(CS2N3) 
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Table 6 
Overlap integrals obtained from BOVB(8, Y) wavefunction for form I of H----(CS2N3) in a 
cc-pVDZ basis (see Fig. 7 for orbitals) 

(DI ~2 (~3 (~4 (~5 ~)6 ~7 (~8 
~l 1.000 

~2 0.849 1.000 
~3 0.208 0.207 1.000 
~4 0.025 0.024 0.670 1.000 
~5 -0.041 -0.042 0.191 0.290 1.000 
(~6 -0.018 -0.020 0.051 0.093 0.614 1.000 
~7 0.061 0.061 0.172 0.010 0.019 0.179 1.000 
t~S 0.104 0.090 0.236 -0.006 0.003 0.234 0.853 1.000 

In both structures the wavefunction is dominated by a single spin-coupling in 
which the orbitals are paired ~ 1 ~ 2  t ~ 3 ~ 4  ~ 5 ~ 6  ~7~I~8 �9 In the S ~ H  
form (I) this function has a weight of 0.899 in the final wavefunction. In the 
N ~ H  form (II) the weight of this spin-coupling is 0.972. The BOVB(8, Y) 
orbitals for I are shown in Fig. 7 and those of H in Fig. 8. The corresponding 
overlap integrals are given in Tables 6 and 7. We find no indication of any 
'aromaticity' ,  since both structures are dominated by a single spin-coupling. 
From our results, the distribution of the rc electrons in these systems is best 
denoted as 

. in 
I 

/Cxx 
"S N \ / 

N = N  

S 
II 

. s / C ~ ~ H  
\ l 
N = N  

Table 7 
Overlap integrals obtained from BOVB(8, V) wavefunction for form H of H--(CS2N3) in a 
cc-pVDZ basis (see Fig. 8 for orbitals) 

(~1 (~2 (~3 (~4. ~5 ~6 (~7 ~8 
~1 1.000 

(~2 0.701 1.000 
~3 -0.010 0.112 1.000 
~)4 --0.110 0.181 0.834 1.000 
t~5 0 .033  --0.042 0.183 0.293 1.000 
r 0 .032  --0.005 0.042 0.029 0.616 1.000 
~7 -0.021 0.119 0.038 0.079 0.036 0.173 1.0Qo 
~8 -0.076 0.115 0.045 0.104 0.028 0.230 0.852 1.000 
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Fig. 8. BOVB(8,10/cc-pVDZ orbitals of  form II of  H--(CS2N3) 
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4.2. Diphosphaallene radical anion 
The formation of anions provides an interesting challenge to electronic 

structure methods. Not only from the point of view of providing quantitatively 
accurate predictions, but also from the perspective of what happens to the 
electronic structure when an extra electron attaches. Recent studies on the 
diphosphaallene system 

B u  t 

B u  t 

B u  t 

But_  
,,.. P ' :- .  C = P  

B u  t 

B u  t 

(which we shall denote Ar-P=C=P-Ar) and its radical ions [36, 37] have 
suggested that it is an electronically intriguing system. Essentially, when the 
anion is formed, by electrochemical reduction, two conformations are obtained. 
These two conformations have been referred to as "cis-like" and "trans-like" 
[37] and differ principally in the Ar-P. . .P-Ar dihedral angle. 

Ar 

P Ar Ar 

cis-like trans-like 

In the cis structure the dihedral angle is in the region of 45 ~ while in the trans 
structure it is in the region of 135 ~ These structures lie very close to each 
other in energy. Semiempirical AM1 studies on the complete system suggest a 
preference for the trans conformation of 0.3 kcal mo1-1. Conversely, ab initio 
and density functional methods applied to the model H-P-C=P-H system 
predict the cis structure to be more stable by 0.3-1.5 kcal mol -~, depending on 
the level of theory used [37]. It has been suggested that the calculated EPR 
couplings of the trans structure agree better with the results of EPR 
experiments. The cis structure possesses C2 symmetry with both P atoms 
equivalent. The trans structure is of C1 symmetry with the two P atoms 
slightly inequivalent. This inequivalence rises from the bending of the PCP 
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angle. It has been found that this angle has an essentially flat potential which 
gives the P-C-P linkage a fluxional nature, allowing it to invert easily. This, 
and the results of EPR experiments, have led to the suggestion that the radical 
anion [Ar-P=C=P-Ar] - is best described by two equivalent allylic structures 

�9 m - -  �9 

A r - P - C = P - A r  ~ A r - P = C - P - A r  

where the 'resonance' is brought about by the fluxional P-C-P linkage. These 
resonance forms are suggested by the molecular orbital viewpoint which 
involves the additional electron entering an antibonding allylic orbital and thus 
weakening/breaking the P=C bond. 

Clearly, obtaining an ab initio description of a system as large as this with 
a reasonable basis set is an unrealistic undertaking. Thus we have chosen to use 
the layering method (IMOMO) of Morokuma and coworkers [38], in which the 
full system is divided into three sets with coordinates denoted by R~, R2 and 
R3,  respectively. 
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Model system 

The model system we have treated with the BOVB method and the full system 
with the PM3 semiempirical method. The total energy is evaluated as 

(31) 

The gradients of Eq. (31) with respect to geometrical parameters may be 
evaluated straightforwardly. 

For the BOVB description of the neutral system we chose the four 
electrons of the allylic n system and used a 6-31++G(d,p) basis [39]. We 
carried out geometry optimizations at the BOVB(4, V)/6-31 ++G(d,p):PM3 level 
for the neutral and found very good agreement with the X-ray structure. For 
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the radical anion we included in the BOVB orbital space one additional allylic 
orbital from the starting set of spin-restricted open-shell Hartree-Fock orbitals. 
We located both cis and trans forms of the radical anion at the BOVB(5, V)/6- 
3 I++G(d,p):PM3 level. Our calculations agree with the findings of previous 
ab initio calculations, on the model HPCPH system, in that we find the cis 
structure is more stable than the trans structure by 2.0 kcal mol -~. 

But .,,r 

- - C ~ P  \ 
Bu t 

Bu t ~ " Bu t 

2 

3 

Bu  t 

/ ............. , . ~ ,~  ~.. ..... !3! ! 

Fig. 9. BOVB(4, V)/6-31 ++G(d,p) orbitals of the --P=C=P m fragment of Ar-P=C=P-Ar (see 
text for description) 
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Our concern here is the nature of the radical anion. In Fig. 9 the 
BOVB(4, It)orbitals of the neutral are shown. The wavefunction is dominated 
by a single spin-coupling, t~1~r ~3~t~4, with a weight of 0.981. The 
overlap integrals (~1 [(~2)--- ((~3 [(~4)-- 0.600, with all other overlap integrals 

being two orders of magnitude smaller. 
Fig. 10 shows the BOVB(5, V) orbitals of the trans radical anion. Two 

spin-couplings make a significant contribution: (~2~)3 ~)4~(~5 ~)1, with a 
weight of 0.727 and ~)1~)4 (~2~)3 ~)5, with a weight of 0.129. The orbital 
overlap integrals are given in Table 8. Clearly the double bonds of the P-C-P 
linkage still appear intact. Although ~)4/t~5 have been distorted by having the 
high-spin electron largely localized on the P atom on the left hand side. A 
small amount of high-spin character is also attributed to t~5 by the second spin- 
coupling. From these results we suggest a better scheme for depicting the 
radical anion might be 

. - - .  m 

Ar-P=C=P-Ar +-~ Ar-P=C=P-Ar 

which emphasizes that the attachment of an electron does not automatically lead 
to the disruption of the P=C bond. 

The use of the layering scheme combined with our BOVB methods 
provides one route to valence bond studies of large molecular systems. These 
types of studies merit much more investigation. The layering technique can of 
course be adapted to any form of energy calculation and hence any type of 
valence bond calculation. It opens up new horizons for ab initio valence bond 
methods, which have traditionally been used mostly for small molecule studies. 
Ironically (perhaps), the small molecule ab initio calculation gets to stay (which 
pleases the theoretician), but it takes on the appearance of 'reality' through the 
intermediation of Eq. (31). For systems very much larger than those studied 
here it is possible to add a further layer to Eq. (31), and introduce a yet lower 
level of theory (molecular mechanics) to produce a three-layer calculation. 

Table 8 
Overlap 
[Ar-P=C=P-Ar] - (see Fig. 10 for orbitals) 

integrals obtained f rom BOVB(5, V)/6-31 l++G(d,p) 

1.000 
0.247 
0.263 

r 1.000 
(~2 --0.165 1.000 
r 0.129 0.656 
Ca 0.813 0.103 
~5 0.399 0.081 

~4 ~5 

1.000 
0.730 1.000 

waveftmction for 
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Fig. 10. BOVB(5, V)/6-31 ++G(d,p) orbitals of the mP=C=P m fragment of [Ar-P=C=P-Ar] - 
(see text for description) 
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5. CONCLUSIONS 

It is appropriate to conclude by asking what the BOVB method has to offer 
valence bond theory in general and, perhaps more importantly, what it may 
offer the larger area of quantum chemistry as a whole. 

The BOVB method does not lend itself for use as a 'black box' method. 
The same is true of any valence bond approach. The user must have some 
understanding of the underlying electronic structure of the system under study. 
Only then will they be able to make sane choices for the orbital partitioning and 
spin-coupling problems. This aspect may be viewed as a strength or a 
weakness, depending on one's point of view. However, it does mean that the 
'preparative' stage of a calculation is very much more labour-intensive than a 
corresponding calculation using, for example, a Hartree-Fock based or density 
functional method. Computationally, like any multiconfigurational method, 
there are significant overheads in obtaining transformed molecular integrals and 
dealing with a sometimes large eigenvalue problem. To treat large molecular 
systems some form of layering and/or hybrid and/or semiempirical 
methodology must be employed. The wavefunctions obtained from BOVB 
calculations are not always as compact as those from spin-coupled valence bond 
studies, but they are sufficiently compact and accurate to be a useful extension 
of valence bond methods. There also remain essential developments in the 
BOVB method which are required, such as gradients for general BOVB 
wavefunctions and a compact treatment of the dynamic electron correlation 
problem. 

At present, the BOVB method is able to treat large numbers of electrons in 
nonorthogonal orbitals, provided some restriction of the spin space is imposed. 
This combined with layering techniques for managing large numbers of atoms 
should provide a route into many areas of molecular research which have 
traditionally been 'too big' for all atom valence bond calculations. The 
developments of the last decade bear witness to the fact that as the number of 
valence bond studies on real problems increases, so the following for the 
valence bond approach grows. The future of valence bond methods appears 
bright. 
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Ab initio modern valence bond theory, in its spin-coupled valence bond (SCVB) 
form, has proved very successful for accurate computations on ground and excited 
states of molecular systems. The compactness of the resulting wavefunctions 
allows direct and clear interpretation of correlated electronic structure. We 
concentrate in the present account on recent developments, typically involving 
the optimization of virtual orbitals via an approximate energy expression. These 
virtuals lead to higher accuracy for the final variational wavefunctions, but with 
even more compact functions. Particular attention is paid here to applications of 
the methodology to studies of intermolecular forces. 

1. I N T R O D U C T I O N  

Various methods are now available for computing highly accurate total 
energies and molecular properties for ground and excited states of small 
molecular systems. Unfortunately, the ever-increasing sophistication of such 
wavefunctions tends to make it more and more difficult to obtain direct insight 
into the physical and chemical details of the molecular electronic structure. As 
such, there is of course much interest in developing alternative strategies that 
can obtain useful accuracy with relatively compact wavefunctions, thereby 
allowing the development of appropriate models that provide reliable predictions 
for larger systems. Of course, as well as being compact, the descriptions need to 
be accurate if we are to trust the predictions of the derived models. At least in 
principle, valence bond theory has always offered direct and clear interpretation 
of the wavefunction, but intrinsic difficulties linked to the nonorthogonality of the 
orbitals, as well as to the apparent high contributions from ionic structures, have 
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meant that VB approaches have received relatively minor attention from the 
chemical community. 

As evidenced by numerous contributions to this volume, recent years have 
seen a significant resurgence of interest in ab initio VB approaches, with a 
prominent role being played by algorithms for computing so-called 'modern VB' 
wavefunctions, such as in spin-coupled valence bond (SCVB) theory. In the 
present account, we summarize key features of the basic spin-coupled and SCVB 
approaches, before describing recent extensions that combine the required 
degrees of compactness and accuracy by utilizing optimized virtual orbitals. 
Particular attention will be devoted to the application of the methodology to 
studies of intermolecular forces, which pose additional problems. 

2. SC A P P R O A C H  

The SC method describes an N-electron molecule through a set of N singly 
occupied SC orbitals {#i} which are completely free to overlap with one another. 
The coupling of the spins is described by a linear combination of the full space of 
f [  spin eigenfunctions {O~}, where S ~  are the usual spin quantum numbers, 
and 

(2S+I)N]. 
f~ = (V~+S+I)10AN-S)! (1) 

The most general single-configuration wavefunction that can be set up using the 
N SC orbitals may be written [1,2]: 

'.F~ = A 01*~...r ~es,, e~,,~, (2) 
k=l 

in which A is the antisymmetrizer, needed to satisfy the Pauli principle, and the 
cs~ are called spin-coupling coefficients. 

The N SC orbitals are expanded in a proper basis set of m basis functions {Xp}: 

r n  

r = ~ c,.z. (3) 
p=l 

Hence the expectation value of the energy becomes a function of the {%} and {cs~ } 
coefficients: 

E = ( ~  [~2~} = E({c,},{cs,}) (4) 

in which I:I is the usual nonrelativistic clamped-nucleus hamiltonian. The various 
free parameters are evaluated on the basis of the variational principle, using a 
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robust minimization algorithm based on a stabilized Newton-Raphson procedure. 
This last requires the evaluation of first and second derivatives of the energy 
with respect to the variational coefficients, using density matrices up to third 
order (for the gradient) and up to fourth order (for the hessian). 

It is straightforward also to include a 'core' of doubly-occupied orthonormal 
orbitals, which may either be taken unchanged from prior calculations or 
optimized, simultaneously with the {Cip } and {csk } coefficients, as linear 
combinations of the {Zp}. Multiconfiguration variants of the SC wavefunction 
may also be generated, if required, and calculations may be performed directly 
for excited states. 

In general, SC wavefunctions are not invariant to linear transformations of the 
{Oi}, so that the converged solution is a unique outcome of the optimization 
procedure. There is slightly more flexibility in the numerical values of the spin- 
coupling coefficients, which depend on the particular choice of full basis used in 
the calculations, but it is routine to transform exactly between different spin 
bases. The shapes of the SC orbitals, and their variations with nuclear geometry, 
provide direct insight into the spatial arrangements of the electronic clouds, the 
hybridization of the atoms, and processes of bond making and bond breaking. The 
spin-coupling coefficients, and/or matrix elements of appropriate spin operators, 
furnish a quantitative description of the relative importance of the different 
modes of spin coupling. This gives the possibility, for example, of elucidating the 
role of different resonance structures to the overall wavefunction. 

In this way we may obtain a compact single-configuration wavefunction of 
comparable accuracy to a many-configuration 'N electrons in N orbitals' CASSCF 
description. It must be stressed that no constraints are imposed on the SC 
orbitals, which are determined solely only on the basis of the variational 
principle, but a typical outcome is a set of functions mostly localized on individual 
atoms but distorted towards all neighbouring atoms, especially along the 
direction of bonds. As such, it is often straightforward to interpret SC 
wavefunctions in terms of traditional chemical concepts. An important 
consequence of these 'overlap enhancing' orbital distortions is a much reduced 
role for ionic configurations. 

Basis set superposition error (BSSE) is a particular problem for supermolecule 
treatments of intermolecular forces. As two moieties with incomplete basis sets 
are brought together, there is an unavoidable improvement in the overall quality 
of the supermolecule basis set, and thus an artificial energy lowering. Various 
approximate corrections to BSSE are available, with the most widely used being 
those based on the counterpoise method (CP) proposed by Boys and Bernardi [3]. 
There are indications that potential energy surfaces corrected via the CP method 
may not describe correctly the anisotropy of the molecular interactions, and there 
have been some suggestions of a bias in the description of the electrostatic 
properties of the monomers (secondary basis set superposition errors). 
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Not surprisingly, there have been various attempts to develop methods for the 
a priori elimination of BSSE, including the development of appropriate effective 
hamiltonians. Of particular relevance to the present work is the idea of 
partitioning the supermolecule basis set between the various molecular 
fragments, of identifying the total number of electrons associated with each 
fragment, and then of developing each orbital using only the basis functions of 
the particular fragment. At the RHF level, this procedure has been termed self- 
consistent field for molecular interaction (SCF-MI)[4,5]. The SCF-MI method 
has been applied successfully to a variety of systems, ranging from the well 
known problem of the water dimer up to pairs of nucleic acids [5]. Much the same 
type of approach can be implemented almost immediately within the SC 
methodology. 

Indicating with {Z~} and {Z~} the atomic basis functions centred on the moieties 
A (with NA electrons) and B (with N B electrons), respectively, the SC orbitals are 
expanded in the form: 

m  ̂
*~ = E cipz: for i=1, 2,...,N^ 

p=l 

mB 
g = Z  C,Z~ for i=l,2,...,NB (5) 

p=l 

Of course, the SC orbitals associated with a particular fragment are completely 
free to overlap with one another, and with all of the SC orbitals of the other 
fragment(s). In particular, the {~} are free to extend spatially over the nuclei of 
the B molecule, using the tails of the atomic functions {Z:}, thereby taking into 
account also effects connected to charge transfer interactions. Various 
calculations have confirmed that such a SC wavefunction is able to describe in a 
compact way the ground state of a weakly-bound system, without biasing the 
results with BSSE. 

3. SCVB 

The converged SC orbitals satisfy orbital equations of the form [6]: 

~i~,= e~)~, i= 1, . . . ,N and j=l, . . . ,m (6) 

such that one of the solutions coincides with the SC orbital ~, already determined 
by the variational procedure and the higher solutions are virtual orbitals. Due to 
the mathematical structure of the hermitian operators {f'~}, each orbital 'feels' a 
field generated by only the remaining N-1 electrons, so that low-lying virtuals 
provide rather good descriptions of actual excited states. Each of the f~ generates 
its own 'stack' of m orthonormal functions, but orbitals in different stacks may 
overlap one another. 
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Starting from the ground-state SC configuration and/or from other appropriate 
reference configurations, additional configurations may be generated by replacing 
one or more occupied orbitals with virtual orbitals. "Vertical' excitations are those 
within individual stacks. Configurations with doubly occupied orbitals, obtained 
by means of 'cross excitations', are termed ionic. Once all the desired structures 
have been generated, the best linear combinations of them are determined by 
constructing and resolving the corresponding secular problem using efficient VB 
strategies [7,8]. The various roots are called SCVB wavefunctions and 
correspond, of course, to different electronic states. 

Calculations on quite a large variety of systems have shown that the SCVB 
approach can generate molecular properties and relative energies of an accuracy 
comparable to MO-CI methods, but using expansions built from orders of 
magnitude fewer configurations. In addition, it is very common to find that very 
few VB structures have an appreciable weight in any given excited state, thereby 
making it very straightforward to deduce a reliable and insightful qualitative 
interpretation of the electronic structure. 

In recent years, the SCVB approach has proved particularly useful in studies 
of low-energy charge transfer collisions in astrophysical plasmas [9]. The usual 
strategy is to consider only vertical excitations into low-lying virtuals, plus 
associated ionic configurations, taking as reference functions the dominant 
structure for each state of interest. It is important to achieve good accuracy for 
several asymptotic energy separations, as these determine to a large extent the 
positions and the nature of (avoided) crossings. However, it is just as important 
to maintain this high accuracy for all geometries, and for many states of different 
spin and spatial symmetry. The compactness of the final SCVB wavefunctions 
proves particularly beneficial for the computation of the required radial 
(nonadiabatic) couplings. The ease of identifying the qualitative character of each 
state, over the entire range of nuclear geometries, is an important asset when 
transforming the adiabatic molecular data to the p-diabatic representation that it 
is used in the fully-quantal scattering calculations. 

4. SCVB* 

We are especially interested in calculating accurate intermolecular potentials 
to be used with classical and quantum dynamics programs. Particularly for 
systems with larger numbers of valence electrons, we need to be able to obtain 
very accurate SCVB wavefunction by means of even smaller numbers of 
structures. To accomplish this we have devised a new approach in order to 
generate one or more 'optimal' virtual orbitals for each occupied SC orbital [10]. 
We concentrate here on the case of a single properly optimized virtual orbital ~ 
for each SC occupied orbital ~/. 
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The determination of these virtual orbitals {@+.} is carried out by augmenting 
the converged SC wavefunction with all double vertical excitations into the 
unknown virtuals: 

N 

If~D -'~ CO~SC 4" Z Ci~ij (7) 
i>j 

where 

�9 (8) 

Our task is to find virtual orbitals {~+.} that minimize the total energy of the 
wavefunction WD but, in order to reduce the overall computational effort, we now 
invoke the following approximations: 
1) the spin coupling coefficients %, -(~') appearing into the excited configurations 

are fixed to the values found for the SC reference configuration. 
2) the virtual orbitals are optimized with respect to the energy of the overall 

wavefunctions by means of a second order perturbation approximation. 
The use of this perturbation approximation to compute optimized virtual orbitals 
introduces a major saving. We need only compute diagonal and first row 
elements of the hamiltonian and overlap matrices, because the relevant energy 
expression takes the form: 

N [H{o,v~-HooS{o,v~] 2 
E{2)= Hoo + ~.,. . HooS{~..o.)_H{o.,o) (9) 

in which Hoo = (Ws~ I [t  I W~), S{o.u= ( ~  [~u), and so on. The hamiltonian and overlap 
matrices are computed using the usual LSwdin formula for the evaluation of 
matrix elements between Slater determinants built from non-orthogonal orbitals. 
Many of the efficient computational strategies adopted in the SC 
methodology [11] have been used in this new approach. However, the bra and ket 
orbitals are now different, with the resulting loss of symmetry in the density 
matrices elements leading to some additional computational overhead [10]. 

The most convenient procedure for attaining the minimum of the second order 
perturbation expression of the energy, so as to generate the optimized virtual 
orbitals, depends on the kind of problem being studied. In the case of 
intermolecular interactions, convergence is quite easy with just a gradient-based 
procedure. The minimization scheme can be recast in such a way that the 
coefficients of the improved virtual orbitals can be obtained, at each step, by a 
resolution of a linear system of N^+N B equations. Specifically: 

A F~C~ = -8, 

F~C? - -~7 (10) 
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in which F A (F ~) is a square matrix of order m A (roB), and C A (Ci B) is a column 
vector of dimension mA (m B) containing the new updated coefficients 
corresponding to the virtual orbital @+. 

Ultimately, the SC occupied orbitals and the optimized virtuals are used to 
construct the final, variational SCVB* wavefunctions. These take the form: 

N N 

�9 = + Y_, + Z % %  (11) 
i i>j 

and thus consist of: 
a) The SC reference configuration T~, i.e. f f  structures. 
b) Singly-excited configurations Ti, where the occupied SC orbital ~ has been 

replaced by its own optimized virtual orbital ~ ,  i.e. N x f f  structures. These are 
included to improve the description of molecular properties and to take 
account of orbital relaxation. 

c) Doubly-excited configurations ~ j  in which pairs of occupied orbitals ~ and ~j 
have been replaced by their own optimized virtual orbitals ~ and ~,  i.e. 
Y~(N+ 1)xf~ structures. 

The quality of the final results, as well as the relative numerical values of 
appropriate % coefficients, provide reassurance as to the quality of the 
approximations invoked during the optimization of the virtuals. 

The interaction between a helium atom and the LiH molecule has been 
described using a SCVB* wavefunction built up using just  25 structures. 
Interaction energies, computed along different approaches of the two moieties, 
compare extremely well with a corresponding traditional SCVB calculation using 
many more structures. Even a very small energy minimum of about 0.01 
mHartree is perfectly reproduced for He at a distance of R = l l  bohr from the 
centre of mass of the LiH molecule (collinear approach of He to H-Li). 

In addition to further correlating the ground state of a single molecule, the 
SCVB* procedure can also be used to describe its excited states. However, a 
minimization procedure based on a first-order approach tends not to give good 
convergence in such cases. Instead, we have adopted a stabilized Newton- 
Raphson scheme, as in the usual SC approach, but we use an approximate 
expression for the second derivative that  requires only density matrices up to 
third order [12]. The resulting procedure has been shown to be quite stable. 

5. MR-SCVB* A P P R O A C H  

So far, we have described SCVB-based approaches in which dynamical 
correlation is introduced by means of excitations from one or more reference 
functions that  are constructed from the occupied and virtual orbitals of one 
electronic state. A recent advance is the implementation of a multireference 
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approach involving optimization of a set of properly-bound spin-coupled 
configurations: these last may be used as 'references functions' for the virtual 
orbital optimization and for the construction of the final non-orthogonal 
configuration interaction wavefunctions, which may be termed MR-SCVB*. 
Rather than use the general multiconfiguration SC procedures that have been 
used previously for excited states, it turns out to be more appropriate to start 
from an approximate approach [13] to the excited states problem. 

Motivated by the orthogonality of different electronic states, proper bounds 
may be imposed on excited-state SC configurations by means of orthogonality 
constraints against the ground-state configuration. We can obtain appropriate SC 
excited functions simply by imposing orthogonality relations between the orbitals 
of the 'excited' functions and the orbitals of the ground-state configuration. In 
this context, we are mainly interested in states characterized by different spatial 
configurations, simply because those that differ mostly in the mode of spin 
coupling can already be described by means of different linear combinations of 
the {Os~}. 

There is, of course, no shortage of plausible orbital orthogonalization schemes. 
Applying different constraints on the orbitals results in functions that can have 
very different energies and which can, in principle, be more appropriate for 
different excited states. In particular, we have found in practice that the lowest 
energy ones do indeed turn out to be good representations of the lower-lying 
excited states. Functions with higher energy lose such correspondence with 
specific excited states, but they are useful tools for the construction of 
multireference wavefunctions without problems of linear dependence. 

The general strategy is to start with a conventional single-configuration spin- 
coupled calculation for the lowest state of the given symmetry. Certain of the 
occupied orbitals are then designated as 'active' for the next stage of the 
calculations. The 'excited' orbital space is simply the orthogonal complement of 
the space spanned by the chosen active set, and the dimension of the active set 
fixes the number of excited orbitals that have to be constrained during 
optimization of the excited spin-coupled functions. For a three-electron system: 
we can consider an active set of dimension three and constrain one excited orbital 
to be orthogonal to those of the ground state; or, we can consider an active set 
formed by two of the three orbitals (there are three possibilities here) and then 
constrain two excited orbitals; or, finally, we can take a simple one-dimensional 
active set (there are again three possibilities) and constrain all the excited 
orbitals. The actual choice of active set depends on the problem under 
consideration. Since the approach appears more useful for low-lying excited 
states, one is mainly interested in orthogonalization schemes that produce low- 
energy solutions. It is certainly not necessary to test all of the possible 
orthogonalization schemes, not least because it is often straightforward to 
identify orbitals that are not likely to be altered substantially between the 
different states of interest. 
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In practice, the introduction of the orbital constraints is very simple: it is 
sufficient to switch from a pure atomic basis set to a projected one, adapted to the 
decomposition of the one-electron space into an active and an excited space. The 
orthogonality constraints on the orbitals are thus realized by the expansion of the 
excited state orbitals within the projected basis set. Good results are obtained 
employing both the N:I  scheme (N orbitals orthogonal to one ground state 
orbital) and the I :N scheme (one excited orbital orthogonal to all the ground state 
orbitals). The overall computational cost is currently determined by three stages: 
the (Gram-Schmidt)orthogonal izat ion,  the four-index transformation to the 
projected basis set, and the optimization of the excited SC configurations. 

Once the proper spin-coupled excited reference state has been obtained, the 
type of optimization procedure described in the previous Section may be used to 
generate virtual orbitals, and thus to introduce dynamical correlation directly 
into the excited states of interest. It should be noted that  such optimization has 
to be modified slightly to avoid the collapse of the doubly-excited configuration 
towards the ground state. The modifications consist simply in a set of additional 
orthogonality constraints, analogous to the previous ones, to be imposed during 
the virtual orbital optimization procedure. 

The method has been used to study the LiH~ system [13,14,15] for which the 
main interest  was in the first excited state, which governs the dynamical 
behaviour of the neutral  LiH molecule in the presence of a naked proton. Various 
nuclear configurations have been sampled, both in the subreactive [14] and 
reactive regions of the configuration space [13]. It turned out tha t  a simple two- 
reference VB wavefunction was sufficient for the subreactive study, while the 
stretching of the LiH bond in the reactive regions required the use of an 
additional reference function. For this system, the ground state SC wavefunction 
has the form: 

lY~SC -" A I{~lsO~sOHA{~HB ~ Cok O~O;k (12) 

in which ~1~, ~ are localized on Li and represent the ls  2 core, and On~, ~ are 
atomic orbitals mostly localized on the hydrogen atoms. In the subreactive 
domain, the lowest excited spin-coupled reference turned out to be tha t  obtained 
by applying the N:I  scheme, in which the active orbital was tha t  with the highest 
orbital energy. The corresponding excited wavefunction takes the form: 

Wsr = A 0ls01s0H02s(Li) c0kO00;, (13) 
k--1 

in which OH is based on a ls orbital centred on the H atom closest to the Li site 
and O2s(Li)resembles the somewhat deformed Li(2s) orbital in the isolated LiH 
molecule. This excited spin-coupled function describes correctly the physical 
situation of a proton impinging on a neutral  LiH molecule. This configuration can 
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also describe correctly the region of the proton exchange reaction, because of the 
change of character of the active On orbital, from the ls orbital of the projectile 
hydrogen to the ls orbital of the target hydrogen (due to the crossing of the SC 
orbital energies). In fact, the first and second excited states strongly interact with 
each other in this region, leading to a maximum or 'bump' in the energy profile of 
the C2v symmetric configuration. This bump is observed also in full-CI 
calculations and it is clearly reproduced by the simple (excited) SC curve, as 
shown in the left-hand panel of Figure 1, in which potentials calculated with only 
the SC functions are compared with the full-CI data. 
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Figure 1. Comparison between VB and full-CI results with the same basis-set for 
the LiH~ system as a function of projectile-target distance. The r(LiH) distance is 
fixed at the equilibrium distance of the diatomic molecule and the Jacobi angle 
(the projectile-LiH centre of mass-target H angle) is fixed at the value of 169 ~ 

The right-hand panel of Figure 1 compares the excited curve obtained from the 
final MR-SCVB* (or, MRVB for short) calculation with that from the full CI. In 
this study, starting with the double-reference SC functions, we optimized a set of 
4 pairs of virtuals for each reference and, at the end, we built a VB wavefunction 
consisting of 84 spatial configurations for a total of only 125 VB structures. This 
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contrasts markedly with the 1654650 determinants of a full-CI calculation in the 
same basis set. 

The additional SC reference function required for the reactive domain takes 
the form 

i0 / kI/sc 3 "- A ls~ls~2s(Li)~(ya(n; ) Cok O~o;, ( 1 4 )  
= 

and is in fact lower in energy than Tso2. The H2(%) orbital in Tsr 3 was the outcome 
of the I:N orthonormalization scheme. 

6. APPLICATIONS OF SCVB* AND MR-SCVB* 

Only the lightest elements (H, D, He, Li and trace amounts of Be) are thought 
to have been present in the early universe, with the chemistry being based on 
simple binary collisions and processes involving photons (absorption, emission 
and the scattering of cosmic background radiation) [16]. The small fraction of the 
atomic gas which had become molecular could lead to radiative cooling, and 
thereby play an important role in the collapse of protogalactic clouds. We have 
studied a number of gas phase collision processes that  may be important for 
developing reliable cosmological chemical evolutionary models. In particular, the 
SCVB* method, either in its single or multireference formulation, has been 
applied to processes involving LiH, ranging from simple bimolecular reactions to 
rovibrational energy transfer in inelastic collisions with He. 

A full subreactive potential energy surface was computed for the LiH+He 
system [17,18], avoiding BSSE a pr ior i  by expanding all orbitals in the properly 
chosen sets of 'target' and 'projectile' basis functions. The computed points span a 
wide range of values of the scattering coordinate and of the usual Jacobi angle for 
each of five chosen Li-H distances in the bottom of the target diatomic well. The 
orientation dependence of the potential was subsequently expressed in Legendre 
polynomials and the dependence on scattering coordinate was fitted using 
Laguerre functions. The dependence on Li-H distance was interpolated with 
cubic splines and used to compute the vibrational couplings which govern the 
vibrational energy transfer. The (fitted) PES was used in quantum mechanical 
calculations of cross sections for rovibrational energy transfer in the LiH 
molecule by He impact. State-to-state rate constants were generated for a range 
of temperatures of astrophysical relevance. 

The reliability of the PES may be judged by comparing rigid-rotor close- 
coupling calculations of rotational inelastic scattering cross sections with the 
experimental data that  are available for a collision energy of 0.32 eV [19]. 
Although the first vibrationally excited channel is open at this high collision 
energy, the weak vibrational coupling prevents a substantial loss of flux into such 
excited states, and so very similar results are obtained with V-R close-coupling 
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calculations. As can be seen from Figure 2, the agreement of the theoretical 
results with the experimental data is especially good for the lowest Aj transitions. 
Deviations for higher transitions may reflect imprecision in the experimental 
data, which could be viewed as lower bounds to the scattering cross sections. 
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Figure  2 Experimental and theoretical results for the rotationally inelastic 
integral cross section in the LiH + He scattering system. 

Also displayed in Figure 2 are results of analogous dynamical calculations 
using instead a somewhat different coupled-cluster potential energy surface [20]. 
The authors of Ref. [20] used a rather large basis set that included also bond- 
functions placed between the target and projectile, and they corrected for BSSE 
with the counterpoise method. The two surfaces are especially different in the 
region of the well on the Li side of the target: the coupled-cluster potential 
supports two bound levels, at least for the lower values of the total angular 
momentum [18], but the rigid-rotor SCVB* potential does not support any. 
Comparison of data at 0.32 eV tends to suggest that the repulsive wall of the 
interaction is better represented by the SCVB* surface, but we cannot infer 
anything about the quality of the low-energy behaviour of the interaction 
potential. Experiments have been suggested, to settle these matters [18]. 
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The full rovibrational PES has been used in quan tum dynamical calculations 
within the centrifugal sudden approximation for a wide range of total energies of 
the scattering system. This approximation, which neglects the effect of the 
collision on the orbital quan tum number,  reduces the dimension of the problem 
and makes calculations more feasible. On the other hand, it preserves a 
reasonable level of accuracy for the rotationally-summed vibrational excitation- 
relaxation cross sections. The left-hand panel of Figure 3 shows rotationally 
averaged excitation cross sections from the ground state to the first three excited 
states, as a function of collision energy in the range 0-2 eV (notice the values of 
such cross sections relative to the vibrational elastic, rotational inelastic ones 
shown in Figure 2). The (vibrational) state-to-state rate  constants displayed in 
the r ight-hand panel have been obtained by averaging over the Boltzmann 
distribution of the relative velocity of the two colliding partners.  These quantities 
are very important  in establishing the cooling function of the LiH molecule, 
which depends on the collisional heating efficiency and on the radiative 
properties of the molecule. 
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Figure 3. Integral (rotationally averaged) excitation cross sections (left panel) and 
vibrational state-to-state rate constants (right panel) for the LiH-He scattering 
system. 
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In the case of the neutral  reaction LiH+H-.Li+H2, SCVB* and dynamical 
studies of the simple collinear arrangement  revealed an unusual  insensitivity of 
the reaction to the vibrational energy content of the reagent  molecule. Classical 
and (time-dependent) quantum calculations showed tha t  the reaction probability 
can be very large, especially in the low collision energy regime. On the other 
hand, impact on the repulsive wall at high collision energies results mainly in 
inelastic scattering: this can be attributed to the very deep and narrow channel 
corresponding to formation of H,. Fur ther  study of the LiH, system revealed that  
a correct consideration of the lower lying excited states is necessary to 
understand even the dynamical behaviour of the ground electronic state; indeed, 
as pointed out by the authors of Ref. [21], the Li(2p)+H 2 channel is already open 
at zero collision energy of the LiH+H scattering system. 

Finally, we mention preliminary results of MR-SCVB* calculations for full 
potential energy surfaces of LiH~. The ground-state surface describes 
adiabatically the reaction 

LiH § + H ~ Li § +H, 

which is driven by the recoupling of the spins associated with the two valence 
orbitals mostly localized on the hydrogen atoms. We find that  the ground state 
topology is mainly due to the two-body terms of the potential. The first excited 
potential relates to the adiabatic reaction 

+ 

LiH + H § ~ Li + H, 

which requires significant deformation of the H-based orbital in LiH so as to form 
the one-electron bond in the H; product. We find that  the three-body potential 
term (incorporating dipole-charge and charge-induced dipole interactions) plays a 
very important  role in this excited state, and produces local minima in the 
entrance and exit channels of the reaction. 

Important  conclusions on the dynamics can already be drawn just  by looking 
at the [Li-H-H] § collinear cut of the PES displayed in Figure 4. We have found 
that  the large energy gap between the two roots remains substantially unaltered 
in the other orientations we have sampled so far, and this tends to preclude any 
significant nonadiabatic interactions between the two states. Fur ther  support for 
this idea comes from the very different nature of the electronic wavefunctions: for 
example, the charge is always concentrated on the Li atom in the ground 
electronic state, while it resides on the H atom(s) in the excited state. The 
absence of significant nonadiabatic interactions suggests that  many of the 
reactions invoked in the current astrophysical l i terature may have to be 
considered as forbidden,  simply because of the resulting very low rate constants. 
For example, the reactions 

LiH + + H --+ LiH + H § 
+ 

LiH § + H -~ Li + H 2 
LiH + H § --+ Li + + H 2 
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can proceed only by photon-mediated jumping between the two roots, but the rate 
constants are expected to be very low. 
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Figure  4. Potential Energy Surfaces for the first two electronic states of  the LiH~ 
system in the Li-H-H collinear geometry, shown as a function of the interatomic 
distances. 
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7. CONCLUSIONS 

The ab initio spin-coupled valence bond (SCVB) approach continues to provide 
accurate ground and excited state potential energy surfaces for use in a variety of 
subsequent applications, with particular emphasis on intermolecular forces and 
reactive systems. The compactness of the various wavefunctions allows direct 
and clear interpretation of the correlated electronic structure of molecular 
systems. Recent developments, in the form of SCVB* and MR-SCVB*, involve 
the optimization of virtual orbitals via an approximate energy expression. These 
'improved' virtuals lead to still higher accuracy for the final variational 
wavefunctions, but with even more compact wavefunctions. 
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Chapter 1 0 

The General ized Mult iconf igurat ion Spin-Coupled  method,  STO 
optimization,  and the electronic structure o f  BH3 in its ground state 

F.E. Penotti* 

CNR-CSRSRC, Via Golgi 19, 20133 Milano, Italy 

The Optimized Basis S e t -  Generalized Multiconfiguration Spin-Coupled 
method, or OBS-GMCSC for short, offers a practical approach to the direct 
variational calculation of non-orthogonal multiconfiguration electronic 
wavefunctions. Simultaneous optimization of STO exponential parameters 
enables high accuracy with rather small basis sets and ensures strict compliance 
with the virial theorem. OBS-GMCSC wavefunctions can yield compact and 
accurate descriptions of atomic and molecular electronic structures, and neatly 
resolve symmetry-breaking difficulties, as illustrated by a brief review of 
previous results for the boron anion and the dilithium molecule, and by newly 
obtained results for BH3. 

1. INTRODUCTION 

The goal of computing accurate yet compact electronic wavefunctions has 
motivated the development of many Modem VB methods, as is amply 
documented by many other contributions to this volume. 

The present article is devoted to a discussion of a multiconfiguration 
approach, the Optimized Basis S e t -  Generalized Multiconfiguration Spin- 
Coupled (OBS-GMCSC) method [1]-[2], that can join the flexibility of non- 
orthogonal orbitals with the use of simultaneously optimized Slater-type basis 
functions (STFs). 

The method is referred to simply as GMCSC when a fixed basis set is used. 
In this case, it can be viewed as a non-orthogonal variant of the 
Multiconfiguration Self-Consistent Field (MCSCF) approach. However, 
GMCSC's methodological roots are firmly planted in the Modem VB camp, and 
more specifically in the late Joe Gerratt's Spin-Coupled theory [3]-[4]. 

*Please address all correspondence to F.E. Penotti, Via Montegani 7, 1-20141 Milano, Italy 
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The latter was developed as a single-configuration method, complemented 
by non-orthogonal configuration-interaction calculations exploiting "virtual" 
orbitals in the "Spin-Coupled Valence Bond" (SCVB) approach [5] (for a 
review, see e.g. Ref. [6]). More recently, the use of "perturbative" virtuals has 
been introduced, giving rise to the SCVB* variant of the method [7][8]. There 
are further accounts of SCVB* in this volume. 

One of the earliest SC papers [4], however, did include some 
multiconfiguration calculations on diatomic molecules (LiH, BH and Li2). For 
each molecule, the wavefimction consisted of a main configuration 
supplemented by a pair of symmetry-equivalent (o,o')--)(n,n') double 
excitations out of it. Thanks to the fact that different configurations were thus 
mutually orthogonal, and that in fact corresponding orbitals in different 
configurations were either identical or mutually orthogonal (by symmetry), the 
calculations were possible with the limited computing power available at the 
time, and presumably required only limited adaptations of programs 
implementing the spin-coupled approach, and of the underlying theory. 

The theoretical framework needed to deal with more general and mutually 
non-orthogonal configurations, while retaining the full-fledged second- 
derivative energy-minimization procedure adopted in the spin-coupled approach 
for the optimization of variational parameters, was only developed more than 
fifteen years later, by the present author [1][2], when the ready availability of 
greater computing power made calculations employing such an approach finally 
practical. 

In an attempt to exploit fully the flexibility afforded by the lack of any 
orthogonality constraints, the new theoretical framework included from the very 
start the possibility of variationally optimizing STF exponential parameters as 
well, simultaneously with all other parameters entering the wavefunction. 
Optimization of the exponential parameters removes at least some of the 
arbitrariness involved in choosing a basis set and ensures the best possible 
results for a given choice of the number of basis functions of each type (and 
location) to be included. Moreover, since the basis-fimction exponential 
parameters are thus implicitly scale-optimized, the electronic wavefunction 
rigorously satisfies the virial theorem. Rigorous virial compliance ensures in 
turn the proper balance between kinetic and potential contributions to the 
electronic energy. This can be a definite advantage when striving for meaningful 
physical interpretation of the electronic structure, since it is essentially this 
balance that determines how contracted or diffuse the electronic wavefunction, 
and thus presumably individual orbitals as well, actually should be. 

Basis-set optimization is thus the hallmark of the present author's approach. 
Nevertheless, GMCSC wavefunctions can otherwise be viewed as more flexible 
versions of Resonating Generalized Valence Bond (R-GVB) wavefunctions [9]. 
The extra flexibility arises from GMCSC's freedom from the constraint of 



281 

orthogonality between orbitals belonging to different pairs in the same 
configuration. On the other hand, GMCSC wavefunctions are essentially 
equivalent to Valence Bond Self Consistent Field (VBSCF) wavefunctions [ 10]- 
[12]; the main difference between the two methods, aside from basis-set 
optimization, is GMCSC's use of a full-fledged second derivative energy 
minimization procedure. There are also parallels to the BOVB(N,V) 
wavefunctions of McDonald, described elsewhere in this volume. 

The Complete Active Space Valence Bond (CASVB) method[13]-[15] 
offers another approach to the computation of non-orthogonal 
multiconfiguration wavefunctions, as exemplified in various applications [16]- 
[19]. In fact, for fixed basis sets, CASVB, which is based on the use of 
similarity transformations from an underlying Complete Active Space Self 
Consistent Field (CASSCF) wavefunction, may well be more efficient than 
GMCSC, as stated in Ref. [16]. The ability to take advantage of CASSCF as an 
especially efficient, orthogonal, "computational engine" is perhaps CASVB's 
main strength; however, this may prevent it from achieving rigorous 
simultaneous basis-set optimization, given that basis-set variation brings about a 
first-order breakdown of orthogonality [20]. 

CASVB has been shown to be applicable to electronically excited states as 
well [18], by the adoption of a clever generalization [21] of the second-order 
stabilized Newton-Raphson optimization procedure [22] used by it, SC [4], and 
OBS-GMCSC [ 1 ][2]. It turns out that essentially the same procedure works for 
OBS-GMCSC as well [23], allowing it to exploit basis-set optimization where it 
can be especially advantageous, i.e. for excited states. 

An alternative computational scheme for excited-state multiconfiguration 
wavefunctions employing non-orthogonal orbitals has also been developed [24]. 
The approach, restricted to fixed basis sets, is based on iterative optimization of 
a single set of spin-coupling coefficients, common to all configurations, of the 
orbitals in each configuration, and of the configuration coefficients, through a 
series of non-orthogonal configuration-interaction calculations, without any use 
of energy derivatives. 

The present article is organized as follows: immediately after this 
Introduction, Section 2 describes the main aspects of the OBS-GMCSC method, 
trying to limit the number of equations and thus without entering into many 
"technicalities". The interested reader will find full details in previous 
publications [ 1 ][2][25]. 

A third Section briefly reviews previous OBS-GMCSC results that illustrate 
how, in certain cases, a multiconfiguration description can be essential to a truly 
meaningful discussion of molecular electronic structure, even at a qualitative 
level. 

A fourth Section presents the results of eight-electron multiconfiguration 
calculations on the electronic ground state (1A]) of BH3, and discusses their 
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implications for the nature of the B-H bond in this simple molecule, both to 
buttress the argument for the necessity of multiconfiguration descriptions, and to 
demonstrate OBS-GMCSC's applicability to polyatomic molecules. 

A final Section briefly presents the Conclusions. 

2. THE GMCSC METHOD 

As stated in the Introduction, the GMCSC method [1][2][25] is, in its roots, a 
multiconfiguration generalization of the well known spin-coupled approach [3]- 
[6]. 

2.1 The OBS-GMCSC wavefunetion 
The GMCSC wavefunction for a system of Ne electrons coupled to a 

resultant spin of S, with projection M (atomic units) along any given axis, can be 
written as [2]: 

Nc 
= Z [cla eS, 

a=l  

(1) 

In the above equation, Arc is the fixed, but arbitrary, number of configurations 
included in the wavefunction, d~ the a-th configuration coefficient and 

~ S, M; a (X) = N~--j.t A [~ a (r) O S, M; a (tT ) ] (2) 

is a separately antisymmetrized space-spin configuration, which we shall refer to 
simply as a "GMCSC configuration". 

Note x is used to denote collectively the space and spin coordinates of all 
electrons, while r denotes their space coordinates and tr their spin coordinates. 

Also, A stands for the antisymmetrizer in its usual idempotent form (hence 
the ~/(Net) in front of it in Eq. (2)), and t~  a is a product of Ne orbitals (orbital 
string, or orbital configuration), 

Ne 
~ a (r) = I--[ qg a,/u ( r /u ) ,  

p=l 
(3) 

where r~ denotes the three spatial coordinates of the/~-th electron. Each orbital is 
expressed as a linear combination of basis functions: 
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N6f 
~a,,a(r,u) ~- Z Ca, lt,iZi(r~t"(i ) 

i=1 
(4) 

Here ca, l~,i is the coefficient with which the i-th basis function z~(r#(.~ 
(usually a Slater-type function, or STF for short) enters the/~-th orbital of the 
a-th configuration, (,. is an adjustable parameter (usually the STF's exponential 
parameter), and Nbfthe fixed but otherwise arbitrary number of basis functions. 

Finally, OS, M;a is the linear combination of Yamanouchi-Kotani (YK) spin 
functions associated with the a-th configuration 

fiNe,S) 
OS, M,'a (~) ~ Z C~a OS,~I,.k(o'IN ,...O.Ne ) (5) 

k=l 

where f(Ne, S) denotes the total number of linearly independent spin functions for 
given values of Ne and S and an acceptable, but otherwise arbitrary, value of M. 
It is given in general by (see e.g. Kotani et al. [27]): 

(2S + 1)(Ne.O 
f(Ne, S) - (6) 

and is equal to 14 for a system of eight electrons coupled to a singlet (S=0), such 
as the ground state of BH3. 

The C~a are the "spin-coupling" coefficients of the a-th configuration. One 
should mention that in the earlier "MCSC" version of the method [ 1 ] all orbital 
configurations shared the same linear combination of the f(N~,S) Yamanouchi- 
Kotani spin functions: there was a single set of f(Ne, S) spin-coupling 
coefficients, denoted simply c s , just as in single-configuration spin-coupled 
theory. 

A GMCSC configuration can be viewed as a linear combination, with 
adjustable coefficients, of f(Ne, S) structures with a common "orbital string", 
each of them analogous to a classic-VB structure except for orbital optimization 
and for the use of YK spin functions. Note the latter is not actually a limitation 
inasmuch as all of them are included, since they span the full spin space for Ne 
electrons with given values of S and M. One should perhaps note that for N~=I 
the wavefunction in Eq. (1) reduces to a single-configuration spin-coupled 
wavefunction [3]-[6], and dl then becomes simply a normalization constant. 
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2.2 Practical computation 
It is computationally convenient to leave individual configurations 

unnormalized, as implied by the above equations, since explicit normalization 
constants would complicate the expressions for the derivatives of the energy 
with respect to various optimization parameters. It is however always possible to 
express the final wavefunction as a linear combination of individually 
normalized configurations: this only requires appropriately scaling each 
configuration coefficient. Configuration overlaps quoted in the following 
Sections always refer to such individually normalized configurations. 

The GMCSC orbitals are in general all distinct, though "double occupancy" 
may be imposed by constraining any two of them in the same configuration to 
be identical. They are also in general not mutually orthogonal, though selective 
orthogonality constraints may be imposed within any configuration, with no loss 
of generality, when it includes one or more pairs of identical orbitals [2], and 
orbitals may of course be orthogonal by symmetry. Barring similar 
circumstances, the configurations are also, in general, not mutually orthogonal. 

Variational parameters in a GMCSC wavefunction thus include" 
�9 configuration coefficients (d~, a=l,...Nc) 
�9 spin-coupling coefficients (CS~a, k=-l,..jC(Ne,S), a=l,...N~) 
�9 orbital coefficients (Ca.~,.~, a = 1,..N~, ~=  1,..Ne, i = 1,..Nbf) 

and, in the OBS-GMCSC variant of the method: 
�9 STF exponential parameters (~,., i =l,..Nbf). 
These are all simultaneously optimized by minimization, either directly of 

the energy as a fimction of the variational parameters, for the lowest-energy 
state compatible with any parameter constraints, or of a suitably defined "image 
function" [21] for higher-energy states (see Subsection 2.4). The minimization 
proceeds via an iterative second-order method [22] that requires the availability 
of all first and second derivatives of the electronic energy with respect to the 
variational parameters themselves, all cross-terms included. These derivatives 
are computed analytically. Explicit expressions for them are somewhat involved, 
and have been published elsewhere [1 ][2]. Their computation, repeated at every 
iteration, is one of the two main sources of computational effort, the other being, 
in the OBS variant, the similarly repeated computation of the STF-based 
integrals (discussed in the next Subsection). As more configurations are added 
for a given basis set size, however, integral computation accounts for a smaller 
fraction of the computational effort, that becomes increasingly dominated by the 
calculation of the energy derivatives. 

The essence of the iterative optimization procedure [22] is actually fairly 
simple. It is briefly reviewed here for reference in the next Subsection. Focusing 
attention on the ground state for simplicity, at every iteration the vector of 
corrections ~ic to the variational parameters is obtained by solving the linear 
system 
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(G + aI) 6e = - g  (7) 

where the gradient vector g collects the first derivatives of the energy with 
respect to the variational parameters, the Hessian matrix G collects the 
corresponding second derivatives, I is the identity matrix and ~ is an eigenvalue 
shift parameter. This is defined in terms of the minimum eigenvalue 2,,;, of the 
Hessian, of the gradient's norm g and of an adjustable "step size control 
parameter" R as 

a = Min(2min,O ) + R . g  (8) 

The "step size control parameter" R, initially set to a value of order unity, is 
adaptive, in the sense that it is decreased (or increased) at each iteration 
depending on how well (or how badly) the energy change actually brought about 
by the corrections accords with the value predicted from a second-order Taylor 
expansion in the corrections themselves. In extreme cases, the corrections are 
rejected and recomputed with an increased value of R. Otherwise, any updates to 
R apply from the next iteration. The precise set of rules used to control R may 
affect efficiency but is not critical to the success of the minimization procedure, 
as long as the rules provide the correct qualitative behaviour (e.g. see Refs. [22] 
and [ 18]). 

Without the Hessian eigenvalue shift a, the procedure would simply reduce 
to the well-known Newton-Raphson method (e.g. see Ref. [28]), as can be seen 
by setting a to zero in Eq. (7). The Hessian shift, with adaptive step size, 
dampens the corrections when needed, removing the risk of divergence that 
makes pure Newton-Raphson not very reliable. As can be seen from Eq. (7), for 
large values of a the method reduces essentially to a timid application of 
steepest descent (small corrections in the direction of-g) .  Convergence on a 
minimum is assumed when the Hessian is positive definite and the largest 
component of the gradient falls below a given threshold (typically 10 s a.u.). 

2.3 STF-based integrals 
When, in the OBS variant of GMCSC, the STF exponential parameters are 

treated as variational parameters, energy integrals over the STFs, and the first 
and second derivatives of these integrals with respect to the exponential 
parameters themselves, must be recomputed at every iteration of the energy- 
minimization procedure. Since differentiating an STF-based integral with 
respect to the exponential parameter of any of the intervening STFs is essentially 
equivalent to raising the STF's principal quantum number by one, one needs to 
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be able to compute such integrals for values of the principal quantum number 
that exceed (by up to two) the actual basis-set values. 

In previous applications, restricted to atoms [1][2] and diatomic 
molecules [26], this was done by inserting directly in the OBS-GMCSC program 
the necessary blocks of integration code, specially written by the presem author, 
implementing for the two-centre integrals accuracy-controlled variants of time- 
honoured methods [29]. Although applying analogous accuracy control to a 
polyatomic generalization [30] of those methods proved feasible [31], the 
resulting code turned out to be too slow for practical use, except perhaps in the 
case of linear molecules. 

Fortunately, a highly efficient, accurate, and sufficiently general program, 
m2cnew [32][33], based on the use of Gaussian expansions of Slater-type basis 
functions, became available, and has been adopted for the OBS-GMCSC 
calculations reported in this paper. This only required writing a simple interface 
program to transform m2cnew-generated integral files to a format suitable for 
use by the OBS-GMCSC program, and adding to the latter simple routines to 
generate, at each iteration, suitable data files for the m2cnew program and the 
interface program. In practice, at every iteration one needs to run m2cnew twice, 
for enlarged basis-sets consisting of the basis functions themselves and of the 
STFs obtained by increasing their principal quantum numbers by one, or by two. 
Though this does produce some unnecessary integrals, e.g. those involving 
second derivatives of two or more basis functions, it does not increase the 
computational load all that much, due to the reduced accuracy required of 
integrals involving such derivatives, see below. Besides, this waste is hard to 
avoid when using a ready-made program for the integrals, unless one is willing 
to invest the time and effort to subject the program to ad hoc modifications. 
Cyclic execution of the m2cnew, interface and OBS-GMCSC programs can of 
course be controlled by a simple operating-system procedure, i.e. a "shell script" 
for Unix or a "batch script" for MS Windows. 

As hinted above, the derivatives of the energy integrals do not need to be 
computed to the same accuracy as the energy integrals themselves and, even for 
the latter, limited accuracy may be adequate in the first phase of the energy 
minimization procedure, if far from convergence. In general, the accuracy of, 
and the computational effort for, the m2cnew integrals rises with the number of 
Gaussians used to interpolate each STF. Accordingly, the OBS-GMCSC 
program specifies, in the m2cnew data files it sets up at every iteration, varying 
numbers of interpolating Gaussians, smaller for the first derivatives of the basis 
functions than for the basis function themselves, and smaller still for their 
second derivatives. The actual number of Gaussians used for each kind of STF 
varies between iterations, according to the size of the predicted energy change. 
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Table 1 

Number of Gaussians used to interpolate each Slater-type basis function a 

Predicte--d-Energy ..... 1 st derivatives of ~ derivatives Of 
Change AE / Eh Energy integrals energy integrals energy integrals 

Ad~> 10 -2 9 7 5 

10"2> AE> 10 -4 13 9 7 

10-4> AE> 10 -6 17 13 11 

10-6> AE> 10 -8 21 17 15 

AE < 10 -8 25 21 19 

a The actual number of Gaussians used for a given STF may be lower, especially for higher 
quantum numbers, due to current limitations of the m2cnew program. 

A side benefit of this is that, given that decreases in the size of the 
corrections usually reduce the energy change, the number of STF-interpolating 
Gaussians ends up being adaptively controlled, indirectly, by the "step size 
control parameter" R of Eq. (8). The tendency is for more accurate integrals 
when the reliability of the truncated Taylor series prediction of the energy 
change falls appreciably, and vice versa. Higher-accuracy integrals in turn 
increase the accuracy of the recomputed energy and of the energy derivatives to 
be used in the next iteration, thus guarding~ against the possibility that their 
insufficient accuracy may be causing the adoption of an unnecessarily small step 
size. On the other hand, under favourable conditions, increases in the step size 
tend to lead to a reduction in the number of required Gaussians, and thus of the 
computational effort for the integrals. Calibrating the number of Gaussians to 
use for the STFs and for their derivatives, in varying circumstances, proved 
surprisingly easy, thanks to published results of accuracy tests for SCF 
energies [32], supplemented by some specific OBS-GMCSC tests. The latter 
were aimed mostly at gauging the accuracy needed for the derivatives. The 
specifications adopted by the current version of the OBS-GMCSC program are 
given in Table 1. Though there may be some room for improvement, they do 
appear to be fairly satisfactory. 

2.4  E x c i t e d  s ta te s  

Although published applications of the OBS-GMCSC method have been 
limited so far to the ground states of He, Be, B, B-, Li2 and, as described in 
Section 4, BH3, the approach is obviously applicable to the lowest electronic 
state of each spin multiplicity and spatial symmetry. The latter can be selected 
with the imposition of appropriate constraints [2][25]. Moreover, as already 
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noted, OBS-GMCSC is actually applicable to any electronically excited 
state[23], through the adoption of a clever, and easily implemented, 
generalization (the so-called Trust Region Image Minimization, or 
TRIM, procedure [21]) of the optimization method [22]. This is the same 
approach successfully adopted by T. Thorsteinsson and D.L. Cooper for 
CASVB [ 18]. A concise "how to" guide can be found in the Appendix to their 
paper [ 18], but one should note that "min" has been misprinted for "max", in the 
definition of the Hessian shift parameter a; the correct version is described in the 
text. 

3. THE NEED FOR MULTICONFIGURATION DESCRIPTIONS OF 
THE ELECTRONIC STRUCTURE 

When unconstrained energy minimization leads to a symmetry-broken 
single-configuration solution, one may obviously solve the problem by imposing 
symmetry constraints to force it to assume the required symmetry properties. 

OBS-GMCSC offers the alternative possibility of including, in a non- 
orthogonal multiconfiguration calculation, all configurations that can be 
generated from a symmetry-broken one by applying to it the relevant symmetry 
operations in the molecular point group. Orbitals can be "relaxed" within the 
multiconfiguration wavefunction, because all variational parameters are re- 
optimized by energy minimization. 

But even when no symmetry breaking is apparent at the single-configuration 
level, the need for multiconfiguration descriptions may be inescapable, as will 
be shown here. 

3.1 Evidence from previous OBS-GMCSC work 
For instance, GMCSC calculations on the boron anion [2] and on the 

dilithium molecule [26], both in their ground states, have shown how single- 
configuration wavefunctions, including spin-coupled ones, can be hard-put to 
provide a "robust description" of certain highly-symmetric systems. By "robust 
description", we mean one that will not change, at least qualitatively, as more 
configurations are added to the wavefunction. 

In both cases mentioned above, adding a single pair of symmetry-related 
configurations to the fully-symmetric spin-coupled configuration in an OBS- 
GMCSC calculation led to an energy lowering that was comparable to that 
obtained in going from the SCF to the spin-coupled solution. 

For B (X3p), the fully symmetric configuration was the obvious (Sl s2 s3 s4 
px py), with s l and s2 a pair of strongly overlapping inner orbitals, s3 and s4 more 
diffuse, but nodeless, "valence" s orbitals, and (px, py) a pair of symmetry- 
equivalent 2p orbitals. The two symmetry-related configurations were (s'l s[ s[ 
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s~ p" p~' ) and (s] s~ s~ s~ pJ~' p~ ), the 2p orbitals in one of them being 
inequivalent and symmetry-related to those in the other. 

Similarly for Li2 (XZEg): the two symmetry-related configurations, which, 
like the fully symmetric one, included a orbitals only, were connected by 
inversion through the molecular centre. The three configurations, far from being 
orthogonal, had large mutual overlaps. 

In both cases, the extra pair of configurations entered the multiconfiguration 
wavefunction with a "weight" that was comparable to that assumed in it by the 
fully symmetric configuration. Here and in what follows, a configuration's 
weight is defined as its Chirgwin-Coulson occupation number [34][2] (for 
alternative definitions, see e.g. Refs. [35] and [36]). 

Obviously, both the fully symmetric and the pair of symmetry-related 
configurations had to be viewed as reference configurations, and taken into 
account in qualitative discussions of the electronic structure. 

For Li2 [26], a highly correlated multiconfiguration wavefunction was built 
by supplementing the three reference configurations, briefly described above, 
with double and quadruple excitations out of them, plus an SCF-like 
configuration. The wavefunction was dominated by the reference configurations, 
all three retaining comparable weights. This suggested that supplementing the 
single-configuration SC solution with just a few aptly chosen configurations was 
both necessary and sufficient to produce a multiconfiguration wavefunction that 
did have the "qualitative robustness" lacked, in these cases, by the former. 

As hinted above, such behaviour may occur even when no symmetry 
constraints are necessary to ensure full symmetry of the single-configuration 
spin-coupled solution, so that single-configuration calculations may not always 
provide hints of the solution's shortcomings. For Li2, whether or not the single- 
configuration spin-coupled solution is spontaneously fully symmetrical depends 
on the internuclear distance, while at all internuclear distances the three 
reference configurations turn out to have similar weights in the 
multiconfiguration wavefunction [26]. For B-, at the single-configuration level 
there is no need to constrain the two p orbitals to be equivalent, as they 
spontaneously turn out to be symmetry-related under energy minimization. Nor 
is there any need to force them to be triplet coupled. Thus, the single- 
configuration spin-coupled wavefunction for B spontaneously assumes the 
required 3p symmetry when four of the orbitals are taken to be s orbitals, and the 
other two a px and a py orbital. Still, the energy lowering brought about by 
adding the two symmetry-related configurations described above, and the 0.25 
occupation number each of them assumes in the three-configuration 
wavefunction [2], make it hard to ascribe "qualitative robustness" to the single- 
configuration spin-coupled solution. 
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4. THE ELECTRONIC STRUCTURE OF BH3 (1A]) 

4.1 Why BH3 ? 
One of the questions implicitly raised by the studies summarized in the 

previous Section was, of course, whether similar behaviour is exceptional or, in 
fact, fairly common, at least in highly symmetric systems. 

As a first step toward answering this question, it seems reasonable to 
investigate a high-symmetry polyatomic. BH3 is an obvious candidate, given its 
D3h equilibrium geometry (experimentally verified by photoelectron- 
spectroscopy studies of BH3 [38] and by gas-phase spectroscopic observations 
of the neutral molecule itself [39][40]). Besides, its small size makes all-electron 
OBS-GMCSC calculations on it easily feasible, nowadays, even on a run-of-the- 
mill Personal Computer. Moreover, the fact that BH3 is an electron-deficient 
system, and of course that it spontaneously dimerizes to the ever-intriguing 
diborane, implies that a study of its electronic structure may be of intrinsic 
interest. 

Over the past fifteen years or so, increasingly accurate ab initio studies of 
this molecule have been published [41 ]-[46]. This makes it possible to assess the 
accuracy of the OBS-GMCSC results. At the same time, it does not pre-empt a 
study of the molecule's electronic structure, notably of the nature of its chemical 
bonds. These admittedly qualitative aspects seem to have been somewhat 
neglected in otherwise quite thorough investigations, a fact that is not too 
surprising given that the prevailing orthogonal-orbital approaches, efficient 
though they are at producing accurate numerical results, do not lend themselves 
too readily to physical interpretation, once one moves away from the most 
elementary levels of description. 

One should perhaps note in passing that quantitative questions on the 
molecule's infrared spectrum remain open, essentially for want of further 
experimental investigation. On one hand, Kawaguchi and co-workers' gas-phase 
spectroscopic measurements[39][40] of two of the four vibrational 
fundamentals have essentially resolved the discrepancy between argon-matrix 
experimental values [47] for those fundamentals and ab initio results (see [41] 
for an early reference). On the other hand, though, the larger discrepancy 
between theoretical values of the doubly-degenerate asymmetric-bend harmonic 
frequency (0  4 and the only experimental value available for the corresponding 
fundamental v4, also from those argon-matrix studies [47], still stands (see Ref. 
[45] for an overview up to 1993, and Ref. [46] for later ab initio results). 

In any case, obvious questions remain on the theoretical side, such as the 
nature of the B-H bonds in this deceptively simple molecule. Are they really the 
straightforward "sigma" bonds elementary considerations would suggest? On 
the basis of the OBS-GMCSC results, the present author will argue that the 
molecule's electronic structure is not quite that simple. 
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4.2 Geometry and basis set 
All calculations have been carried out for D3h geometries, with the B-H 

internuclear distance fixed, unless otherwise noted, at 2.24 a0 (where a0 denotes 
the atomic unit of distance, or Bohr: 1 a0 = 0.5291772 x 10 m m  [37]). This 
choice is based on what is perhaps the highest-level ab initio optimization of this 
molecule's geometry to date [46], which predicted an equilibrium value Re = 
2.2416 a0 (1.1862 A, 1 A = 1.000014 x 10 ~~ m [37]). Though there is at present 
no experimental value for Re, the expectation value R0 of the B-H internuclear 
distance in the vibrational ground state has been spectroscopically determined to 
be 2.24882 a0 (1.19001 A)[40] and provides an obvious experimental upper 
bound for R~, inasmuch as the potential well can be safely assumed to be steeper 
on the inside. 

The basis set consisted of two ls, two 2s, two sets of 2p and one set (five 
components) of 3d real Slate>type basis functions (STFs) on boron, two ls and 
one set of 2p STFs on each hydrogen. It was thus of double-zeta plus 
polarization quality. The z axis was taken to be perpendicular to the plane of the 
nuclei. 

Exponential parameters were optimized at the SCF level, at the single- 
configuration spin-coupled (SC) level, and for a valence- and core-correlated 
OBS-GMCSC wavefunction that included eight configurations. Intermediate 
GMCSC wavefunctions, including three, six and seven configurations, used the 
exponential parameters that had been optimized at the SC level. 

Note that basis functions and orbitals are designated as a if they are 
invariant under reflection in the plane of the nuclei, and as ~r if they do change 
sign under the same reflection. 

4.3 The SC solution 
At the single-configuration level, the optimized wavefunction spontaneously 

displays full ~A] symmetry. As could easily be anticipated, the eight orbitals are 
all tr orbitals, and consist of two "inner" orbitals, essentially ls orbitals on 
boron, and six "valence" orbitals. The latter are neatly organized in three 
symmetry-equivalem pairs, related to one another by rotation about the ternary 
axis. Each pair consists essentially of an sp2-1ike orbital centred on boron and 
pointing towards one of the hydrogens, and of a distorted ls orbital on that 
hydrogen, polarized towards boron. However, while the two inner orbitals 
include only minor contributions from basis functions centred on the hydrogens, 
each valence orbital has sizable contributions from basis functions centred on 
both boron and one of the hydrogens, and non-negligible contributions from the 
rest of the basis set as well. Orbitals are depicted in Fig. 1. Orbital overlaps are 
given in Table 2. Note the appreciable overlap between sp2-1ike orbitals (0.3 5 5). 
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Fig. 1. Contour plots of the four unique orbitals in the single-configuration spin-coupled 
solution for BH3, at RBH=2.24 a0. All plots are drawn in the plane of the nuclei. The upper two 
plots (contours every 0.2 a.u.) depict the two fully-symmetric "inner" orbitals. The lower two 
plots (contours every 0.05 a.u.) depict one of the three symmetry-related orbital pairs. The 
other two pairs can be obtained by rotations through + 120 ~ about an axis going through each 
orbital plot's origin and perpendicular to the plane of the paper (the molecule's Ca axis). All 
orbitals are normalized. 

There is no need for orbital constraints to enforce the fully symmetric nature 
of  the two inner orbitals or the symmetry relations between the three pairs of 
valence orbitals. The fully-symmetric SC solution corresponds to a proper 
minimum in the unconstrained SC optimization space. It has been verified to be 
stable against symmetry-breaking perturbations, including the admixture of  ~r 
basis functions into the orbitals, in the sense that energy minimization from such 
a perturbed initial guess spontaneously restores the orbitals to purely a character 
and to full symmetry, converging back onto the unperturbed solution. 
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Table 2 

Orbital overlaps- single-configuration spin-coupled solution (RBH=2.24 a0). a 

0"1 0"2 0"3 0"4 C3 0"3 C3 0"4 C3 2 0"3 C3 2 0"4 

al 1.000 

0"2 0.961 1.000 

0"3 O. 171 0.217 1.000 

0"4 0.073 0.081 0.816 1.000 

C3a3 0.171 0.217 0.355 0.153 1.000 

C3o'4 0.073 0.081 0.153 0.013 0.816 1.000 

C320.3 0.171 0.217 0.355 0.153 0.355 0.153 1.000 

C32a4 0.073 0.081 0.153 0.013 0.153 0.013 0.816 1.000 

a Orbitals are identified by their spontaneous symmetry relationships (a3 and its two 
symmetric counterparts resemble sp 2 hybrids on boron, see Fig. 1). 

When the orbitals are ordered so that the first two are the inner orbitals and, 
if  a valence orbital is even-numbered (odd-numbered), its symmetry-equivalent 
counterparts also are even-numbered (odd-numbered), then the spin part of the 
SC wavefunction is dominated by the perfect-pairing Yamanouchi-Kotani (YK) 
spin function, with a coefficient exceeding 0.99. The coefficients of the other 13 
YK functions are all smaller than 0.01. 

Because, for this configuration, rotation about the ternary symmetry axis is 
equivalent to an even permutation of the orbitals among themselves, the 
configuration will be invariant under C3 if, and only if, the vector of spin- 
coupling coefficients is an eigenvector, "with eigenvalue +1, of the matrix 
representation U(P -1) of the inverse permutation in the basis of YK spin 
functions [3][25]. This requirement is a direct consequence of the 
antisymmetry principle. The theory of such matrix representations is discussed 
e.g. in Ref. [27], and practical algorithms for their computation are given e.g. in 
Refs. [48] and [49]. 

One needs to consider only one of the two C3 rotations, since they are 
mutual inverses. With the orbitals ordered as above, the relevant permutation 
can be taken to be 



294 

P - (9) 
278345  

Similarly, invariance under reflection in one of the av symmetry planes requires 
the vector of spin-coupling coefficients to be an eigenvector, with eigenvalue 
+ 1, of the matrix representing the self-inverse permutation 

Q -  234785 (10) 

in the basis of YK spin functions. Consideration of other symmetry elements is 
unnecessary, inasmuch as all orbitals are pure-a. 

U(P -1) admits the eigenvalue + 1 with degeneracy six, while U(Q) admits the 
same eigenvalue with degeneracy eight. The intersection of the two eigenspaces 
has dimension four, so the two conditions are equivalent to ten independent 
linear constraints on the fourteen spin-coupling coefficients (once normalization 
is taken into account, only three of the spin-coupling coefficients are truly 
independent). Methods to reach this conclusion, and find explicit expressions for 
the constraints, have been described in a previous paper [25]. One should 
perhaps note that U(P -~) is not a symmetric matrix. Though it is obviously 
diagonalizable, like all U matrices, because of its orthogonality, its eigenvalues, 
and eigenvectors, are not all real. Of course, the only possible eigenvalues are 
the three cube roots of +1, since the corresponding permutation is cyclic with 
period three. It is possible to find a set of eigenvectors of U(P -~) that span its + 1 
eigenspace by careful application of the "inverse iteration" method, as suggested 
in Ref. [25] for the non-symmetric case, and this is actually all that is required in 
the present context. However, it is in fact easier to diagonalize the matrix 
through reduction to Hessenberg form. This is especially true since public- 
domain subroutines implementing the latter approach are easily available (e.g. 
EISPACK's "RG" [50]; EISPACK is available on the Internet at 
www.netlib.org, a veritable trove of such packages). As for U(Q), it is 
symmetric and thus even easier to diagonalize. 

In any case, at convergence, the spin-coupling coefficients spontaneously 
satisfy the two conditions. This is as expected for the single-configuration 
case [3][25]: if the orbital symmetry is such that conditions on the spin-coupling 
coefficients suffice for the configuration to display the appropriate symmetry for 
the lowest-energy state of a given spin multiplicity, energy minimization will 
lead to spin-coupling coefficients that satisfy them. Constraints on the spin- 
coupling coefficients should then be unnecessary. 
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Table 3 

Optimized values a of STF exponential parameters for BH3 (RsH=2.24 a0) 

SCF Spin-Coupled  GMCSC (8 con~.) 
B ls 8.30452 7.68779 5.71602 
B ls 4.66474 4.35109 4.98762 
B 2s 4.07990 5.31368 5.02672 
B 2s 1.55101 1.51168 1.57509 
B 2/9 3.51901 3.73289 6.60964 
B 2/9 1.42234 1.46023 1.56948 
B 3d 1.89654 1.98763 1.91502 

H ls 1.24014 1.20172 1.33187 
H ls 0.77056 0.70319 0.91074 
H 2 1.75392 1 . 7 4 8 8 0  1 . 6 5 6 8 2  
anot all digits may be always significant 

The SC solution can be referred to, more precisely, as an OBS-SC solution, 
inasmuch as the basis set exponential parameters have been optimized 
simultaneously with the coefficients with which they enter the eight orbitals 
(and with the spin-coupling coefficients). Values are given in Table 3. 

The OBS-SC energy lies about 1.47 eV below the SCF energy, as computed 
with a corresponding, and similarly optimized, basis set (the OBS-SCF energy), 
see Table 4. 

To take into account the basis-set size, the OBS-SCF energy will be taken to 
define the correlation-energy zero. It lies only about 0.02 eV above the SCF 
energy computed [46] with a large basis set [51] at essentially the same bond 
length (2.2416 a0 compared with the value of exactly 2.24 a0 used in the present 
work). 

The single-configuration spin-coupled solution provides a simple, and 
intuitively appealing, picture of the molecule's electronic structure and of the 
three equivalent B-H bonds, smoothly generalizing the obvious "Old VB" 
model. Of course, quantitative accuracy would require a detailed description of 
correlation through the addition of "excited" configurations. Nevertheless, one 
would be tempted to assume that the essential physical picture is held by this 
one configuration, thanks to the adoption of non-orthogonal orbitals. This not 
only leads to an energy that is significantly lower than the SCF energy, but also, 
in all-electron calculations, makes the orbitals unambiguously fixed by the 
variational principle. Even the inclusion of spin-coupling modes other than 
perfect pairing appears, in this case, somewhat redundant. 
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Table 4 

Numerical results for BH3 (RBH=2.24 a0) 

Method Number of ...... Number of E / Eh a Ecorr b / eV e 00 
configurations independent 

, configuratio ns 
OBS-SCF 1 1 -26.401577 0.0 1.8013 
OBS-SC 1 1 -26.455489 1.467 1.8453 
MCSC f 3 1 -26.490584 2.422 1.9241 
MCSC g 3 1 -26.494263 2.522 1.8176 
VB-CI 6 1 -26.500629 2.695 1.8122 
MCSC 6 1 -26.515263 3.093 1.8416 
VB-CI 7 2 -26.515331 3.095 1.8413 
GMCSC 7 2 -26.518927 3.193 1.8273 
GMCSC 8 3 -26.522410 3.288 1.8271 
OBS-GMCSC 8 3 -26.533024 3.577 1.9151 

. . . . . .  = ~ _ _ _ _  

aEh cienotes the atomic unit of energy, or hartree: i Eh s x 10 :~8 J [37] 
b correlation energy 
c 1 eV = 1.602177 x 10 -19 J [37] 
d electric-quadrupole m=0 spherical-tensor component, the only non-zero component. 
atomic units (1 e.a02 = 0.4486553 x 10 -39 C ' m  2 [37]) 

f all orbitals constrained to be a 
g includes a:~n: orbitals and is syrmnetry-contaminated (fully symmetric in C3h subgroup only) 

This somewhat lengthy discussion of  the SC solution's spontaneous full 
symmetry has been included, at least in part, to stress that the solution shows no 
hint of symmetry breaking. Similarly, the convergence process onto it is 
uneventful, and requires no special precautions (for the present work, the very 
different OBS-SCF solution, with canonical orbitals, was taken as starting 
guess). At the single-configuration level, there is thus no intimation that 
something qualitatively important may be missing. 

4.4 Glimmers of complexity: three-configuration solutions 
The molecule's symmetry, however, does suggest the possibility of a three- 

configuration solution, each configuration connected to the other two by 
rotations through +120 ~ about the molecule's ternary axis. With suitable 
symmetry constraints, it is in fact possible to obtain a GMCSC solution that 
consists of  three such equivalent configurations. When the basis-set exponential 
parameters are fixed to the values that have been optimized for the single- 
configuration spin-coupled solution, the three-configuration GMCSC solution 
lies 2.42 eV below the OBS-SCF energy, almost 1 eV below the OBS-SC 
energy (see Table 4). Each configuration's orbital structure resembles that of the 
fully symmetric single-configuration solution: three "valence" pairs, each 
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Table 5 

Orbital overlaps for one (any) of the three equivalent "all-sigma" MCSC configurations 
(RBH=2.24 a0). 

al  02 0"3 0"4 0"5 0"6 0"7 08 

al 1.000 

o2 0.918 1.000 

a3 0.123 0.153 1.000 

a4 0.057 0.093 0.691 1.000 

a5 0.060 0.132 0.214 0.195 1.000 

a6 0.044 0.047 0.169 0.063 0.682 1.000 

a7 0.060 0.132 0.214 0.195 0.240-0.185 1.000 

as 0.044 0.047 0.169 0.063-0.185-0.436 0.682 1.000 

consisting essentially of an sp2-1ike hybrid mostly centred on boron and what 
looks like a strongly polarized hydrogen orbital, and a pair of "inner" orbitals, 
essentially localized on boron. However, within each configuration, only two 
"valence" orbitals, making up one "bonding pair", are now invariant under 
reflection in the av plane that contains their "bond axis". The same reflection 
swaps the other two "bonding pairs", which are thus symmetry-equivalent. They 
are not, however, equivalent to the first "bonding pair", and their orbitals are 
somewhat distorted with respect to their respective "bond axes". Thus, each of 
the three configurations is fully symmetric only under one of the three C2v 
subgroups of the molecular point group (the two inner orbitals display a 
corresponding symmetry reduction, being invariant under the same av reflection 
as the first "valence" pair, but not under the other two av'S, or (73). 

The overlap between any two individually-normalized configurations is 
0.874. Orbital overlaps are given in Table 5. 

Symmetry requires the same vector of spin-coupling coefficients to be used 
for all three configurations, a fact that reduces the GMCSC [2] calculation to a 
MCSC calculation [1]. This common vector spontaneously meets the 
requirement for each configuration to be fully symmetric in one of the C2~ 
subgroups, given the symmetry relationship among the orbitals of each 
configuration. That is, the vector is an eigenvector, with eigenvalue +1, of the 
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matrix representing the relevant (even) permutation, namely that corresponding 
to the swap, within each configuration, of the two symmetry-equivalent orbital 
pairs, Eq. (10). The overall wavefunction is obviously C3-invariant and O'h-- 
invariant, by construction, so it has the full symmetry required for a 1A] state. 
Perfect pairing is by far the dominant mode of spin-coupling (YK coefficient 
0.999). 

This interesting solution, however, is not stable against the mixing-in of zr- 
type basis functions. When this is allowed, while still constraining the three 
configurations to be connected by C3 rotations, six orbitals in each configuration 
do spontaneously remain pure a orbitals, but two orbitals turn into a (a:~2~r) pair. 
These two orbitals are not individually invariant under reflection in the plane of 
the nuclei. Such a reflection actually swaps them. Their nature allows each 
configuration to include correlation "across the nuclear plane" for one of the 
three bonding pairs. A different pair is thus correlated in this way by each of the 
three symmetry-equivalent configurations. Roughly speaking, this reduces the 
probability that two electrons can be found, within a "bond region", on the same 
side of the plane of the nuclei, correspondingly enhancing the probability that 
they be found on opposite sides of the plane, and thus reduces their electrostatic 
repulsion. 

Table 6 

Orbital overlaps for one (any) of the three equivalent "o-n: mixed" MCSC configurations 
(RBH=2.24 a0). 

0"1 o'2 a3 an o.5 o'6 a+2zt a-2 zt 

o.1 1.000 

o.2 0.919 1.000 

o.3 0.109 0.123 1.000 

o4 0.050 0.076 0.666 1.000 

o5 0.055 0.120 0.205 0.197 1.000 

o6 0.057 0.067 0.249 0.126 0.736 1.000 

o.+2z~ 0.057 0.077-0.015-0.009-0.072-0.112 1.000 

o.-2zc 0.057 0.077 -0.015 -0.009 -0.072 -0.112 0.711 1.000 



299 

>- 0.00 

>- 0.00- 

>- 0.00- 

o H ' i 

>- 0.0 �9 

0.00 

X 
i 

\ 3 
O 

H b  

, 

0.00 

X 
, i 

O ~ 

0.00 

X 
' 7 

H 

, �9 

0.00 

>- 0 .00 0.00 

'o 
-o o 

o.oo 

X 

\ 4 
H . ~ '  o" 

>- O.OC~ 

0.00 

X 

6 

>- 0.0 

N 0.00 

0.60 
X 

7 

060 

X X 

Fig. 2. Contour plots of  the seven unique orbitals in one of  three symmetry-equivalent 
configurations, at RBH=2.24 a0. The first six orbitals are pure a, and are plotted only in the 
plane of  the nuclei (xy). Orbital 7 is not pure a, and is plotted both in the x y  plane and in the x z  

plane. Orbital 8 can be obtained from orbital 7 by a reflection in the xy  plane. Contours are 
drawn every 0.2 a.u. for the uppermost two plots (depicting the two "inner" orbitals), every 
0.05 a.u. for the other plots. The other two configurations can be obtained by applying (73 and 
its inverse, respectively, to this one. The overall wavefunction has C3h, but not D3h, symmetry. 
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At the same time, the two (a:~270 orbitals in each configuration, being 
related by a reflection in the molecular plane, provide no "along the bond" 
correlation in the plane of the nuclei, though this is of course provided, for the 
other two bonds, by the other two valence pairs in the same configuration. 
Among them, the three configurations provide both "along the bond" and 
"across the plane" correlation for all three "bond regions". 

Each configuration's orbitals are also distorted in such a way that even their 
C2v symmetry becomes only approximate. The seven unique orbitals of one of 
the three equivalent configurations are plotted in Fig. 2. Orbital overlaps are 
given in Table 6. The overlap between any two configurations is 0.883. For this 
solution, perfect pairing becomes even more the dominant mode of spin- 
coupling (YK coefficient 0.9999). Moreover, the vector of spin-coupling 
coefficients, still necessarily idemical for all configurations, spontaneously 
satisfies the symmetry requirement that the last two orbitals must be singlet- 
coupled. This ensures that each configuration is invariant under reflection in the 
plane of the nuclei (ah), given that the last two orbitals of each configuration are 
swapped by such a reflection. The overall wavefunction is of course C3-invariant 
as well, by construction. 

However, it is not  invariant under reflection into any of the three a~ 
symmetry planes. It thus does not  have the full symmetry required for an A'I 
state, and it is only fully symmetric in the C3h subgroup of the D3h molecular 
point group. The energy lies a further 0.10 eV below that of the "all-sigma" 
three-configuration solution (see Table 4). 

4.5 Symmetry remediation as a path to variational improvement 
One can obtain a properly symmetric wavefunction from the symmetry- 

broken three-configuration solution by adding three more configurations, in such 
a way that the list of six configurations is then closed under all symmetry 
operations of the D3h molecular point group. These three extra configurations 
can be obtained e.g. by reflecting each of the three original configurations in 
anyone of the av symmetry planes. Altematively, one of the three configurations 
can be obtained by such a av reflection, and the remaining two can then be 
obtained from it by successive application of Ca rotations. Either way, the same 
set of six configurations is obtained, but in a different order. 

If these six configurations are used in a non-orthogonal configuration- 
interaction calculation (VB-CI), the resulting energy is about 0.17 eV lower than 
that of the symmetry-contaminated three-configuration MCSC wavefunction. 

A significant variational improvement can be obtained if orbital and spin- 
coupling coefficients are simultaneously relaxed in a corresponding MCSC 
calculation, using six configurations constrained to be related by Ca and av as 
above. Six orbitals of each configuration spontaneously remain pure-a. The last 
two orbitals of each configuration retain the (a:~_~r) nature they had in the three- 
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configuration solution, and remain exactly singlet-coupled, just as 
spontaneously. Each configuration is thus invariant under ah. Symmetry 
mandates that all configurations share the same set of spin-coupling coefficients, 
making a GMCSC calculation strictly equivalent to a MCSC calculation, as was 
the case for the three-configuration calculations. The overall wavefunction then 
has the symmetry required for a 1A] state in the full D3h molecular point group, 
just as its VB-CI counterpart. In both cases, perfect pairing is by far the 
dominant mode of spin coupling (YK coefficiem greater than 0.9999 for the 
VB-CI wavefunction, and equal to about 0.999 for its MCSC counterpart). 

With basis-set exponential parameters still fixed at the values optimized for 
the single-configuration spin-coupled solution, the energy falls by 0.40 eV in 
going from the VB-CI to the MCSC solution. The correlation energy, at 
3.09 eV, more than doubles that recovered by the single-configuration spin- 
coupled wavefunction. One should perhaps stress that only one of the six 
configurations is truly independem. The full set can be viewed as arising by 
symmetry adaptation of a single configuration. The significant drop in energy as 
one goes from VBCI to MCSC illustrates the quantitative importance of 
relaxation, or, if one wishes, the well-known fact that direct optimization of a 
symmetry-adapted wavefunction usually yields better results than projection of a 
properly symmetric component out of an already optimized wavefunction. 

4.6 The importance of being relaxed- a seven-configuration solution 
A somewhat surprising result emerges as one tries to merge the fully- 

symmetric single-configuration spin-coupled solution with the six-configuration 
"a-zc mixed" MCSC wavefunction discussed in the previous Subsection. 

One can obviously carry out a non-orthogonal configuration-interaction 
calculation including the 7x14=98 VB structures that arise from these seven 
configurations. However, the resulting energy is less than 0.002 eV lower than 
that of the six-configuration MCSC wavefunction (see Table 4). Moreover, the 
fully-symmetric configuration enters this "VB-CI" solution with a small and 
negative Chirgwin-Coulson occupation number (-0.026), and is less than 50% 
perfect-paired, the YK coefficient of the perfect-paired spin function being 
about 0.69. All this implies that the fully-symmetric configuration obtained at 
the single-configuration spin-coupled level plays here only a minor correlation- 
refinement role, despite a basis set biased towards it (since it was optimized for 
it alone). On the other hand, each of the six symmetry-equivalent configurations 
has an occupation number of 0.171 and is essentially perfect-paired (YK 
coefficient 0.998). 

A way out of this apparent conundrum is offered by a GMCSC calculation 
using these seven configurations as a starting guess. In such a calculation, one 
can maintain the configurations' essential identity by suitable symmetry 
constraints. Thus, one configuration is made fully symmetric, in the same way 
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as the single-configuration spin-coupled solution, by applying suitable 
constraints. Firstly, all its orbitals are constrained to be pure a. Two of them are 
also constrained to be invariant under both C3 rotations and av reflections, like 
the two "inner" orbitals in the single-configuration solution. Two other orbitals 
are constrained to be invariant under one of the av reflections only, as a 
prototypical "bonding pair". Two more "bonding pairs" are then constrained to 
be related to the prototypical one by successive applications of C3 rotations. 
Suitable constraints on the spin-coupling coefficients [25] then ensure full D3h 
symmetry. The other six configurations are constrained to be connected to one 
another by C3 rotations and a~ reflections, and to have identical spin-coupling 
coefficients. Each of these six equivalent configurations is based on six 
mutually-independem pure-a orbitals and a pair of ah-related (a+ 2 ~r) orbitals. 

At convergence, the GMCSC configurations can thus be considered "fully- 
relaxed" versions of their VB-CI forerunners and, sure enough, they all turn out 
to be almost exclusively perfect-paired. Moreover, the fully-symmetric 
configuration takes on a healthy 0.28 occupation number, the remaining six 
splitting equally between them, as they must, the 0.72 complement to 1.00 (0.12 
each). Configuration overlaps are given in Table 7. 

Relaxation brings about a non-negligible 0.10 eV lowering of the energy, 
with respect to the seven-configuration VBCI result, to 3.19 eV below the OBS- 
SCF energy, more than doubling the correlation energy recovered by the single- 
configuration spin-coupled wavefunction (see Table 4). 

4.7 Inner  correlation: an e ight-configurat ion solution 
What is obviously missing from the seven-configuration wavefunction 

described in the previous Subsection is some correlation "across the plane of the 
nuclei" for the two "inner" orbitals, analogous to that already included for the 
three "valence" pairs. The most economical way to provide this missing 
correlation is of course through the addition of a fully-symmetric configuration 
consisting of three symmetry-equivalent pairs of tr orbitals and a pair of identical 
C3- and av-invariant ~r orbitals. 

Table 7 

Configuration overlaps for the seven-configuration GMCSC solution (RBH=2.24 a0). 

1.000 
0.716 1.000 
0.716 0.594 1.000 
0.716 0.594 0.594 
0.716 0.341 0.557 
0.716 0.541 0.341 
0.716 0.557 0.541 

1.000 
0.541 1.000 
0.557 0.594 
0.341 0.594 

1.000 
0.594 1.000 
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Table 8 

Configuration overlaps for the eight-configuration GMCSC solution (Ran=2.24 a0). 

0.744 1.000 
0.744 0.631 1.000 
0.744 0.631 0.631 1.000 
0.744 0.435 0.606 0.599 
0.744 0.599 0.435 0.606 
0.744 0.606 0.599 0.435 
0.000 -4.5E-6 -4.5E-6 -4.5E-6 

1.000 
0.631 1.000 
0.631 0.631 

-4.5E-6 -4.5E-6 
1.000 

-4.5E-6 1.000 

Such an eight-configuration GMCSC calculation, with basis-set exponential 
parameters as optimized for the single-configuration spin-coupled solution, 
gives an energy about 0.10 eV lower than that of the seven-configuration 
solution described in the previous Subsection. 

Basis-set optimization, in a proper OBS-GMCSC calculation, leads to a 
further lowering of the energy by about 0.29 eV, and a non-negligible change in 
the quadrupole moment as well (see Table 4). The re-optimised values of the 
exponential parameters are given in Table 3; one should perhaps note the large 
increase in that of the more contracted of the two 2p functions on boron, 
consequent to its being 'put to use' for inner-shell correlation. In fact, the eighth 
configuration can be viewed as a double-excitation out of the all-sigma fully- 
symmetric configuration's "inner-shell" orbitals: even after full reoptimization, 
the overlaps between corresponding "valence" orbitals in the two configurations 
remains 95% or higher. 

Chirgwin-Coulson occupation numbers for the first seven configurations 
turn out to be essentially the same as those of their counterparts in the seven- 
configuration wavefunction (0.248 for the fully-symmetric configuration, and 
0.125 for each of the other six), while the eighth configuration achieves only a 
puny 0.0002 occupation number. Configuration overlaps are given in Table 8. 
Note the eighth configuration is orthogonal to the all-sigma first configuration, 
but is not strictly orthogonal to the other six configurations, each of which 
includes a (a:k2zr) orbital pair. It is however nearly orthogonal to them as well. 

The first seven configurations remain almost exclusively perfect-paired. As 
for the eighth configuration, it too turns out to be almost exclusively perfect- 
paired; the coefficient of the perfectly-paired YK spin function is in fact 0.982. 
In any case, the fact that its first two orbitals are identical rules out nine YK spin 
functions out of fourteen, and symmetry requirements further mandate three 
linear constraints on the coefficients of the five allowed spin functions, so that 
only two of them are truly independent. Anyway, one can legitimately conclude 
that the seven-configuration wavefunction is "qualitatively robust" with respect 
to the inclusion of this kind of "inner shell" correlation. 
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Fig. 3. Contour plots of the four unique orbitals in the fully-symmetric all-a configuration of 
the eight-configuration OBS-GMCSC wavefunction for BH3, at RBH=2.24 a0. All plots are 
drawn in the plane of the nuclei. The upper two plots (contours every 0.2 a.u.) depict the two 
fully-symmetric "inner" orbitals. The lower two plots (contours every 0.05 a.u.) depict one of 
the three symmetry-related orbital pairs. The other two pairs can be obtained by rotations 
through +120 ~ about an axis going through each orbital plot's origin and perpendicular to the 
plane of the paper (the C3 axis). All orbitals are normalized. 

Contour plots of  the orbitals are reproduced in the present and following 
pages. As has been said, the "main", fully-symmetric, configuration includes 
only a orbitals, and corresponds to the single-configuration spin-coupled 
solution. A comparison of  Fig. 3 on this page with Fig. 1 will show similarities 
and differences between corresponding orbitals. Each of  the six symmetry- 
equivalem configurations, on the other hand, includes a (a:~2~r) orbital pair in 
addition to six a orbitals. The latter are depicted, for one of  these configurations, 
in Fig. 4 on the next page, while Fig. 5 on the following page depicts one of  the 
two symmetry-related orbitals in the same configuration's (a:~-2~r) pair. A 
comparison of  Fig. 3 (above) with Fig. 4 should persuade the reader that the 
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Fig. 4. Contour plots of the six pure-a orbitals in one of the six symmetry-equivalent 
configurations of the eight-configuration OBS-GMCSC wavefunction, at RBH=2.24 a0. All 
plots are drawn in the plane of the nuclei. Contours join orbital-amplitude levels spaced 0.2 
a.u. apart for the uppermost two plots (depicting the two "inner" orbitals), 0.05 a.u. apart for 
the other plots. All orbitals are normalized. One of the two equivalent (a:~_2~:) orbitals that 
complete the space part of this configuration is depicted in Fig. 5. 
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Fig. 5. Comour plots of orbital 7 in one of the six symmetry-equivalem configurations of the 
eight-configuration OBS-GMCSC wavefunction, at RBH=2.24 a0. Orbital 7 is not pure a, and 
is plotted: in the plane of the nuclei, the xy plane, in the upper left plot, in the x z  plane in the 
upper right plot, and in the two z=+0.5 a0 planes in the lower two plots. In the upper right 
plot, only the boron nucleus and the rightmost hydrogen nucleus of the upper left plot are 
visible. In the two lower plots, crosses mark the projections, onto the plane of the plot, of the 
nuclear positions. Note that orbital 8 can be obtained from orbital 7 by reflecting it in the xy  

plane. Thus, to depict orbital 8, the upper left plot should be left unchanged, the upper fight 
plot should be reflected in the line through B and H, while the two lower plots should have 
their z=~+0.5 labelling interchanged. Contours are drawn every 0.05 a.u., for a normalized 
orbital. The six pure-a orbitals that complete the spatial part of this configuration are depicted 
in Fig. 4. 

orbitals in the latter are recognizable distortions o f  those in the ful ly-symmetric 
"main"  configuration. As can be seen, not even the "inner" orbitals depicted in 
Fig. 4 on the previous page are exempt  from some in-plane distortion. Also, 
within each o f  the two a "valence bonding pairs",  what  is still recognizable as 
essentially an sp2-1ike hybrid on boron is perhaps more distorted and delocalised 
than its "mos t ly -hydrogen"  counterpart.  
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Fig. 6. Contour plots of the three unique orbitals in the "doubly-excited" fully-symmetric 
configuration of the eight-configuration OBS-GMCSC wavefunction for BH3, at RBH=2.24 a0. 
The lower two plots (contours every 0.05 a.u.) depict one of the three symmetry-related a 
orbital pairs, in the plane of the nuclei (xy). The other two pairs can be obtained by rotations 
through + 120 ~ about an axis going through each orbital plot's origin and perpendicular to the 
plane of the paper (the Ca axis). The upper two plots (contours every 0.2 a.u.) depict one of 
the two identical, C3-invariant, ~r "inner" orbitals. The upper left plot is drawn in the plane 
z=0.5 a0: crosses mark the projections on this plane of the positions of the hydrogen nuclei. 
The upper fight plot is drawn in the xz  plane. All orbitals are normalized. 

Fig. 5 on the previous page shows that the a:bt~ orbital pair seems to have 
suffered less in-plane distortion than its all-a counterparts in the same 
configuration. This supports the idea of  a "subdivision of  roles" within the 
configuration, with all-a orbitals providing most in-plane correlation, while the 
(a:k;Lzc) pair provides very little of  that, but all of  the across-the-plane correlation 
(the plane referred to here is of  course that of  the nuclei). 

The three unique orbitals in the last of  the eight configurations are drawn in 
Fig. 6. A comparison with Fig. 3 will confirm that corresponding "valence" 
orbitals in the two configurations are fairly similar, supporting the claim that this 
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eighth configuration can be viewed essentially as a double excitation out of the 
main configuration's "inner" orbitals. These last are replaced by a pair of 
identical ~r orbitals which, as  expected, turn out to be quite contracted. This 
eighth configuration does therefore provide across-the-plane correlation for the 
inner shell, as previously suggested. 

4.8 Comparison with previous results 
Table 9 compares the eight-configuration OBS-GMCSC results with what 

are, in the present author's best knowledge, the best previous theoretical 
results [45][46]. For perspective, OBS-SCF and OBS-SC values computed in the 
present work are also included. The Table gives the minimum value of the 
potential energy for nuclear motion, Ue, the B-H distance at which the minimum 
occurs, Re, and the harmonic frequency for the fully-symmetric stretch, co~. 

The latter is the only harmonic frequency that could be easily and accurately 
computed in the present work, given that the derivatives of the STF-based 
integrals with respect to the nuclear coordinates were not available. This 
frequency was obtained by analytical differentiation of the natural-cubic-spline 
interpolant of the first derivative of the energy with respect to the common 
length of the three equivalent bonds, with all bond angles fixed at 120 ~ . 
Analytical values of this first derivative were obtained in turn by applying the 
virial theorem to the results of eight-configuration OBS-GMCSC calculations at 
a few bond lengths around equilibrium, all carried out in D3h geometry. 

Unfortunately, this harmonic frequency is also the only one for which no 
experimental value has been obtained, a fact that is hardly surprising given that 
the relevant transitions are essentially forbidden. However, comparison with the 
CISDTQ and CCSD(T) values given in Table 9 leads one to infer that the OBS- 
GMCSC value should not be in error by more than a few cm ~, or about 0.2%. 
The error on R~ similarly appears to be of the order of 0.2%, or 0.003 A at most. 
As already noted, the only experimental value of the bond length refers to R0 
(1.19001 A [40]), and thus constitutes only an upper bound to Re. 

As for Ue, there is some computational evidence, from calculations with 
limited basis sets on BH3 itself[45], and on comparable systems [52], that the 
CCSD(T) method may yield energies within a few millihartrees of the full-CI 
limit. This suggests the last line of Table 9 may provide an energy value fairly 
close to the Born-Oppenheimer non-relativistic limit, given the high quality of 
the basis set [51 ] used in Ref. [46]. If that is so, then the total correlation energy 
can be estimated at about 4.8 eV, and the eight-configuration OBS-GMCSC 
wavefunction would be recovering about 75% of the total. There is obviously 
scope for improvement, but 75% of the total correlation energy would appear to 
be a reasonably good result for such a compact wavefunction. Moreover, despite 
its merits, the CCSD(T) method, as a variant of the coupled-cluster approach, 
yields energy values that are not variational upper bounds to the exact energy. 
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Table 9 

Comparison with previous theoretical results for the X 1A] state of BH3 

Method ...... Basis Set . . . .  Ue / Eh . . . . . .  Re //~ (D1 / cm "l Reference 
OBS-SCF Slater, double-zeta plus -26.401580 

polarization. 
OBS-SC Slater, double-zeta plus -26.456209 

polarization. 
CISDTQ Gaussian, -26.528716 

B(10s6p2d/5 s3 p2d) 
H(5s2p/3s2p) 

OBS-GMCSC Slater, double-zeta plus -26.533045 1.1890 2570 Present 
(8 configs.) polarization, work 
CCSD(T) Gaussian, -26.578848 1.1862 2575 [46] 

B(14s9p4d3 f/7s7p4d3 f) 

1.1867 2639 Present 
work 

1.2090 2466 Present 
work 

1.1890 2563 [45] 

H(_8s4P3d/6s4p3d ) [51 ] 

Therefore, the eight-configuration OBS-GMCSC result appears to be the 
lowest variationally-bound value of the energy published so far. Though this 
distinction may be short-lived, the fact remains that the eight-configuration 
OBS-GMCSC value lies about 4.3 millihartree (0.12 eV) below a Configuration- 
Interaction value [45] obtained including all single, double, triple and quadruple 
excitations out of the SCF wavefunction, with a not-so-small basis set (see Table 
9). 

5. CONCLUSIONS 

The OBS-GMCSC method offers a practical approach to the calculation of 
multiconfiguration electronic wavefunctions that employ non-orthogonal 
orbitals. Use of simultaneously-optimized Slater-type basis functions enables 
high accuracy with limited-size basis sets, and ensures strict compliance with the 
virial theorem. OBS-GMCSC wavefunctions can yield compact and accurate 
descriptions of the electronic structures of atoms and molecules, while neatly 
solving symmetry-breaking problems, as illustrated by a brief review of 
previous results for the boron anion and the dilithium molecule, and by newly 
obtained results for BH3. 

The latter provide, to the best of my knowledge, the lowest variationally- 
bound value of the electronic energy, and the only value of the electric 
quadrupole moment that has been published so far for ground-state BH3. These 
results support a description of the molecule's electronic structure in terms of 
"resonance" between eight different orbital configurations. The main 
configuration is a fully-symmetric configuration, closely related to the single- 
configuration spin-coupled solution, and consisting of a orbitals only. It 
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provides "along the bond" correlation for each of the three equivalent "bonding 
regions", as the two orbitals in each bonding pair are different, but no 
correlation "across the plane of the nuclei" for any of them. This configuration 
also provides some "in-out" correlation for the inner shell. Six similar but 
distorted configurations that are symmetry-equivalem to one another, and 
include a (a~-2:r) orbital pair each, provide the missing across-the-plane 
correlation, and supplemental in-plane correlation, both within each bonding 
pair, and among different orbital pairs. They also provide somewhat more 
directional in-plane correlation for the inner shell. Each of the six symmetry- 
equivalent configurations enters the wavefunction with a weight that is more 
than half that of the "main" configuration. Together, they recover more than 
twice the correlation energy obtained at the single-configuration spin-coupled 
level (see Table 4). Finally, an eighth configuration, also fully symmetric, 
provides across-the-plane correlation for the inner shell, through what is 
essemially a conventional double excitation out of the two main-configuration 
inner orbitals into a pair of identical ~r orbitals. This last configuration enters the 
overall wavefunction with a decidedly small weight. Nevertheless, it does lead 
to a significant further lowering of the energy. 

The final wavefunction for BH3 can thus be said to consist of two fully- 
symmetric configurations, one of them essentially a double excitation out of the 
other, and a symmetry-adapted linear combination of six equivalent low- 
symmetry configurations. The latter can be viewed as distortions of the "main" 
configuration. The wavefunction therefore includes only three truly independent 
configurations, and is thus readily amenable to physical interpretation, while 
achieving an accuracy that vouches for the significance of such interpretations. 

It is hoped that similar characteristics will be achieved by applications of the 
OBS-GMCSC method to other systems. 
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Chap ter  11 

Ab initio computational approaches to weakly interacting 
systems in the framework of the valence bond theory: from 
small to large van der Waals molecules 

Antonino Famulari, Roberto Specchio, Ermanno Gianinetti, Mario 
Raimondi 

Dipartimento di Chimica Fisica ed Elettrochimica and Centro C N R -  CSRSRC 
Universit?~ degli Studi di Milano, via Golgi 19 -20133 Milano-  Italy 

The research accomplished by our group in the field of van der Waals 
molecules is here summarised. The modification of the Roothaan equations to 
avoid the basis set superposition error (BSSE) at the Hartree-Fock level of 
theory (SCF-MI) and the successive development to take account of electron 
correlation effects by a compact multistructure size consistent valence bond 
wavefunction (MO-VB) are reviewed. The central idea of both the SCF-MI and 
MO-VB methods is the expansion of the orbitals in the partitioned basis set to 
exclude BSSE in an a priori fashion, while taking properly into account orbital 
and geometry relaxation effects and the natural non orthogonality of the MOs of 
the interacting fragments. Significant applications on large molecular systems of 
the SCF-MI approach and MO-VB studies on H-bonded complexes (water 
dimer and hydrogen fluoride) and on the He-CH4 van der Waals complex, are 
reviewed. The very promising extension of the MO-VB scheme to fully exploit 
the capability of the virtual space spanned by the basis set is also presented, 
including explorative calculation on the helium dimer system. 

1. INTRODUCTION 

The study of van der Waals and hydrogen bonded molecules is one of the 
very important fields of chemistry where computational quantum chemical 
methods have increased our understanding both in a quantitative and qualitative 
way. The interest in the subject is emphasised by the impressive number of 
reviews, monographs and books that have recently appeared [1]. An accurate 
knowledge of the interaction potential between the individual molecules is in 
fact essential to the treatment of both finite clusters and condensed matter 
properties in the broad field of computer simulations. 



314 

In addition, hydrogen bond interactions play a fundamental role in the life 
sciences. These interactions are in fact responsible for biomolecular structures 
and related chemical processes: it would be practically impossible to find 
important biological phenomena in which these interactions do not play an 
important role [2]. 

The use of semi-empirical or even force field methods, which are generally 
used for problems of this size, is nevertheless not apt for the description of these 
systems [3]. On the other hand, the application of ab initio methods requires a 
considerable computational effort so that attempts to improve the efficiency of 
computational techniques are well worthwhile. 

The interaction energy involved in weakly interacting systems is a very 
small fraction of the total energy; as a consequence, a great challenge is set to 
the accuracy of the quantum mechanical methods employed for its theoretical 
determination. For this reason, methods based on perturbation theories, which 
compute the interaction directly rather than as a difference between the energies 
of the complex and that of the separated systems, are frequently applied. 
Moreover, the majority of calculations involving complexes and clusters of 
molecules adopt the supermolecular approach, in which the interaction energy is 
computed as the difference between the energy of the complex and the total 
energy of the monomers. Variational procedures have the possibility to rely on 
the power of the variational theorem, but the appearance of the basis set 
superposition error (BSSE), which can be of the same order of magnitude of the 
interaction energy itself, represents a major inconvenience. 

The BSSE is due to the use of all the basis functions located on the 
molecular centres of each monomer to compute the molecular orbitals of the 
complex considered as a single system, the so called supermolecule. In this way, 
however, when the molecules approach one another, the basis functions centred 
on the approaching "projectile" partner become better suited to describe the 
wavefunction also of the "target" partner, particularly in the region where the 
interaction becomes stronger. This involves a de facto use of an artificially too 
flexible functional space at shorter intersystem distances, causing a bias which is 
the origin of the BSSE. This error has a strong effect; in particular, it upsets the 
predicted binding energy and the anisotropy of the forces, quantities that are 
important in determining the geometry of clusters in both finite systems and in 
the liquids. 

There have been many attempts to formulate a procedure to correct for 
BSSE and both a posteriori and a priori schemes are available [4]. The 
counterpoise approach (CP) [5], based on the use of "ghost orbitals", is the most 
common a posteriori procedure. Nevertheless, the addition of the partner's 
functions or ghost orbitals to counterbalance the BSSE does not provide a 
definite solution to the problem [6]. The introduction of the "secondary 
superposition error", upsetting the multipole moments and polarisabilities of the 
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monomers, is particularly important in the case of anisotropic potentials for 
charged species, where these errors can contribute to changing the shape of the 
PES, and thus the resulting physical picture [7]. 

In this context, the SCF-MI (Self Consistent Field for Molecular 
Interactions) [8] was proposed as an ab initio variational method that avoids the 
onset of BSSE in an a priori fashion. The very essence of the method consists of 
partitioning the full basis set into subsets centred on each fragment; the 
molecular orbitals of the different fragments are then expanded only in their own 
set, avoiding the BSSE. Because of this partitioning, the orbitals of the different 
fragments do overlap, reflecting the physics of the problem; the expected 
computational cost of this non-orthogonal procedure is well alleviated by the 
SCF-MI strategy. A definite advantage of the a priori SCF-MI method is that it 
is always exact, contrary to the CP procedure that is exact only in the case of 
Full CI wavefunctions [4]; in addition, geometry relaxation effects are naturally 
taken into account, without computational penalty. Recently, the algorithm was 
implemented into the GAMESS suite of programs [8b, 9]. Another important 
characteristic of the SCF-MI approach is that the schemes for first and second 
derivative evaluation at the Hartree Fock level are successfully applicable to the 
SCF-MI wavefunction: the intrinsic features of the method are in fact consistent 
with those required by the standard procedures for computing gradients and 
Hessians. This makes it possible to explore the shape of intermolecular potential 
energy surfaces as well as to determine vibrational frequencies and related 
properties within a BSSE-free procedure. 

The complete description of hydrogen bond and van der Waals interactions 
requires of course the inclusion of electron correlation effects. Generally it is 
assumed that a very useful starting point is represented by the Hartree Fock 
description, which serves as the basis for both perturbation theory and 
variational configuration interaction approaches to the treatment of electron 
correlation; we have adopted this assumption in the context of the SCF-MI 
theory, presenting variational MO-VB ab initio approaches [10] to the solution 
of the problem. A compact, size consistent, multistructure VB - non-orthogonal 
CI - wavefunction, where the effect of the overlap between the orbitals of the 
fragments is naturally taken into account, is generated. A general scheme for the 
intermediate generation of virtual orbitals optimal to describe the interaction 
between pairs of electrons is devised: it is based on the separate determination of 
a pair of virtual orbitals that optimises the energy of the configuration 
interaction wavefunction between the SCF-MI zero-order wavefuncfion and a 
doubly excited configuration arising from simultaneous single excitations 
localised on each monomer. These optimal virtual orbitals can be generated both 
by variational or perturbative approaches, the choice mainly depending on the 
size of the system under study and on the computational cost. Here we shall 
review the variational approach only. The use of SCF-MI orbitals, where each 
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orbital belongs by construction to just one fragment, gives to the method extra 
physical insight. The variational procedure ends up by being a specialisation of 
the Independent Electron Pair Approximation (IEPA), in the framework of the 
SCF-MI strategy. Finally, the optimised virtual orbitals are employed to 
generate a MO-VB wavefunction consisting of all the localised single and 
double excitations involving the valence space: the configuration mixing of the 
multistructure wavefunction incorporates the coupling of the separately 
optimised configurations corresponding to each double excitation. The final 
estimate of the energy, as well as the wavefunction itself, is thus BSSE free. As 
the orbital pairs are optimal to provide an estimate of intermolecular correlation 
effects, the overall procedure can be viewed as a variational coupled-electron 
pair approach to the intermolecular interaction calculation in the framework of 
the VB theory. 

It can be questioned whether the SCF-MI and the MO-VB approaches are 
able to take into consideration the possibility of a charge transfer. Considering a 
two-fragment system, with the basis functions of A and B kept strictly 
partitioned, there is the justifiable concern as to whether the electrons of one 
fragment can delocalize over the other. However, thanks to the tails of the 
functions centred on fragment A which extend into the space of fragment B, and 
vice versa, it is to be expected that, due to the non-orthogonality of the MO's of 
the different fragments, electronic transfer will not be strictly forbidden. Bader 
analysis has confirmed this, demonstrating that, even in unfavourable cases, the 
computed total charge located on A and B is of the same order of magnitude for 
both standard supermolecular SCF and SCF-MI wavefunctions [ 11 ]. 

In the following sections, the generalisation to an arbitrary number of 
interacting systems is outlined for the SCF-MI and the MO-VB theories and 
very recent extensions to reach saturation of the optimal virtual space are 
discussed. Several applications on large hydrogen bonded complexes and van 
der Waals systems, including explorative calculations on the helium dimer are 
then presented. In particular, the results for various DNA basis pairs and their 
complexes with various mono and divalent metal cations (H § Na § K § free and 
hydrated Mg §247 Ca ++ and cis-Pt(NH3)2) and with solvating water molecules are 
reported. As an example of the use of the SCF-MI approach to the study of 
solvation problems and clustering processes, the calculations on lithium and 
potassium cations coordinated by ammonia molecules are described. We also 
comment on calculations for various simple H-bonded complexes such as water 
and hydrogen fluoride dimer, and the molecular dynamics simulation of water at 
several conditions, and a study of the He-CH4 van der Waals complex. 
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2. THEORY 

2.1. The SCF-MI wavefunction 
In this section, a brief introduction to the most relevant elements of the SCF- 

MI theory is reported; for a more detailed account of the method see Ref. 8. 
A supersystem of K closed shell interacting fragments a1 ...aK containing 2N 

electrons ( N = N I + N 2 +  .... +NK) is described by the one determinant SCF-MI wave 
function 

qJ(1 ..... 2N) = a[q~l, , (1)~,, (2).." ~K,N,, (2N -1)q~K,NK (2N)] (1) 

where g[ is the total antisymmetrizer operator. The method is based on the 
partitioning of the total basis set 

- (~11~2] .... ~K) (2) 

where M=M~+ ...... +MK is the basis set size. Accordingly, the N~ doubly occupied 

molecular orbitals of the fragment k, q~k = (qgk,l ""  q~k,Uk ), 

r ~ T~ (3) 

are expanded in the set Z, = (Zk,1 ... Zk,M, ), where Tk is an M,  xN ,  matrix and 

M~ is the number of basis orbitals centred on the fragment k. The total (MxN) 
matrix of the partitioned molecular orbital coefficients T, defined as 

q~ = (q~ I q~21 . . . . . .  q~K); q~ = X; T (4) 

has a block diagonal form 

(DL (I)2 (DK Z1 Z2 ~K 

~P Z 

[ 



318 

By using symmetric L6wdin orthonormaliazation we can define the new 
1 

matrix _T_= T(T+ST) -~ that is apt for the construction of the correct density 
matrix D (the Schmidt method could also be used) that can be easily calculated 
as  

D -  T T + =  T(T+STy~T + (5) 

satisfying the general idempotency condition ( D S D -  D ). 
As a consequence, the total energy of the SCF-MI wavefunction, Eq. (1), 

E - Tr[D. h]+ Tr[D . F(D)] (6) 

can be written in term of the usual Fock (F) and one-electron integral (h) 
matrices expressed in the atomic orbitals basis set; the density matrix D, is as 
defined above. 

The BSSE is avoided by assuming, and then maintaining, the orbital 
coefficient variation matrix in a block diagonal form. The stationary condition 
6E = 0 is equivalent to K secular problems 

{ FkTk = S'kTkL k 

T~tS'k T ~ =lU~ 
(7) 

i 

in terms of effective Fock and overlap matrixes Fk and S k . These matrices are 
Hermitian and possess the correct asymptotic behaviour: in the limit of infinite 

i 

separation of the fragments, Fk and S k become the Fock and overlap matrices 
of the individual systems. 

The SCF-MI binding energy can be expressed as 

AEscF_M! = ESCF_MI 
K 
Z k -- Esc  F (8 )  
k=l 

taking naturally into account geometry relaxation effects. The validity of the 
method extends from the long range to the region of the minimum and of short 
distances. 

Following the scheme proposed by Gerratt and Mills [12], see also Pulay 
[13] and Yamaguchi et al. [14], the calculation of first and second derivatives 
was implemented [8b] and inserted into the GAMESS-US package [9]. 
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As usually, first derivatives can be written in the AO basis {Z, }Jk~ as: 

3 huo 3 S uo O~Eelec 2~Duo + ~{2DuoDpo_D~oDoo}O ~olpcr) M - - 2 ~ , W u o  (9) 
Oa uo Oa Oa Oa l~opa lao 

where "a" stands for a nuclear coordinate, W is a symmetric Lagrangian matrix 
defined as 

N 
Wl~v -- Z Z'~iZ~. lF, i (10) 

i=l 

and T and e are the eigenvectors and eigenvalues of the Fock matrix in the basis 
of the ~ orbitals defined in Eq (4). 

Level shifting [15] and DIIS [16] techniques have been adopted to increase 
convergence performance [17]. The SCF-MI option is also incorporated in the 
particularly efficient PC GAMESS version [18] of the GAMESS-US quantum 
chemistry package. 

2.2. The MO-VB wavefunction 
The MO-VB wavefunction [10] is a non-orthogonal CI expansion resulting 

from single and double excitations from the SCF-MI determinant into a set of 
optimal virtual orbitals. In order to avoid BSSE, the optimal virtual orbitals are 
also generated within the SCF-MI strategy by a procedure which closely 
resembles the IEPA approach. The validity of the method extends from the long 
range to the region of the minimum and of short distances. The resulting 
wavefunction is also size consistent. 

For each pair of active occupied SCF-MI orbitals located on the fragments, a 

pair of virtual orbitals ~ a  A and ~ ,  is determined by minimising the variational 

energy corresponding to the following two-configuration wavefunction: 

= I "~ ~lla*b* ~ t  Co lt~O + W ab x ab ( 1 1 )  

representing the configuration interaction between the SCF-MI ground state 

A ~ A  -~A d.~B'~B B - - B  - - B  
~ 0  -'l lff~ r  "lff~ a lff~a " 'Y  Na T1  Y I "'f~ b (~ b "'(~ Nb > (12a) 

and the doubly excited configuration 
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~.~aa*b * _.[ (Ib A t, I~ A A A "~  A tib B'-~ B B B - -  B 4 
" "(~ a f~  a* " "~  Na "~ l Y 1  "" (~ b (~ b* " f ~  Nb l~) O0 > b i-1-1-1-1 (12b) 

in which electrons are excited from the occupied SCF-MI orbitals O A and O g 

to the unknown virtual orbitals o a and B a* Oo*, respectively. 

According to the SCF-MI strategy, the virtual O a. _ O g. orbitals are 

expanded in the partitioned basis set located on their own fragment: 

(~A,  ~ A A  B ~ B B  
= Z p T  a. * b . =  Z q T  b. (13) 

p=l q=l 

It follows that, if there are na and nb SCF-MI active orbitals on fragments A 
and B, we obtain a total of na*nb optimised virtual orbitals. The spin space is 
described by the spin wavefunction 

040 4 4 = CiO0,0; l + C200,0,2 (14) 

where O~.0; k (k=l,2) are the two spin eigenfunctions corresponding to the singlet 

state of the four electron system. 

During the optimisation, the virtual orbitals O aA. and O bB., see Eq. (13), are 

left non-orthogonal. 
The variational expression of the energy: 

E = < W] H I W' > = EcoR e + EcoRe_VA L (15) 
< ~e ' l 'e '> 

is partitioned into two terms: the first is a fixed core electron term; the second is 
the mixed core-valence term. Leaving the wavefunction invariant, we 
orthogonalize the SCF-MI virtual space to the core, while the doubly occupied 
core orbitals are kept orthogonal. At convergence, the core components, 
included in the optimised virtuals by the orthogonalization step, are deleted 
leaving the energy unchanged due to the double occupation of the core. This 
ensures that the process remains BSSE free. 

To determine the virtual orbitals which minimise the variational energy (15), 
the derivatives with respect to the basis set expansion, see Eq. (13), and the 
configuration coefficients, Eq. (11) are computed. Analytic gradients and second 
derivatives, including mixed terms, are computed and inserted into the Newton- 
Raphson stabilised algorithm [19]. The detailed expression of the derivatives 
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have been reported in Ref 10e. The convergence and stability of the 
implemented algorithm are satisfactory. 

The virtual orbitals are then employed to construct the set of singly- and 
doubly-excited configurations which provide the final MO-VB wavefunction, 
where the SCF-MI determinant represents the zero order state. The final 
wavefunction has a general Molecular Orbital-Valence Bond form: 

Na Nb Na Nb 

LF = Co ~~ + ~ E C.~ tIJ~ *b* + ~ C~ q"~* + E Cb q"~* (16) 
a=l b=l a=i b=l 

The localised single vertical excitations 

~a a* =11ff~A'~A"I~AoA " ~ A  ~BI "~IB ~ ( f f~B"~B " ~ B  0 2  
a a*'" Na " ' b  b "" Nb 0,0;1 ~ 

I ~  b* (ff~ A " ~  A -- B (ff~) B "~ B 0 2  =I*A A o > 
�9 a a b "" Nb 0,0;1 

(17) 

are included to relax the occupied SCF-MI orbitals, which were kept fixed 
during the determination of optimal virtuals. The energy of such a wavefunction 
is calculated by solving the corresponding secular problem, which includes the 
determination of the Hamiltonian and overlap matrixes between non-orthogonal 
VB structures by means of standard VB techniques [20]. The wavefunction 
remains size consistent and asymptotically converges to the SCF wavefunctions 
of the two subsystems. 

The configurations included can be therefore directly associated to specific 
energy contributions" Coulomb-exchange, polarisation or induction (W0), extra 

polarisation (wa* and W f )  and dispersion (~ffaa*b b* ). 
The MO-VB dimerisation energy is calculated as 

(18) 

and takes account of the geometry relaxation effects. 
The accuracy of the MO-VB wavefunction is expected to be close to that of 

a full SD-CI wavefunction involving excitations to the full virtual spaces of each 
monomer (vertical excitations). Very recently, a new version of the MO-VB 
optimization scheme has been developed that is apt to guarantee that the 
wavefunction approaches as close as possible the full SD-CI limit, via saturation 
of the optimal virtual space. Explorative calculations on the very challenging 
helium dimer system are encouraging. 
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2.3. Extension of the MO-VB scheme: saturation of the optimal virtual 
space 

Once the first pair of optimal virtuals (I)aA and ~ .  is determined, a new 

optimal pair, say ~aA** and ~**,  is optimised by expanding it in the orthogonal 

complement space to the previously determined pair. 
The whole procedure can be repeated n times generating - for each pair of 

occupied orbitals - n optimised virtual orbital pairs, whose contribution to the 
interaction energy is strictly decreasing up to saturation of the space, i.e. up to 
the full use of the SCF-MI virtual orbital space. Consistent with the employed 
basis set, the final MO-VB wavefunction (16) can be so improved to the desired 
degree of accuracy. 

3. EXAMPLES OF APPLICATIONS 

In the present section, several applications of SCF-MI and MO-VB 
approaches are presented and discussed. Most calculations were performed with 
the SCF-MI procedure we implemented in the GAMESS-US package [9]. This 
version of the code can perform conventional and direct energy calculations, 
analytic gradients, numerical Hessian evaluation and geometry optimisation; 
vibrational analysis is also available. The increase in complication and 
computation time with respect to standard SCF algorithms is minimal. The SCF- 
MI option is also incorporated in the particularly efficient PC GAMESS version 
[18] of the GAMESS-US quantum chemistry package. The MO-VB calculations 
reported here have been carried out employing the programs described in Refs. 
10d and 10e. 

3.1. Large Van der Waals molecules of biological interest 
The performance of the SCF-MI procedure was tested on large van der 

Waals systems, such as clusters of biological interest. In particular, DNA base 
pairing also in the presence of different interacting charged and neutral species 
was analysed. 

The structure of the DNA molecule is basically determined by nucleic acid 
base interactions. Although the three-dimensional double helix structure of DNA 
is influenced by various contributions, the hydrogen bonding in DNA base pairs 
is of particuar importance. Because it is difficult to obtain gas phase 
experimental data for isolated base pair charactcrisation (only a limited number 
of experimental studies are available [21]) quantum chemical calculations can 
represent a useful tool to obtain reference data on the structure, properties and 
interactions of nucleic acid pairs. Theoretical studies can help us to understand 
the properties of nucleic acids and they arc fundamental for verification 
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(validation) and parameterisation of empirical potentials for molecular 
modelling of larger biomacromolecules, and of interactions between them. 

The presence of ions not only affects canonical base pairs [22], but promotes 
the formation of triplexes and other non-canonical DNA structures [23]. The 
effects of these interactions span from modifications of the renaturation kinetics 
of thermally denaturated DNA [24] to the known anti-tumoral and mutagenic 
activity of cisplatin [25]. 

The complete description of hydrogen bond and van der Waals interactions 
requires of course the inclusion of electron correlation effects; however, almost 
always, a very useful starting point for subsequent refinements is represented by 
a Hartree-Fock description, which serves as the basis for both perturbation 
theory and variational configuration interaction approaches to the treatment of 
electron correlation. 

For systems of this size, the SCF-MI method is particularly advantageous, as 
a standard SCF supermolecule CP-corrected approach requires five single point 
energy evaluations, if geometry relaxation effects are to be included [6, 26]. As 
will be showed in the following, the SCF-MI algorithm turned out to be 
particularly efficient: one of the main results was that a small basis set, such as 
the 3-21G basis, could provide structural and energetic results comparable to 
those obtained by much more expensive standard SCF/6-31G** CP-corrected 
calculations. 

A number of systematic and accurate studies were accomplished on the H- 
bonding of DNA bases [27]; for these systems the paper by Sponer, Leszczynski 
and Hobza [28] represents the most extended benchmark study and it was used 
for comparison. 

Our calculations [1 l b] were carried out on base pairs made up from several 
possible combinations of the neutral major tautomers of adenine (A), cytosine 
(C), guanine (G), thymine (T) and uracil (U) bases. The structures were fully 
optimised using 3-21G standard basis set. Table 1 reports the corresponding 
SCF-MI interaction energies and the geometrical parameters characterising the 
hydrogen bonds formed in the different pairs. These data are compared with the 
structures optimised at the SCF 6-31G** or 6-31G* levels (CP corrected with 
deformation terms). SCF-MI interaction energies and structures agree very well 
with the literature results [28,29] for all the systems considered. 
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Table 1 
Optimised base pairs intermolecular geometrical parameters (distances in /~ / angles in 
degrees) and interaction ener~!e s (kca!/mol) 
Base pairs H-bonds SCF-MI [lib] Ref. 28 AEscF_M~[IIb] Ref. 28 

3-21G 6-31G** 3-21G 6-31G** 

GCWC N2(H)...O2' 2.97/171.9 

NI(H)...N3' 3.04/173.8 

O6...(H)N4' 2.94/172.4 

ATWC N6(H)...O4' 3.09/170.2 

N3'(H)...NI' 3.01/176.7 

CC N3...(H)N4' 3.05/174.2 

N4(H)...N3' 3.05/174.2 

GCH NI'(H)...O2 2.83/177.2 

O6'...(H)N 1 2.95/170.1 

AA N6(H)...N 1' 3.14/179.1 

N 1...(H)N6' 3.14/179.2 

GG NI(H) ...O6' 2.87/177.7 

O6 ...(H)NI' 2.90/177.7 

AUWC N6(H)...O4' 3.09/170.2 

N3'(H)...N 1' 3.01/176.7 

TT O2'...(H)N3 2.95/159.1 

O2...(H)N3' 2.96/158.8 

AG O6'...(H)N6 2.95/175.2 

N1...(H)NI' 3.19/176.4 

TAH O4'...(H)N6 3.11/171.8 

N3'(H)...N7 2.96/176.5 

(a) From Ref. 29. 

3.02/178.1 -22.5 -23.4 

3.04/176.1 

2.92/177.0 

3.09/172.0 -9.5 -9.6 

2.99/178.8 

3.05/173.2 -15.6 -15.9 

3.05/173.2 

2.82/175.0 -19.1 -20.6 

2.92/179.0 

3.16/179.4 -8 -8.1 

3.16/179.4 

2.87/178.1 -20.7 -22.5 

2.87/178.1 

3.08/172.9(a) -9.5 - 10.2(a) 

3.00/178.4(a) 

2.98/166.2 -8.9 -8.5 

2.98/166.6 

2.95/179.9 -10.7 -11.5 

3.19/179.3 

3.14/170.1 -9.5 -10.2 

2.95/175.6 
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A B 
Fig. 1: The two SCF-MI optimised structures of the cis-[Pt(NH3)2GC] 2+ complex: cisplatin-1 
(A) and cisplatin-2 (B). Broken lines represent hydrogen bond bridges. 

Such good performance of the SCF-MI method was also highlighted in a 
study of the coordination of cis-[Pt(NH3)2] 2+ (cisplatin) to the N7 and 06  sites of 
guanine in the CG base pair [30]. The results (confirmed also by SCF, DFT and 
MP2 calculations) showed that the coordination of cisplatin causes significant 
changes in the interaction between guanine and cytosine compared to the 
Watson-Crick (WC) H-bonding pattern. In particular DFT, MP2 and SCF-MI 
geometry optimisations agree in finding two conformations that are both 
characterised by the breaking of the N4'-H-O6 H-bond and by a substantial non- 
planarity of the base pair (see Fig. 1). In the first structure (cisplatin-1), there is 
an evident "opening" of the base pair, held together only by a bifurcated 
hydrogen bond; in the latter (cisplatin-2) the relative position of guanine and 
cytosine is closer to the standard WC structure. It is to be emphasised that 
standard SCF fails to find a minimum for the cisplatin-2 conformation. 

The structures and energetics of other complexes between GCWC base pairs 
and various Ia and IIa group cations were also investigated. In particular the N7 
and/or 06  coordination of H +, Na ~, K +, Mg ++ and Ca ++ was analysed, showing 
that these cations can also generate non-WC hydrogen bonding patterns [31 ]. As 
an example, the coordination of guanine by a magnesium cation generated two 
distorted conformations of the pair, characterised by essentially the same 
binding energy (43.14 and 43.12 kcal/mol). The first of these is almost identical 
to the cisplatin-1 complex with the bifurcated hydrogen bond. The other 
structure is characterised by the same hydrogen bond pattern but with the bases 
retaining a coplanar arrangement (Fig. 2). These conformations persisted also 
when considering the effect of cation hydration by four or five water molecules, 
even if water-induced softening of the cation altered significantly the energetics 
of the system [32]. 
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The SCF-MI method was also employed to study the influence of hydration 
on the WC cytosine-guanine base pair, investigating the ability to reproduce the 
hydration pattem present in the real system (the base pair in the DNA 
framework) [33]. The calculated water positions around the base pair were 
compared to those predicted by a knowledge-based approach employing 
crystallographic data [34]. The correspondence between averaged 
crystallographic data and our "isolated" system (Fig. 3) corroborated the 
hypothesis that the hydration pattern of bases in B-DNA strongly depends on the 
chemical nature of the bases themselves and not as much on the environment 
[34]. It was also shown that the saturation of the first hydration shell results in a 
negligible variation of the pair conformation. Despite this, the hydration causes 
more than 4 kcal/mol enhancement in the CG binding energy, emphasising the 
important role of the surrounding water in base pair matching and mismatching. 

Fig. 2. The structure of the planar CG-Mg ++ complex. Broken lines represent hydrogen bond 
bridges. 
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Fig. 3. SCF-MI optimised structure of the penta-hydrated CG pair with methylated bases. 
Dark circles represent average crystallographic hydration sites in B-DNA. 

3.2. The structure of lithium and potassium cations coordinated by 
ammonia molecules 

In order to characterise ion solvation processes, gas phase studies can be 
performed providing detailed information about individual interactions. These 
studies can explore changes in some properties between the complexes in the 
gas phase and the solvated systems in the liquid phase. Theoretical methods can 
thus provide valuable complementary information not accessible to experimental 
approaches, both in the characterization of the complexes and in the specific 
mechanism of the relevant interactions. 

Since the first preparation of potassium-ammonia solution (Sir Humphrey 
Davy, in 1808) alkali metal-ammonia solutions have been at the centre of much 
theoretical and experimental interest. Novel properties include low density, high 
electrical conductivity, liquid-liquid phase separation, and a concentration 
driven metal-nonmetal transition [35]. 

The structure of Li and K ammonia solution has been recently studied by 
neutron diffraction experiments [36]. The results show, for saturated lithium- 
ammonia solutions, that the cation is tetrahedrally solvated by ammonia 
molecules. On the other hand, from the data of the microscopic structure of 
potassium-ammonia solutions, the potassium is found to be octahedrally 
coordinated with ammonia molecules. The Li + is a "structure making" ion and 
K + is a "structure breaking" ion in alkali metal-ammonia solutions [37, 38]. 

We report our results on the [Li(NH3)n] + and [K(NH3)n] + (n=1-6) clusters. 
Stability and structure of [Li(NH3)~] + and [K(NH3)~] + clusters have been 
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investigated by the SCF-MI method, ensuring BSSE-free optimizations. The 
standard 6-31 +G* basis set was adopted. 

3.2.1. Optimized structures for  the [K(NH3)n] + and [Li(NH3)n] + clusters 
As can be seen in Figs. 4-8, the ammonia molecules surround the central ion 

to form the so-called "interior" structures [39]. The molecules are orientated so 
that the nitrogen atom lone pair faces the cation, as expected from the positive 
charge of the ion and the electronegative character of nitrogen. The dipole 
moment of ammonia pointing towards the positive charge of the ion, favours 
charge-dipole interaction, which is the main contribution to the interaction. The 
[K(NH3)2] + complex possesses a linear structure, i.e. it exhibits a linear N-K-N 
atom sequence. In the cluster with n=3, the solvent molecules lie symmetrically 
around the central cation; this is an almost planar structure, where the three 
nitrogen atoms form an equilateral triangle. The [K(NH3)4] § complex is 
tetrahedral, with the hydrogens as far apart as possible (see Fig. 4). The cluster 
with n=5 adopts a bipyramidal conformation (see Fig. 5) and that with n=6 an 
octahedral one (see Fig. 6): no hydrogen bonds are formed in the clusters. The 
variation of Ltiwdin atomic charge of K + with the number of ammonia 
molecules in the cluster shows that the cation possesses a smaller charge in the 
cluster than in isolation, and that a part of the charge is transferred from the NH3 
molecules, to an extent that increases with the increasing size of the cluster. 

1 

0 

Fig. 4. Lowest energy SCF-MI optimized structure of the tetrahedral complex of the K + or Li + 
cations with four ammonia molecules 
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Fig. 5. Lowest energy SCF-MI optimized structure of the bipyramidal complex of the K + 
cation with five ammonia molecules 

Fig. 6. Lowest energy SCF-MI optimized structure of the octahedral complex of the K + cation 
with six ammonia molecules 

Because the ionic radius of Li + is smaller  than that of  K +, the Li § cation 
allows solvent molecules  to come closer to it. In addit ion because  of  its smaller  
size, Li + is able to accommodate  fewer a m m o n i a  molecules  in its first 
coordination shell. 
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0 

Fig. 7. Lowest energy SCF-MI optimized structure of the complex of the Li + cation with five 
ammonia molecules 

0 

Fig. 8. Lowest energy SCF-MI optimized structure of the complex of the Li + cation with six 
ammonia molecules 

The complexes with n=5 and n=6 exhibit marked differences from the 
corresponding K + systems with the fifth and sixth molecules located in the 
second coordination shell forming bifurcated H-bonds with the first solvation 
sphere (as shown in Figs. 7 and 8). 
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From the computed L~wdin charge of Li + for clusters of different sizes, it 
follows that Li + complexes behave as K + complexes, but a greater amount of 
charge is transferred in this case. 

3.2.2. Interaction energy of [K(NH~),]+and [Li(NH3),] + clusters 

The interaction energy increases as the size of the cluster grows. In order to 
examine the variation of the interaction energy in the process of formation of the 
clusters, the difference between the energy in the clusters containing n and n-1 
ligands was plotted against n (see Fig. 9 ). 

As can be seen, the magnitude of the stabilising effect of each new molecule 
in the cluster diminishes with increasing n. Consequently, while the total 
binding energy of the complex increases as further molecules are incorporated 
into the cluster, the interaction of each successive ammonia molecule with the 
ion gradually weakens, as one would expect. 

It is evident that for [Li(NH3)n] § clusters the interaction energies are much 
greater than those obtained for the K § complexes, consistent with the smaller 
size of the Li + ion, which establishes stronger interactions with the ligands. 
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Fig. 9. Variation of SCF-MI interaction energies (Eint) with the number of complexing 
ammonia molecules (n). 
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Fig. 10. Changes (AEint) in the SCF-MI interaction energy of the systems upon addition of 
successive solvent molecules. 

Fig. 10 shows changes in interaction energy caused by the incorporation of 
successive ammonia molecules. 

For the [Li(NH3)5] § cluster, the stabilisation gained in forming the 
bipyramidal complex is smaller than that for the structure on which one 
molecule is placed out of the first solvation shell. In principle, the fifth 
molecule, which cannot interact directly with the ion, should have a 
considerably less marked stabilizing effect. However, because the molecules in 
the coordination shell are strongly polarized and distorted by the ion, the 
hydrogen-bonding with the outer molecule is stronger. 

3.3. The water dimer system 

3.3.1. The calculation of the PES 
The PES of the water dimer system is characterised by three main stationary 

points: the "quasi-linear" structure, representing the global minimum (Fig. 11), 
and the cyclic and bifurcated configurations (saddle points). 
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Fig. 11" Transilinear Cs minimum energy geometry of the water dimer system. The relevant 
intermolecular coordinates are indicated. 

To achieve a balanced description of the complex and the of separated 
fragments, we have augmented the 7s4p2d/4s2p basis set proposed by Millot 
and Stone [40] as used in our previous calculations [10d], by adding optimised 
diffuse polarisation functions: f and g functions on oxygen atoms and d and f on 
the hydrogens. The final basis set provides a monomer energy close to the 
Hartree-Fock limit and reproduces well the optimal SCF-MI energetic and 
geometric parameters obtained in our previous calculations employing a large 
basis set of 548 even tempered functions [ 10a]. 

In the MO-VB step, we consider an active space of four MOs, leaving the 
oxygen Is2 electrons frozen. Tile resulting dimension of the virtual space of each 
fragment is 16, implying a set of 32 singly and 256 doubly vertical excited 
spatial configurations. The final MO-VB wavefunction consists of 289 
configurations and, by taking the spin space into account, the size of the MO- 
VB matrix is 545. 

The geometries are initially optimised at the SCF-MI level by gradient 
techniques. The C~ global minimum (see Fig. 11) was studied thoroughly via 
additional point-by-point minimisation at the MO-VB level, varying the oxygen- 
oxygen distance Ro-o and the two angles cz and [3. The OH bonds of the donor 
monomer were also optimised. The predicted equilibrium geometry, 
corresponding to Ro-o =2.954 ~, 13 = 134.5 ~ and cz= 2.5 ~ turns out to be in very 
good agreement with experimental values corrected for anharmonicity effects. 
As expected, the inclusion of correlation shortens the intermolecular separation. 
The Ro-o distance compares very well with the MP2 value reported by van 
Duijneveldt-van de Rijdt and van Duijneveldt [41 ] and with the SAPT result due 
to Mas and Szalewicz [42]. 
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Table 2 
Optimised MO-VB geometrical parameters for the Cs global minimum of the water dimer 
system (see Fig. ! !) comp~ed with so me values reported in the literature. 

MO-VB Exp. ~a~ S A P T  (b) MP4 ~e) MP2 ~~ 

R0-0(/~) .......... 2.954 2.946~e)/2.952 ~f) 2 .953  2.949 .............. 2.978 

13o 134.5 122.0+10 124 124.8 134.6 

~o 2.5 0.0+10 6.8 5.35 5.7 

(a) Refs. 49 and 50. 
(b) Ref. 45 
(c) Ref. 42. 
(d) Ref. 51 
(e) After correction for the anharmonicity Ref. 50. 
(f) After correction for the anharmonicity Ref. 42. 

The harmonic vibrational frequency of the OH donor is 4001 cm ~, in 
agreement with calculated values reported in the literature [43]; by including the 
usual scale factor of 0.89 [9], the resulting frequency is 3561 cm ~, to be 
compared with the experimental value of 3601_+11 cm l [44]. 

The binding energy of the global minimum, obtained by means of our 
largest basis set, is -5.02 kcal/mol. Using zero-point vibrational and thermal 
energies based on ab initio calculations, experimental binding energies of 
-5.44_+0.7 kcal/mol or 5.2!-0.7 kcal/mol have been obtained [45-48]. By 
employing the most recent estimate for thermal contributions, our predicted 
enthalpy becomes -3.22 kcal/mol, well inside the experiment range (-3.59_-+0.5 
kcal/mol [46-48]). 

The interaction energies and the geometrical parameters corresponding to 
the minimum are reported in Table 2. The results are in accordance also with 
very recent calculations [52]. 

3.3.2. Molecular dynamics simulation of water at critical and supercritical 
conditions 

A preliminary molecular dynamics simulation was performed. To this 
end, SCF-MI and MO-VB calculations were caxried out on water dimers and 
trimers and a new parameterisation of a NCC-like (Niesar-Corongiu-Clementi) 
[53] potential was accomplished [10d]. The 7s4p2d/4s2p small basis set 
proposed by Millot and Stone [40] was employed. The Hartree Fock limit results 
obtained in our previous work were reproduced using this compact basis set; 
also equilibrium geometry and binding energy values compared well with the 
experimental results. 

By fitting the MO-VB ab initio results, the parameters of a new NCC-like 
potential have been determined. The ab initio MO-VB calculations include the 
determination of the interaction energy relative to 225 configurations of the 
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water dimer and of the non-additive three-body contributions relative to 28 
trimer configurations. By taking into account that the main contribution to the 
three-body non-additive terms derives from induction effects, such contributions 
have been determined at the SCF-MI level. 

The molecular dynamics simulation was performed using the MOTECC 
suite of programs [54] in the context of a microcanonical statistical ensemble. 
The system considered is a cube, with periodic boundary conditions, which 
contains 343 water molecules. The molecular dynamic simulation of water 
performed at ambient conditions revealed good agreement with experimental 
measurements. The main contribution to the total potential energy comes from 
the two-body term, while the many-body polarisation term contribution amounts 
to 23 % of the total potential energy. Some of the properties calculated during the 
simulation are reported in Table 3. 

Although still incompatible with the experimental data, the computed 
internal pressure is greatly improved with respect to previously published 
simulation results [54-56]. The variation of the computed pressure with or 
without inclusion of many body polarisation terms (553--- 131 and 724_+ 156 atm) 
can be assumed to be an improvement when comparing it with the 
corresponding values (7900 and-2160__.364 atm) [55, 56] computed using the 
same simulation procedure but different quantum mechanical energy values. The 
calculated geometry of the water molecule in liquid and gas phase, and the 
correlation functions goo(r), goH(r) and gHH(r), were also in good agreement with 
the experimental data. 

The number of first "neighbours" around a central water molecule, 
calculated by integrating the correlation function goo(r) up to the position of the 
first minimum, was 5.5, consistent with a local tetrahedron (with addition of 
contributions from some interstitial coordination). 

Table 3 
Propeaies of water at ambient condition s. .......................................................................................................... 

AU Pressure ~ e Cv 
(kJ/mol) (atm) (D) (cal/molK) 

two body only (a) -38.89• 553+131 - - 18.7 
complete (a) -40 .56+0.22 724+_156 �9 2.48+_0.01 54+_10 22.2 
MCYL (b) -35.40+_0.6 7900 2.259 26+_ 14 26.5 
NCC-flex (c) -44.88+_0.25 -2160+_364 3.08 - 17.6 
Experiment .......................... -41.5 (d) .......... -1 .............. 2.4,2:6 . . . .  8 0  17.9 (e) ....... 

(a) Ref. 10c. 
(b) Ref. 55. 
(c) Ref. 56. 
(d) Ref. 57. 
(e) Ref. 58. 
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By integrating goH(r) up to the first minimum, a value of 1.92 was 
obtained. This means that each water molecule can form 3.84 hydrogen bonds 
with its first neighbours, a result compatible with a local structure of water at 
room temperature of four nearest molecules oriented in a tetrahedron 
configuration. 

As expected, comparisons between the simulations carried out with or 
without inclusion of the many-body term showed equivalent results for most of 
the calculated properties of the liquid phase: the many-body contributions 
played a fundamental role only in determining the position of the second peak of 
the site-site pair correlation function goo(r), so as to producee a better agreement 
with experiment. 

Figs. 12, 13 and 14 show the correlation functions goo(r), goH(r) and 
gHH(r) at four different points on the phase diagram, as reported in Table 4 
together with the values of the total potential energy and of the molecular dipole 
moment predicted by the simulations. 
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Fig. 12: Calculated (solid line) site-site goo(r), pair correlation function of water (many body 
contribution included) in comparison with the corresponding experimental (dashed line) data. 
The ordinate scale refers to Run 1. Each of the remaining plots have been shifted upwards by 
an arbitrary unit. (a) Ref. 59. 
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Fig. 13. Calculated (solid line) site-site gon(r), pair correlation function of water (many body 
contribution included) in comparison with the corresponding experimental (dashed line) data. 
The ordinate scale refers to Run 1. Each of the remaining plots have been shifted upwards by 
an arbitrary unit. (a) Ref.59. 

As can be seen from Fig. 13, the first peak of the goH(r) correlation 
function broadens and shifts to longer distances, while the first minimum rises 
on approaching the critical conditions. In the supercritical state, represented in 
plot 3, a sharp decrease in the intensity of the first peak can be observed. 
Although it does not correspond exactly to a complete collapse of the peak, such 
behaviour is undoubtedly in much closer qualitative accordance with the 
experimental findings and with the recent simulations performed by Chialvo and 
Cummings [60] by means of a properly modified model potential. 

Table 4 
Dynamic simulation results at several conditions (see Refs. 7c and 7d). 

Run label T (K) P (g/cm3) AU (kJ/mol) AUexp (kJ/mol) bt(D) 
Run 1 298 0.998 -40.56+_0.22 -41.5 2.48+_0.01 
Run 2 573 0.71796 -22.43+_0.39 -22.2 2.29+_0.01 
Run 3 673 0.66112 -15.87+_0.45 2.22+0.01 

~ e x p  ( D )  

2.4-2.6 

Run 4 730 0.64 -13.95+_0.50 2.21+_0.01 
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Fig. 14. Calculated (solid line) site-site guu(r), pair correlation function of water (many body 
contribution included) in comparison with the corresponding experimental (dashed line) data. 
The ordinate scale refers to Run 1. Each of the remaining plots have been shifted upwards by 
an arbitrary unit. (a) Ref. 59. 

Table V shows the number of hydrogen bonds per water molecule calculated by 
integrating the goH(r) up to the first minimum, in the conditions of the four 
different simulations. 

Although the average number of hydrogen bonds of each water molecule 
is notably reduced, it is possible to draw the conclusion that the hydrogen bond 
network persists partially also in the supercritical state, in qualitative agreement 
with the interpretation of new neutron diffraction experiments [61 ] and also with 
the measurements of the proton NMR chemical shifts [62]. 

Table 5 
Number of hydrogen bondsPermolecule. Se e Refs. 10c and 10d. 

Run label Number of bonds 
Run 1 3.84 
Run 2 2.80 
Run 3 2.41 
Run 3(two body) 2.00 
Run 4 2.30 
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3.4 The hydrogen fluoride system 
Hydrogen fluoride dimer, like with the water dimer, is one of the most 

frequently studied complexes. Both extensive theoretical and experimental data 
are available for analysis. The PES of the hydrogen fluoride dimer (see Figs. 15 
and 16), if compared with that of water, is simpler; two stationary points exist: 
the "quasi-linear" structure (see Fig. 15) and the cyclic structure (see Fig. 16). 

The former structure corresponds to the energy minimum while the latter 
one is a transition structure separating two equivalent minima. The energy 
difference between these two points reveals important information. We have 
determined the relative stability of these two structures at the MO-VB level. It is 
to be noted that it has been reported very recently that optimization on the 
standard PES can yield a structure that is qualitatively wrong for this system 
[51 ]. The calculations were performed employing a large basis set of the quality 
6s5p4dlflg on F atoms and 4s3pld on H atoms. 

The stationary structures obtained are consistent with literature and 
experimental results. Our best estimate of the dimerisation energy for the global 
minimum in its quasi-linear structure (Fig. 15) from the MO-VB calculations 
(4.51 kcal/mol) agrees well with the experimental value (4.54 kcal/mol, Ref. 16) 
and with the calculated values [51 ]. 

Fig. 15. The quasi-linear structure of the hydrogen fluoride dimer. 

Fig. 16. The cyclic structure of the hydrogen fluoride dimer. 



340 

As regards the calculated geometry, we mention from the recent theoretical 
literature the study by Peterson and Dunning [64] using MP2 and CCSD(T) 
methods with an extended aug-cc-pVQZ basis set. MP2 and CCSD(T) 
intermolecular distances R were found to be 2.737 and 2.732 ~, respectively. 
After correcting for the BSSE, slightly larger values were found (2.753 and 
2.745 ~) very close to our values. As regards the cyclic structure (Fig. 16), the 
calculated MO-VB results (DE=-3.50 kcal/mol, dEE=2.78 /~ and c~=55.2 ~ agree 
very well with recent literature results (DF.=-3.04 kcal/mol, dEE=2.74 ~ and 
c~=52.9 ~ [51]. 

Work is in progress in our laboratory to provide an accurate 
intermolecular potential surface for molecular dynamics studies of liquid 
hydrogen fluoride. 

3.5 The van tier Waals complex He-Cl-h 
As another example, the potential surface of the He-CH4 complex (studied 

in Ref. 10e) is described. In these calculations a basis set 7s6p3dlflg on the C 
atom, 4s3pl d on the H atoms, and 8s4p2dlf on the He atom, consisting of a total 
182 functions, was adopted. The s and p functions were optimised so as to 
reproduce energies close to the Hartree-Fock limit of the CH4 molecule and He 
atom, respectively. The exponents of high-order polarisation functions were 
determined by maximising directly the dispersion contribution. 

The points of the PES were chosen along three different approaches of the 
helium atom to the CH4 molecule: face, edge and vertex approaches. The 
interaction energies at the SCF-MI level are all repulsive confirming that the 
forces are dominated by dispersion contributions. The global minimum occurs 
for the face approach at R= 3.6/~ 0 = 180 ~ ~ = 0 ~ The interaction energy in this 
geometry is -18.7 crn-'. Other stationary points were found corresponding to the 
edge and vertex approaches with a well depths of-14.7 cm" and -12.0 cm", 
respectively. The order of stability of the stationary points found by Buck et al. 
[65] is thus confirmed by the present MO-VB calculations. 

A new accurate fitting of the calculated PES was realised by a Newton- 
Raphson procedure adopting the same potential form as used by Buck et al. 
[65]. The agreement between the MO-VB ab initio potential and the Buck 
potential, determined by direct fitting of the experimental data, is very 
satisfactory. 

The reliability of the newly-developed rigid-rotor potential was tested by 
means of close-coupling calculations of rotational state-to-state integral cross 
sections. The MOLSCAT code was used [66]. The results were compared with 
those obtained using the semiempirical potential of Buck, and with the available 
experimental data. 

Close-coupling equations were solved using the hybrid modified log- 
derivative / Airy propagator of Alexander and Manolopulos [67]. The agreement 
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of the calculated cross-sections with experimental values is good. The new 
potential provides a better accuracy for the low Aj transitions. For the highest 

Aj transitions the agreement is reduced: however, this could be ascribed to near- 

elastic secondary collisions in the experimental measurement or, more probably 
(see for example results for E symmetry where each j value remains non- 
degenerate up to j = 7 ), to the lack of higher anisotropic potential terms that can 
directly couple rotor states for high Aj transitions. In order to check the validity 

of this hypothesis, additional ab initio calculations are in progress to extract V 6 

and V 8 radial coefficients. 

The main difference between the new potential and that of Buck et al., i.e. 
the depth of potential wells, cannot be verified by this 'high' energy scattering 
calculation; in order to provide major insights, work is in progress to compute 
the MO-VB PES at a higher level of theory and to calculate differential cross- 
sections at the lower collision energy of 275 cm -~ [69], where total inelastic and 
some state resolved differential cross sections are available [65]. 

3.6 The helium dimer 
The study of the interactions among closed shell systems (van der Waals 

forces) represents a benchmark for theories of electron correlation. We report 
here the results of our variational MO-VB study of the interaction between two 
helium atoms [70]. Up to n= 10 optimal virtuals are calculated and employed to 
generate MO-VB final wavefunctions of higher and higher accuracy, in the 
usual MO-VB form: 

n n n - a'b* 
"- Co ~ 0  d- ~ Ca ~a* "]- ~ Cb ~b* + ~ Cab~ab (24) 

a=l b=l a,b=l 

The energy of such wavefunctions is calculated by solving the final secular 
problem by means of usual standard VB techniques [20]. 

The calculations have been realised with the aug-cc-pv5z basis set of 
Dunning [71], consisting of [6s5p4d3f2g] functions on wich helium atom. The 
MO-VB wavefunction is built up from the SCF-MI ground state plus single and 
double vertical excitations arising from the direct product of atomic SCF and 
singly-excited configurations on the monomer. The resulting wavefunction is 
very compact, as the number of VB structures increases approximately with n 2. 
As it is shown in Fig. 17, the contributions to the interaction energy have already 
converged at n=3. 
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Fig. 17. The calculated MO-VB interaction potential (~xEh) for the helium dimer system. 

The well depth of the interaction potential is therefore strongly dependent 
on the number n of virtuals included, varying from 15.2 JxEh at the equilibrium 
distance of about 6.00 a.u. for n=l to 33.2 ~xEh and 5.60 a.u. for n=3. The 
corresponding values at convergence - at n=10 - are 33.8 lxEh at the distance of 
5.60 a.u. 

The results obtained are in acceptable agreement with Aziz's potential 
[72] which possesses a well of 34.7 ~tEh at 5.60 a.u. These calculations suggest 
that a complete accordance with the experimental and accurate theoretical 
results of Korona et al. [73] can be reached by the improved MO-VB wave 
function, once the appropriate number of virtuals is included and a more 
extended basis set with h functions is employed. Work is in progress in our 
laboratory on this problem. 

4. C O N C L U S I O N S  

In this review, research in the field of van der Waals molecules 
accomplished by our group in the last few years was summarised. On the basis 
of the results obtained so far, it appears that the modification of the Roothaan 
equations to avoid basis set superposition error at the Hartree-Fock level of 
theory is a promising approach. The fundamental development of the SCF-MI 
strategy to deal with electron correlation treatments in the framework of the 
valence bond theory has been described. A compact multistructure and size 
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consistent valence bond wavefunction (namely MO-VB) has been presented. 
The central idea of both the SCF-MI and MO-VB approaches is the expansion 
of the orbitals in the partitioned basis sets centred on each of the interacting 
molecules. In this way, both the methods provide an a priori elimination of the 
BSSE, while taking properly into account orbital and geometry relaxation 
effects and the natural non-orthogonality of the MOs of the interacting systems. 

The SCF-MI method turns out to be efficient in computing binding 
energies on systems of dimension of biological interest (where most of the times 
the interaction is dominated by polarisation effects) with an accuracy which 
compares well with corresponding standard SCF calculations employing larger 
basis sets. It is also shown that the method is particularly reliable and 
computationally efficient to determine geometrical conformations, whithout the 
complications of BSSE. The method appears able to deal with large molecular 
systems made up of many fragments and so is particularly useful to study the 
effect of hydration at the molecular level. DNA base pairs have been 
investigated: the results of a study on the complexes between guanine...cytosine 
Watson-Crick pair (GCWC) with various mono and divalent metal cations (H +, 
Na +, K +, free and hydrated Mg +§ Ca ++ and [cis-Pt(NH3)2] +) and with solvating 
water molecules have been reviewed. The case of the hydrated cytosine-guanine 
base pair showed that the theoretical SCF-MI results compare well with those 
provided by knowledge-based approachesemploying crystallographic data. The 
use of the SCF-MI approach to study solvation problems and clustering 
processes is supported by calculations on lithium and potassium cations 
coordinated by ammonia molecules. 

The development of the SCF-MI method to properly take account of 
electron correlation effects by the compact, size consistent and BSSE free MO- 
VB wavefunction has been shown to provide accurate results as well. Several 
applications of the MO-VB approach were presented and discussed. In 
particular, calculations of geometries and stabilisation energies of various simple 
H-bonded complexes (water dimer and hydrogen fluoride) and a study of the 
He-CH4 van der Waals complex are reported. The very promising extension of 
the MO-VB scheme to fully exploit the capability of the virtual space spanned 
by the basis set is also reviewed, including explorative calculation on the 
emblematic case of the helium dimer system. The study of water and hydrogen 
fluoride dimers, other representative cases of hydrogen bonded systems, 
demonstrated that the MO-VB wavefunction provides results in agreement with 
the experiments, as well as reliable intermolecular potentials to be used in 
molecular dynamics studies of the liquid state of these highly structured liquids. 
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Chapter 12 

Valence bond structures for some molecules with 
four s ingly-occupied active-space orbitals: electronic 
structures, reaction mechanisms,  metallic orbitals 

Richard D. Harcourt 

School of Chemistry, University of Melbourne, Victoria 3010, Australia 

Qualitative valence-bond (VB) descriptions of the electronic structures 
of molecules are often able to provide "primitive patterns of understanding" 
[ 1 ] of the origin of various molecular properties. In this chapter, we shall give 
consideration to VB structures for some molecular systems that involve four 
active-space orbitals. The discussion will include VB formulations of the 
electronic structures of isolated molecules, reaction mechanisms, and types of 
"metallic orbitals" that can be used in VB representations for electron 
conduction in metallic lithium. For the latter topic, the results of STO-6G VB 
calculations are reported in order to make a provisional comparison of two 
conduction mechanisms. 

Where appropriate, increased-valence structures [2-5] will be used to 
provide qualitative VB representations of electronic structure. Increased- 
valence structures involve localised one-electron and fractional electron-pair 
bonds, as well as "normal" electron-pair bonds [2-5]. These features will be 
re-described by reference to HCNO. 

We remind the reader that, with one hybrid or non-hybrid atomic 
orbital (AO) per atomic centre, the most-general singlet spin (S = 0) 
wavefunction of the Heitler-London type for the electron-pair bond A ~ B  or 
A ~ [3 is given by Eq.(1). 

'}'(A~B) = [V'ab~V"ba#[ + [W"ba~V'abl3 I 
- (k'k"+ 1)([a~b#l + Ib~a#l)+ 2k"la~a#[ + 2k'lb~b~[ 

(la) 

( lb)  

In this wavefunction, a and b are the overlapping AOs, lg'ab = a + k'b 
and Ig"ba = b + k"a are Coulson-Fischer molecular orbitals (MOs) [7], (z and 
are the ms = +1/2 and ms = -1/2 electron spin wavefunctions, and k' and k" are 
variational polarity parameters. In some of the discussion here, it will be 
assumed that k '=  k " =  0, to give the Heitler-London AO wavefunction [ac~b~[ 

+ [b~al3[- [aCZbl3 + b~af~[ for a covalent electron-pair bond. However it should 
be noted that in Eqs.(2),(3),(5)-(7) and elsewhere, the orbital designations a 
and b do not refer necessarily only to AOs 
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1. S INGLET AND T R I P L E T  SPIN W A V E F U N C T I O N S  FOR FOUR 
SINGLY-OCCUPIED ACTIVE SPACE ORBITALS 

The phenomenon of four singly-occupied active-space orbitals (AO or 
MO) arises in many seemingly-unrelated molecular situations. The singlet spin 
(S = 0) Rumer diagrams for these orbitals indicate that there are two linearly- 
independent or canonical spin-pairings schemes. These spin-pairings are well- 
exemplified by the r~-electrons of butadiene, for which two canonical Lewis 
VB structures with different ~-electron spin pairings are those of 1 and 2. 

t"  . . . . . . . . . . . . . . . . . . . . . . .  ~ 

H2C~CH~CH~CH2 H2(~-,~CH~CH~dH2 
1 2 

These structures are examples of Kekul6 and  Dewar type Lewis 
structures, respectively. In general, if a, b c and d are the orbitals (AOs 
and/or MOs), the S = 0 wavefunctions for the four electrons of these two types 
of spin-pairings are given by the linear combinations of four Slater 
determinants, as in Eqs.(2) and (3), 

l~p 1 - W l(a-b,c-d) = [(aabl3 + baal3)((cad[3 + dO~c[3)[ (2a) 

-laab~c~df~l + [a~bac~da I - laab~c~dal - la~bac~d~l (2b) 

1~P2 = ~P2(a-d,b-c) = [(aCtd~ + daa~)(bac~ + cCtb~)[ (3a) 
-[atXb~cl3dl3[ + [a~bl3c~d~[- [atXbl3ctXdf~[- [al3btXc~dtX[ (3b) 

The variational linear combinations of Eq.(4) 

lX~-t i = C i l l q J l  + Ci21qJ2 i =  1,2 (4) 

are associated with the ground-state and excited-state resonances between the 
two associated (S = 0) VB structures. In Sections 2-4, we shall discuss some of 
the other phenomena that involve this type of resonance scheme, several of 
which have been considered previously (cf. Sections 3.4 and 4.2). We shall also 
give attention to a number of triplet spin (S = 1) phenomena that involve four 
singly-occupied orbitals. There are three linearly-independent S = MS = 1 

wavefunctions, which are given by Eqs.(5)-(7). These wavefunctions will be 
used in Section 5. 

3W1 = 3LFl(a-b,c'~,d~')- I(a~b~ + b~a~)c~d~l-= [a~b~c~d~l- la~b=c~d~l (5) 

3q~2- 3qJ2(d-c,a~',b~')- I(c(Xdf ~ + d~cB)a~b~ I -[a~b~c~d~[- la=b=c~d=l (6) 

3~F3 -3W3(b-c,al",dl")= [(b~c~ + c~b~)a~d~ I - la~b~c~d~l- la b c=d=l (7) 
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2. V A L E N C E  BOND C O N S I D E R A T I O N S  FOR H C N O  

2.1 Kekul~, Dewar and increased-valence structures for HCNO 
The electronic structures of C2-symmetry N6 and quasi-linear (CNO)2 

have attracted some attention recently [8,9]. The results of ab initio MO 
studies [8,9] indicate that these two species are respectively unstable and bound 
relative to their N2 and CNO dissociation products. The VB structures that we 
shall use to represent the primary features of the electronic structures of N6 
and (CNO)2 are examples of increased-valence structures [2-5]. Such structures 
may be generated from familiar (Kekul6-type) Lewis structures by delocalising 
non-bonding electrons into bonding localised MOs (LMOs). 

To establish the framework for the subsequent treatment in this chapter, 
VB descriptions of the electronic structure of HCNO [2,10] will initially be re- 
described. HCNO is isoelectronic with N20 and HN3, for which parallel 
descriptions have been presented previously [2,3(b),4,11-14]. 

Kekul6-type or standard Lewis-type VB structures which involve atoms 
of first-row elements, locate electron-pair bonds between pairs of adjacent 
atoms, and have the maximum number of electron-pair bonds permitted by the 
Lewis-Langmuir octet rule. For 1,3-dipolar HCNO, there are four Kekul6 
structures, 3-6 [2,10] 

(+) ~.(-) 
H C ~ N  - - ' ~ "  ~ " -  

3 

H C : N - - : - "  6 :  
t 

7 

( - ) ~  (+) (- 1/2) (+1/2) 
. "_" ~, . . - . - - . . _  

- - - - -  B r i a N - - - O "  

4 8 

(-) " (+) ~ (-1/2) (+1/2) 

H C =  N - - L O  �9 ~ H C ~ N  "---:--6" 
o ~ o ~  ~ �9 �9 ' 

5 9 
(-2) ..._ (+) (+) (_) . (+) 

HC 
" ~ ' )  6 10 

from which increased-valence structures 7-10 may be constructed via the one- 
electron delocalisations of non-bonding 2pgx and 2prey electrons into bonding 
LMOs, as is indicated in the Kekul6 structures. For illustrative purposes, it is 
assumed that bonding electrons are shared equally by pairs of adjacent atoms. 
The resulting formal charges of structures 7-10 are then integer or half- 
integer in magnitude. Appeal to the electroneutrality principle [15] implies 
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that structure 7 with no formal charges is the primary increased-valence 
structure, but of course it participates in resonance with structures 8-10. 

j~jo ~ o o  

I--IG N O: FIG----N O: 
o o  �9 o o  , , , o  �9 o o  �9 

�9 ,.. . . . . .  ..-- . . . . ~  . . . . .  ~ J -  

11 12 13 

When Heitler-London AO-type wavefunctions J,.,a b J + 
I...b a l in which a and b are AOs) are used to represent electron-pair 
7rx(CN) and gy(CN) bonds, it can be deduced [2,4,16, cf. also Eq.(l l)  below] 
that VB structure 7 is equivalent to resonance between the Kekul6 Lewis 
structure 3 and the Dewar or "long-bond" Lewis structures 11-13. Only 
nearest-neighbour spin-pairing is indicated in increased-valence structures [2- 
5,10]. When the "long" or formal bonds are omitted from structures 11-13, 
these structures are designated as singlet diradical structures [2-4]. 

Because 7 - 34--~ 1 1 ~  12<---~ 13, increased-valence structure 7 involves 
fractional rcx(CN) and rcy(CN) electron-pair bonds [2,4,10-14,16]. Therefore 
its C-N bond-number, or bond-order is less than 3. A thin bond line is used to 
represent a fractional electron-pair bond [2-4]. An N-O double bond, which 
consists of an electron-pair cr bond, and one-electron rex and ~y bonds, is also 
present in this VB structure. With these bond properties, the N-O and C-N 
bond-lengths that are implied by increased-valence structure 7 are in accord 
with the following observations with regard to its bond-lengths [17]: 
(a) The N-O bond length of 1.21 ~ is similar to a length of 1.20 A [18] for an 
N=O double bond. 
(b) The C-N bond length of 1.16 ~ is longer than an estimate of 1.13 ~ for 
HCN with the same nitrogen ~-bond hybridisation (sp) as occurs in HCNO (cf. 
discussion of AO hybridisation and N-N bond lengths for HN3 and N2 [13]). 

The importance of Dewar-type (or singlet diradical) canonical Lewis 
structures, as well as the Kekul6-type (or zwitterionic) Lewis structures for 
VB descriptions of the electronic structures of 1,3-dipolar (or zwitterionic 
diradical hybrid [19]) molecules has been often stressed in our publications [2- 
4,10,16], and a similar type of conclusion has been obtained by others [20]. In 
contrast, the results of spin-coupled [21] and biorthogonal [22] VB calculations 
have provided a contrary result However because the orbitals used in the latter 
calculations are primarily either 2-centre or multicentre in form, they 
disguise the presence of the singlet-diradical character [3(a),4,13,23]. 

Qualitative VB formulations of various types of reaction mechanisms 
differ according to whether Kekul6-type or Dewar-type Lewis structures are 
implicated primarily in the electronic reorganisation processes [2-4,10,19,23]. 
Some further comparisons are provided here in Sections 3.3 and 4.1. 

The effect of solvent polarity on the weights of Lewis VB structures for 
1,3-dipolar molecules has been studied in Ref. [24], where it is shown that 
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polar solvents can stabilize the zwitterionic structures (such as 3-5) at the 
expense of the singlet diradical structure(s). 

2.2 Some S = 0 wavefunct ions  for the 7r-electrons of H C N O  
In the Kekul6 structure 3 there are four singly-occupied carbon and 

nitrogen 2pTrx and 2pTry AOs. Labelling these orbitals as px(C), px(N), py(C) 
and py(N), the primary S -  0 Heitler-London wavefunction for the 7r electrons 
which occupy these orbitals is given by Eq.(8), 

�9 3{Px(C)-px(N), py(C)-py(N), px(O)-px(O), py(O)-py(O)} 
= [{ px(C)(Zpx(N)/3 + px(N)apx(O)/3 } { py(C)CZpy(N) 13 + py(N)CZpy(O)/3 } 

X { px(O)CZpx(O)f3py(O)apy(O)f3 }[ 

= [px(C)apx(N)f3py(C)CZpy(N)f3px(O)CZpx(O)f3py(O)apy(O)f3 [ 
+ ]px(C)f3px(N)CZpy(C)f3py(N)CZpx(O)CZpx(O)f3py(O)CZpy(O)f3] 
-[px(C)CZpx(N)f3py(C)f3py(N)apx(O)CZpx(O)f3py(O)apy(O)f3 [ 
-[px(C)f3px(N)CZpy(C)(Zpy(N)f3px(O)CZpx(O)f3py(O)CZpy(O)f3 [ (8) 

in which the doubly-occupied px(O) and py(O) AOs are also included. For the 
four singly-occupied orbitals, this wavefunction is an example of Eq.(2), in 
which a - px(C) and b - px(N) are spin-paired, as are c - py(C) and d = py(N). 

The corresponding wavefunction for the n-electrons of increased- 
valence structure 7 is given by Eq.(9), 

�9 7{px(C)-px(N), py(C)-py(N), Zrx(NO), px(O), roy(NO), py(O)} 
= Ipx(C)Otpx(N)f3py(C)C~py(N)f3gx(NO)CZpx(O)f3gy(NO)apy(O)f3 I 
+ ]px(C)f3px(N)apy(C)f3py(N)apx(O)CZrcx(NO)f3py(O)arcy(NO)f3] 
-]px(C)apx(N)f3py(C)f3py(N)arcx(NO)(Zpx(O)f3py(O)any(NO)f3] 
-Ipx(C)f3px(N)(Zpy(C)CZpy(N)f3px(O)CZgx(NO)f3gy(NO)CZpy(O)f3 ] (9) 

in which the LMOs =x(NO) = px(N) + kpx(O) and %y(NO) = py(N) + kpy(O), 
are bonding LMOs, with k as a variational parameter. These LMOs 
accommodate the electrons which form the one-electron N-O bonds in VB 
structure 7. Unitary transformations of pairs of nitrogen and oxygen Px and 
py AOs in Eq.(9) generate the equivalent S = 0 wavefunction of Eq.(10), 

�9 7{Px(C)-rC*x(NO), pyC)-rC*y(NO), rcx(NO)-gx(NO), Zry(NO)-rcy(NO)} 

]px( C)~*x(N O )~py( C)C~Z *y(N O ) ~zx(N O )C~x(N O ) [3~zy(N O )a~zy(N O )[3 ] 
+ [px(C)f3rC*x(NO)apy(C)f3g*y(NO)CZrcx(NO)agx(NO)f3rcy(NO)arcy(NO)f3 I 
-Ipx(C)arC*x(NO)f3py(C)f3rC*y(nO)arcx(nO)arcx(NO)f3rcy(NO)arcy(NO)f3 I 
- Ipx(C)f3rC*x(NO)apy(C)C~g*y(NO)f3~cx(NO)arcx(NO)f3rcy(NO)arcy(NO)f31 (1 O) 
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in which 7Z*x(NO) = k*px(N) - px(O) and 7Z*y(NO) = k*py(N) - py(O) are anti- 
bonding LMOs that are orthogonal to the rtx(NO) and 7zy(NO). Inspection of 
Eq.(10) shows that the a, b, c and d orbitals for Eq.(2) now correspond to the 
px(C), 7Z*x(NO), py(C) and 7Z*y(NO) orbitals, respectively. 

When px(N) + kpx(O) and py(N) + kpy(O) are substituted for rtx(NO) 
and try(NO) in Eq.(9), we obtain the linear combination of Eq.(11). 

~ 7 -  ~tt3 + k(~Fll + ~F12) + k2~F13 (11) 

Because structures 11-13 do not involve C-N triple bonds, Eq.(11) shows that 
in Eq.(9), the px(C)-px(N) and py(C)-py(N) spin-pairings form fractional 
gx(CN) and rty(CN) electron-pair g-bonds via Heitler-London AO 
formulations of the bond wavefunctions. 

A lower-energy expression for an Eq.(11) type formulation of q~7, with 
two variational parameters can be obtained by using rfx(NO) = px(N) + 
k'px(O), 7Z'y(NO) = py(N) + k'py(O), 7Z"x(NO) = px(N) + k"px(O) and 
7Z"y(NO) = py(N) + k"py(O) instead of the 7zx(NO) and 7zy(NO). Four structures 
of type 7 are then needed. 

The formulation of Eq.(9) can be generalized and improved by replacing 
the px(C), px(N), py(C) and py(N) AOs with the Coulson-Fischer [7] type MOs 
px(C) + kt'px(N), px(N) + V'px(C), py(C) + kt"py(N) and py(N) + v"py(C) in 
one structure of type 7, and px(C) + g"px(N), px(N) + v"px(C), py(C) + 
g'py(N) and py(N) + V'py(C) in a second equivalent structure of type 7. These 
two type 7 structures participate in resonance, and introduce more variational 
flexibility into the wavefunction via the inclusion of four parameters (g', v', g" 
and v") and additional canonical Lewis structures [2,10]. 

3 ONC-CNO AND I S O E L E C T R O N I C  M O L E C U L E S  

3 . 1 0 N C - C N O  
For quasi-linear (CNO)2, as ONC-C'N'O', the Kekul6 and increased- 

valence structures 14 and 15 

- - -  �9 

: N ,C " 

14 
�9 �9 , , ~  �9 �9 

"O .-'-/'-" N N " 

15 
correspond to the HCNO structures 3 and 7, respectively. There are eight 
singly-occupied g electron orbitals, which consist of the two sets of four px(C), 
~*x(NO), py(C) and rC*y(NO) orbitals of each CNO moiety. As a consequence, 
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there are 14 Rumer S = 0 spin-pairing schemes. In four of them, the rtx 
electrons are spin-paired with each other, as are the roy electrons. Increased- 
valence structure 15 involves one of these four spin-pairing schemes, namely 
that of Eq.(2) for each set of four rt electrons. Thus for the rex electrons, a = 
px(C), b = rC*x(NO), c = px(C') and d = rC*x(N'O') in Eq.(2). Similarly for the 
~y electrons, the Eq.(2)-type orbital designations are a = py(C), b = rt*y(NO), 
c -  py(C') and d -  ~Z*y(N'O'). (The other three intra rtx and intra ~y spin- 
pairing schemes involve Eq.(3) either once or twice.) 

The C-N and N-O bond-lengths implied by increased-valence structure 
15 are similar to those implied by increased-valence structure 7 for HCNO. 
The calculated MP4SDQ [8] C-N and N-O bond lengths, 1.172 ~ and 1.215 
[8] are similar to the observed lengths (1.16 A and 1.21 A) [12] for HCNO. 
However the MP4SDQ length of 1.351-1.365 A [8J for the C-C bond is 
significantly shorter than an estimated length of 1.48 A for a C-C single bond 
with (approximately) s-p hybridised carbon atoms [25]. Therefore less- 
important VB structures with C-C rt bonding must also make a significant 
contribution to the ground-state resonance scheme. Possibly these latter 
structures are four equivalent "co-ionic" increased-valence structures of type 
17, 

(-) 
(+] 

"O N 

(+) ( - ' , . .  (-) 

, N - - . C o .  
16 

(+1/2) (-1/2) 
. . _ �9 

"O--- -N �9 
�9 �9 �9 �9 

17 
with non-adjacent spatial separation of opposite formal charges and increased- 
valence representations for two 8-electron 6-centre bonding units. These co- 
ionic structures can be derived from four Kekul6 structures of type 16 via the 
one-electron delocalisations that are indicated in 16. 

3 . 2 0 C N - N C O  and NCO-OCN 
Schulz and Klap0tke [5,26] have provided direct evidence for the 

intermediate formation of OCN-NCO, which is isoelectronic with (CNO)2 and 
N6. Preparation of OCN-NCO has also been reported by Maier et al. [27]. 
Important Lewis VB structures for the NCO monomer radical locate the odd 
electron in either a nitrogen or an oxygen 2px or 2py AO, as in 18 with a 2px 
odd electron. 

�9 N C 6" 

18 
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The results of RHF and UHF MO, and STO-6G VB calculations for 
NCO [28] indicate that the odd-electron is more substantially localised on 
nitrogen than it is on oxygen. Therefore it is to be expected that when NCO 
dimerizes, the primary dimer should be OCN-NCO, rather than NCO-OCN 
(or NCO-NCO). This expectation is in accord with the results of ab initio MO 
calculations [26], which show that OCN-NCO is the more stable isomer. The 
OCN-NCO isomer is calculated to have C2h symmetry [26,27], with N-N, N-C 
and C-O bond-lengths of 1.385, 1.238 and 1.181 ~.  The N-C and C-O bond 
lengths are in qualitative accord with those implied by the Kekul6 structure* 
19. But as is the case for ONC-CNO, consideration needs also to be given to 
OCN-NCO VB structures with some N-N r~ bonding (which can occur for C2h 
symmetry) to account for the existence of an N-N bond which is shorter than 
an N-N single bond One such structure is 20, and the resulting 19 ~ 20 
resonance is analogous to the 1 ~ 2 r e sonance  for butadiene .  

�9 �9 �9 
�9 �9 ~ �9 

N ~ N  N ~ N  // % ,-/ 
.o C NO'" .o//C 

19 .. . 2 0  

�9 ~ ~ o ~ �9 

.N O 

N �9 ,-" 2 2  ." 

. .  

The Kekul6 structure 21 is the primary O-O bonded VB structure for 
C2 symmetry NCO-OCN. Its calculated O-O bond-length of 1.622 ~ [26] is 
appreciably longer than the N-N bond-length of 1.385 A [26] for OCN-NCO. 
This difference must be related, at least partly, to the distribution of the odd 
electron of NCO. With STO-6G VB estimates of 0.596 and 0.357 for the 
*For convenience here, VB structures 19-29 for the NCO dimers and N6 are displayed with 
C2v symmetry. 

")6 
. N ~  C 23 "- . . . .  
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nitrogen and oxygen odd-electron densities of NCO [28(c)], the resulting N-N 
and O-O bond-numbers of OCN-NCO and NCO-OCN are 0.36 and 0.13, if it 
is assumed that the dimerization processes involve primarily the spin-pairing 
of the odd-electrons of two NCO radicals.The small O-O bond-number implies 
that structures 22 and 23 must participate in resonance with structure 21 to an 
appreciable extent. Each of 21 ~-~ 22 and 21 ~ 23 involves a change in the 
spin-pairings for four electrons according to Eqs.(2) and (3). 

3.3 Open-chain N6 and N6--> 3N2 dissociation 
N6 is isoelectronic with (CNO)2, and consideration will be given here to 

the most-stable isomer of N6, namely a twisted open-chain C2 isomer [8], 
which we designate as NaNbNc-N'cN'bN'a. From the Kekul6 structure 24, the 
increased-valence structure 25, with zero atomic formal charges, can be 
generated by delocalising Nc and N'c Px and py electrons into the bonding 
LMOs ~zx(NbNa), ~zx(N'bN'a), ~:y(NbNa) and ~zy(N'bN'a), as is indicated in 
structure 24. (N.B. The py and ~Zy designations correspond to those which 
would obtain if the isomer were linear.) For the ~Zx electrons, a = px(Na), b = 
~:*x(NbNc), c = ~Z*x(N'bN'c), and d = px(N'a). As discussed in Ref. [13], the 
bond-orders that are implied by this structure are in accord with calculated 
estimates for the lengths of the Na-Nb, Nb-Nc and Nc-N'c bonds. In Ref. [9]. 
these lengths are 1.155, 1.262 and 1.463 ~. 

(-) (-) 

�9 . .  (+) 

(+)N ' ' < - j  24 ~ N 

�9 �9 1 �9 
Y 

25 ~ N .  

�9 e �9 

The Kekul6-type Lewis structure 24 is a component of the primary 
increased-valence structure 25. The presence of lone-pair electrons on the Nc 
and N'c atoms of structure 24 correlates with the calculated bending that 
occurs at these atoms to generate the C2 geometry. For (CNO)2, the Nc and 
N'c atoms of N6 are replaced by the carbon atoms, and the absence of lone- 
pair electrons for these atoms in the Lewis structure 14 permits the molecule 
to adopt either a linear or a quasi-linear geometry. 

VB formulations for the decomposition of N6 according to [24 <--> 26] --> 
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3N2 and 25 ~ [27 ~ 28 ~ 29] ~ 3N2, involve heterolytic and homolytic 
dissociations of N-N bonds, respectively. 

<-) F~,./-) 

/ / /N~) 24 "-%N. 
..N I " 

"N~N" 
" " N  

. . N / ~ / N  26 ~ ." 

N///N "'-) 25 ~'-'" N 
O 1 " 

i f  e~ 

~' // g 'i /// 

C . ' N ~  N .~  
�9 �9 

28 

I 
�9 N ~ N  �9 

~ o 

4/ 

"~ 29 &" /// 
The spin theory which is associated with the homolytic dissociations of 

the Nb-Nc and N'c-N'b bonds corresponds to the use of Eq.(2) for the electrons 
.~of the Nb-Nc and N'c-N'b bonds in structure 27, and Eq.(3) for these electrons 
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in structure 28. For the 28 <---> 29 resonance, Eq.(2) obtains for the four 
unpaired Nc and N'c electrons of structure 28, and Eq.(3) refers to these 
electrons in structure 29, where they form two Nc-N'c zt-bonds. Which of the 
homonuclear and heteronuclear formulations is to be preferred will depend on 
which of the Lewis structures 24 and 27 has the lower energy. 

Homolytic dissociations of N-N bonds have been used in Ref. [29] to 
provide VB formulations for the N12 ----> N 10 ----> N 8 decompositions. 
Presumably the decomposition of each of the polymers of N2 is assisted by the 
thermodynamic stability of the N2 products. 

3.4 Thermal decomposition of O(N3)2 
The preparation of O(N3)2 has been reported recently [30]. The 

mechanism of Eq.(12) has been suggested [30] to account for the formation of 
N2 and N20(Coov) [30] as decomposition products. 

O(N3)2(C2) ~ 2N2 + N20(cyclic,C2v) 
N20(cyclic,C2v) ---> N20(Coov) 

(12) 

For O(N3)2, VB structures 30 and 31 are a Kekul6-type Lewis structure 
and the associated increased-valence structure, respectively [31]. Commencing 
with the latter structure, we can provide [31] the VB formulations of 32 
[33 <---> 34] --~ N20(cyclic,C2v) + 2N2 and N20(cyclic,C2v) --> 35 ---> 36 for 
the mechanism of Eq.(11). At each stage along the reaction coordinate, Eqs.(2) 
and (3) apply prior to and after the homolytic dissociations of N-N bonds. 

Increased-valence structure 36 for N20(Coov) is analogous to increased- 
valence structure 7 for isoelectronic HCNO. It has been used recently to 
develop a VB representation for the N20(Coov)---> N20(cyclic,C2v)---> 
NON(Dooh) isomerization process [32]. In Ref. [10], comparisons are made 
between 36 and other VB structures with apparently quinquevalent nitrogen 
atoms, and in Section 4.3, 36 provides the VB representation for N20 when it 
is formed in NCO-NO and OCN-NO2 decomposition reactions. 

4. SOME OTHER SINGLET-SPIN CONSERVATION REACTIONS 

4.1 Thermal decomposition of CH2N2, and the CH3NO2--> CH3ONO 
isomerization 

VB formulations for the spin-allowed thermal decomposition N20(~g +) 
N2(~g +) + O*(1D), with heterolytic and homolytic dissociations of the N-O 

bond, have been provided in Ref. [33] The corresponding VB formulations 
for the spin-allowed thermal decomposition of CH2N2 are those of [37 <---> 38] 

CH2*(S  = 0) + N2, and 39 ---> [40 <---> 41] ---> CH2*(S  = 0) + N2, 
respectively. 
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Similarly, the corresponding VB formulations for the CH3NO2 ~ CH3ONO 
isomerization are those of [42 ~ 43] ~ 44,  and 45 ~ 46 ~ 44 
respectively. But no change in electron spin couplings occurs for this reaction. 

(-) ~ (+) 
H2C:~ N ~ N "  ~ -~ H2C "N~N" 

37 

(-1/2) ,f-~(+1/2) 

39"", 
\N'! 

40 " N 

38 

H2 . 
41 

N 

3C ~ )  
~.:o:.~-~ 

42 

H3C. 

o o  �9 

"N 

"'''''''0" """ 
43 o/ 6 . H3C~ QQ �9 

.'U" "''" 

. 30  

.0.  0~" 

44 

45 46 

As is the case for the examples considered in the previous sections, and 
below, the VB formulation to be preferred for dissociation will depend on the 
relative energies of the Kekul6 and Dewar-type Lewis structures. 

The increased-valence structures 39 and 45 for CH2N2 and CH3NO2 are 
generated from the Kekul6-type Lewis structures 37 and 42 via the one- 
electron delocalisations that are indicated in structures 47 and 48. More 
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complete increased-valence representations for the electronic structure of 
CH2N2 are provided in Refs. [2,19]. 

(-) (+) (-1/2) (+1/2) 

H2 ~~'- N ~ N "  " H2C ~ N ~ N :  

47 39 

i5" 
H3C ~N(+ ~~) 

C.o 
H3C, 

48 45 

o ~ ~ ~ 

N 
.O" 

4.2 1,3-dipolar cycloaddition reactions 

H C ~ ' N  " ~,/" �9 

HOOCH 

X X O  " 

HC CH HC CH 
49 50 51 

1,3-dipolar (or zwitterionic diradical hybrid [19]) cycloaddition 
reactions, such as the addition of HCNO to HCCH to generate the cyclo- 
isoxazole product, involve singlet states for the reactants and products. The 
primary active space electrons for the separated reactants are four rc electrons 
(rtx for example) for the HCNO, and two nx electrons for HCCH. As was 
done in Ref. [10], we shall assume here that increased-valence structure 7 
provides the primary VB representation for HCNO. In Eq.(10), 7zx(NO) is 
doubly-occupied, and therefore the simplest description of the active space 
orbitals for this structure are then a = px(C) and b = rt*x(NO) (cf. Eq.(10)). 
For HCCH, the active space AOs, c and d, are px(C) AOs. The a-b and c-d 
spin-pairings of Eq.(2) then obtain for the separated reactants that are 
indicated in structure 49. 

As cycloaddition proceeds according to the electronic reorganization 
indicated in VB structures 49 ~ [50 ~ 51] ~ isoxazole, changes in the spin- 
pairings occur- a with c and b with d -  and Eq.(3) is associated with this spin- 
pairing [19,34]. Geometrical changes also occur, and these lead to the 
introduction of s-p hybridisation into the component AOs that are associated 
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with all of the active-space orbitals, as well as the ~Zy AOs. At each stage along 
the reaction coordinate, the reaction profile is then given by Eq.(4) with C2 = 

0 at the commencement of the reaction, and Ic2[ >> [Cllwhen cycloaddition 
has occurred. 

For simplicity of representation only, we have assumed that the 
electronic organization indicated in structure 49 has gone to completion in 
structures 50 and 51.  Of course, the extent to which the electronic 
reorganization occurs differs at each stage along the reaction coordinate. 

We can elaborate this VB formulation for the cycloaddition by replacing 
the nearest-neighbour active-space AOs in VB structures 50 and 51 with 
Coulson-Fischer orbitals [34(b)]. Thus if a and b are now the singly-occupied 
carbon and oxygen AOs of HCNO, and c and d are the singly-occupied carbon 
AOs of HCCH, the c and d AOs in structure 50 can be replaced by the 
Coulson-Fischer MOs c + k'd and d + k"c. In structure 51, a + ~,d, b + ~,c, c 
+ K'b and d + K"a can replace the a, b c and d AOs. Use of these orbitals 
permits additional canonical Lewis VB structures to be included in the 
equivalent Lewis structure resonance scheme. The mechanism can then 
accommodate some charge transfer between the HCNO and HCCH reactants. 
The more-flexible wavefunction of Eq.(13), 

- CI(~IJ50)R + C2(W51)P + C3(qJ50)P + C4(qJ51)R (13) 

in which the subscripts "R" (reactant-like) and "P" (product-like) refer to the 

spin-pairings of Eqs.(2) and (3), replaces the tit  = CI(~50)R + C2(~51)P of 
Eq.(4). The latter wave-function obtains when AOs rather than the Coulson- 
Fischer MOs are used in each of the VB structures 

Alternative VB representations for the cycloaddition process are 
displayed and discussed in Refs. [2,10,19,34]. Some of them also include the 
less-important increased-valence structures, such as 8-10 here, in the resonance 
schemes. Recent MO [35] and spin-coupled VB [36] studies for this process do 
not give consideration to the concerted diradical formulation. The VB studies 
of Ref. [37] correspond to the concerted diradical mechanism discussed in Ref. 
[34]. 

4.3 NCO-NO -~ N 2 0  + CO* and OCN-NO2--~ N 2 0  + CO2 
Gaseous N20 and CO are among the products that are obtained when 

HCN(g) reacts with NO2+BF4-(s) [38]. VB representations for the formation of 
these products, and also N2 and CO2, via the decomposition of an OCN-NO 
intermediate, have been provided in Ref. [2b]. In Figures 1 and 2, we display 
similar types of VB representations for the reactions NCO-NO -~ N20 + CO* 
and OCN-NO2--~ N20 + CO2, one or both of which has been studied in Refs. 
[5,39,40]. Except for the resonance between the reactant OCN-NO2 structures 
of Figure 2, each ~-~ resonance symbol relates two VB structures which differ 
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Fig. 2. VB representation for OCN-NO2 ---, N20 + CO2. 
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in their spin pairings for four electrons, according to Eqs.(2) and (3). In 
Figure 1, the CO is formed in an electronically excited state. 

5 O2(S = 1) + 2X(S = 1/2) --~ X O 2 X ( S  = 0) or O2(S = 1) + Y(S = 
1) --~ Y O 2 ( S  = 0) 

5.1 Wavefunctions 
For the 1,3-dipolar cycloaddition reaction, the reactants involved (S = 0) 

closed-shell configurations. We now give consideration to the spin theory for 
reactions between open-shell systems, using as examples the reactions of 3Eg- 
02 with either two univalent radicals (X, for example, H, CH3, F and C1) or an 
(S - 1) divalent radical (Y, for example, O(3P), O2(3Eg-), and intermediate- 
spin FelI as in oxyhaemoglobin or oxymyoglobin [2,4,41-43]). 

For Eqs.(2) and (3), the b and c orbitals are the singly occupied antibonding 
rC*x and Zt*y MOs of 3~Eg-02. These orbitals overlap respectively with the 
singly-occupied a and d orbitals of either two X(S = 1/2) radicals, or one Y(S 
= 1) radical. With R equal to either X + X, or Y, and the S and MS spin 
quantum numbers indicated as (S, MS), the wavefunctions of Eqs.(2) and (3), 
which describe two types of spin-pairings, can be expressed in terms of 
spectroscopic states for the separated reactants, according to Eqs.(14) and (15) 
[43], 

Vl--IWR(1,1)Wo2(1,-1)l- IWR(1,-1)WO2(1,1)I 
+ {IwR<l,0>vo=<l,0>l + IvR<o,o>vo=<O,o)l}/2 

v2- ]v~r162 
(14) 
(15) 

Neither of these wavefunctions generates the uncontaminated spectroscopic 
ground-states of the separated reactants. These states are obtained via the linear 
combination ~F = ~gl - ~2/2 which ensures that each of the the three degenerate 
MS = 1 components of both 02 and R contributes to the ground-state 
resonance scheme for the reactants. This linear combination is orthogonal to 
~g2, which generates S = 0 excited states for the reactants. 

5.2 02 and increased-valence structures for 03,  FellO2 and FO2F 

(-) (+) (+) (-) 

o • 6 6  "d o 
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52 53 54 55 56 

The Linnett VB structure 52 for 02 [2-4,44,45] corresponds to the 
ground-state MO configuration, (crs)2(cr*s)2(~pz)2(TZx)2(~y)2(rC*x)l(~*y) 1 for 
the valence-shell electrons of 02 when S - MS = 1. The crosses and circles (x 
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and o [45,46]) represent rc electrons with ~ and 13 spin wavefunctions. Structure 
52 is equivalent to resonance between the Lewis VB structures 53-56. 

.O.~. O." 

-o j ~  - /~  .Xo/  
�9 �9 �9 F �9 . .  

57 / 58 59 

(2) :o  ',,_;" 

60 I N 61 62 

Increased-valence structures 57-59 for 03,  an FelIO 2 linkage of 
oxyhaemoglobin and FO2F, can be constructed [2,3(a),3(b),4] either by spin- 
pairing the unpaired rC*x and ~*y electrons of VB structure 52 for 02, with 
the unpaired electrons of O(S = 1), FelI(S = 1) and 2F(S = 1/2), or by 
delocalising oxygen non-bonding electrons of the Kekul6-type Lewis structures 
60-62 into O-O bonding LMOs as is indicated in these structures. Bond 
properties (for example, stretching frequencies and/or bond lengths) that are 
implied by these increased-valence structures are in qualitative accord with 
experimental estimates of the values for these properties ,[2,3(b),42]. The 
origin of the difference in the O-O bond properties for HO2H relative to those 
of FO2F has been discussed [2,3(b)] in terms of differences in O-H versus O-F 
bond strengths. 

5.3 FeIIO2FeII(S = 1) -+ 2FeIIO(S = 1) and CuIO2Fe II --~ CuIO + 
FeIIO 

The mechanism of Eq.(16) [46] has been postulated to account for the ~' 
irreversible oxidation of various Fe II complexes by 02. 

Fe II + 02 ~ FelIO2 
FelIO2 + Fe II ~ FelIO2FeII 
FelIO2FelI ----) FelIO 
FelIO + Fe II ---) FelIOFelI 

(16) 

Using the intermediate-spin S = 1 state as the valence state of the Fe II 
complex, (cf. FelI(S = 1) + O2(S = 1) ~ FelIO2(S = 0) for the bonding of 02 
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to haemoglobin), a VB representation for this mechanism has been presented 
elsewhere on several occasions [2,4,47]. It utilizes the S = 0 increased-valence 
structure 58 to represent the FelIO2. The reaction of FelIO2(S = 0) with FelI(S 
= 1) initially generates increased-valence structure 64 to represent 
FelIO2FelI(S - 1). Reorganization of the electron distribution to increase the 
number of bonding electrons generates VB structure 65, with a weakened O-O 
bond. On dissociation of this bond, the FelIO species of structure 66 are 
formed. 

o 

"o . 

X Q 

i X 

63 64 

-l=O 

FO" y . -  

66 65 

We now deduce that each FelIO, with 16 valence shell electrons (cf. 02) 
and two singly-occupied antibonding rtg MOs is generated in its S = 1 ground- 
state. If these MOs are designated as a - n*x and d = g*y for one FelIO 
moiety of VB structure 66, and as b - rt'*x and c - rC'*y for the other moiety, 
then the three linearly independent S = 1 wavefunctions of Eqs.(5)-(7) can be 
constructed to represent the four active-space electrons of VB structure 66. 
Due to symmetry, 3qJ1 and 3W2 are degenerate, and the + linear combinations 
of Eqs.(17)-(20), 

3W_- 3W1-3qJ 2 = laOCdC~(bCXcl 3 + b~c~) I I(a~d~ + al3da)bacC~ I 

-]VFeO(1,i )VFe'O'(1,0)]- ]VFeO( 1,0)~Fe'O'( 1,1 )1 
(17) 
(18) 

3~p'+- 3qJ 1 + 3qJ 2 = laada(bf~ca_ b~c~)l + ](aadf~ _ af~da)baca I 
= IVFeO(1,1)VFe'O'(0,O) I + I~FeO(0,0)~Fe'O'(1 

(19) 

,1)1 (20) 

can be constructed, in which (1,1) etc. designate the S and MS spin quantum 

numbers for the FelIO and Fe'IIO ' moieties. Similarly, the 3~tt 3 of Eq.(5) can 
be expressed according to Eq.(21). 

3W" 3 = la~d~(b~c~ + c~bf~) I -IVFeO(1,1)~Fe,O,(0,0)I (21) 
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At infinite separation between the FeIIO and Fe'IIO ' moieties, 3qs_ and 

3qx+ do not interact with 3qs 3. Hund's rule requires that 3qs_ gives the 
dissociation products of lowest energy. Eq.(18) indicates that each of them 
involves an S = 1 state*. A variation on the derivation of this result is provided 
in Ref. [47(a)], where three S = 1 and MS = 0 wavefunctions are used to 
describe the electronic structure of the FelIO2FelI(S = 1) complex. 

An alternative electronic mechanism, which involves FelIO2FelI(S = 0) 
instead of FelIO2FelI(S = 1), is discussed below in Section 5.6. 

A similar type of VB approach can be used to represent the breaking of 
the O-O bond of 02 via the cytochrome c oxidase catalysis of the reduction of 
02 to H20 [2,4,47(b)]. One of the FelI(S = 1) of VB structure 64 is replaced by 
CuI(S = 1), as in VB structure 67, and the electronic reorganization indicated 
in this structure generates VB structure 68 with a weakened O-O bond. 

.:.).u 
67 
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5.4 Thermal dissociation of ( 3 ~ g - ) 0 2  
The VB theory for the dissociation o f  ( 3 ~ g - ) 0 2  to generate two  O ( 3 p )  

atoms, has been considered by Byrman and van Lenthe [48], and will be re- 
considered here in terms of the theory presented in the previous section. For 
large internuclear separations, the "co-ionic" Lewis structures 55 and 56 make 
essentially no contribution to the ground-state resonance scheme, and the 
uncharged structures 53 and 54 essentially do not interact with each other. 
There are four active space AOs which are involved in the dissociation of 
either of the latter structures. These AOs are the two AOs that participate in the 
formation of the O-O 6-bond, the singly-occupied 2px AO of one atom and the 
singly-occupied 2py AO of the other atom. Designating these AOs as a = 2pt~, 
b - 2p'o, c = 2p'x or 2p'y, and d - 2py or 2px respectively, then the 
appropriate S = MS = 1 wavefunctions are those of Eqs.(17), (19) and (21), in 
which the a electron is spin-paired with the b electron, but parallel spins obtain 
for the c and d electrons. The resulting theory for the dissociation of (3~g-) 
0 2  is identical with that described in Section 5.3 for the dissociation of 
FeIIO2FeII(S = 1) and leads to the generation of S = 1 oxygen atoms as the 
dissociation products. 

5.5 Photochemical decomposition of 03  
For 03, two equivalent increased-valence structures 57 and 69 can be 

* For simplicity, both FeIIO species in VB structure 66 are displayed for S = M S  = 1, each of 
which involves one Slater determinant. According to Eq.(18), S = 1 with MS = 0 and + 1. S = 1 
with MS = 0 involves two Slater determinants, to give two (S = 1 + S = 0)/2 VB "structures". 
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constructed, and resonance between these structures generates a 1A 1 symmetry 
ground-state and a 1B2 symmetry  excited state. The wavefunct ion for the 
ground-state resonance is W(1A1) = qJ57 + W69, when it is assumed that ~vW57 
= W69 and ~vW69 = W57 in which Ov is the reflection symmetry operator for 
the C2v symmetry group. With Heitler-London AO wavefunctions to represent 
the fractional O=O bonds in structures 57 and 69, This resonance is equivalent 
to resonance between the Lewis structures 70-76, according to Eq.(22), 

�9 �9 oo  

. .  

57 69 

W( 1A 1) = qJ57 + W69 

= K(~IJ70 + ~P71) + 2k~IJ72 + ~IJ73 + ~IJ74 + kK:(tIJ75 + tIJ76) (22) 

in which ~l/ab = b + ka and ~l/a'b' = b' + Ka' type LMOs accommodate  the 
electrons that form the two one-electron bonds in the increased-valence 
structures. (For free 02,  a and b are the 2prrx AOs, a' and b' are the 2p~y 
AOs, and k = K = 1 in the ground-state MO configuration. For 03,  the a and a' 
AOs are located on the central atom, a' acquires some 2s character, and k ~ K 
1.) The results of both semi-empirical  [16] and ab-initio VB calculations 
[20,49] indicate that the Dewar structure 72 is the dominant Lewis structure, 
and this is the VB structure which is needed to conserve molecular  C2v 
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Photochemical  dissociation of 03 can generate O2(3Eg -) + O(3p) as well 
as O2(1Ag) + O(1D) [50]. A low-energy S = 0 excited state has 1B2 symmetry. 
In terms of resonance  be tween  the inc reased-va lence  structures,  the 
wavefunction for this state is W(1B2)=  W57-  W69, which can be expressed 
according to Eq.(23), 

O 

70 " . . . . .  ; . -  
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symmetry. 
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~I~(1B2) = qJ57  - q J69  = K ( q J 7 0  - q J71 )  + qJ73  - qJ74  + k K ( ~ t 7 5  - LIJ76) (23) 

in which qJ72 for the Dewar structure 72 is absent. Therefore C2v symmetry 
need no longer be conserved, and the stretching of one O-O bond relative to the 
other can now occur, to generate the wavefunction q~ = C 5 7 q J 5 7 -  C69W69. 
The LF57 can be expressed as q~57 = ICllva + Ic21v2, in which the ~1 and ~2 
are given by Eqs.(14) and (15). If the left-hand O=O bond is stretched, then 
C69 = 0 when dissociation of this bond occurs, and W57 is equal to xl/1 - ~2/2 
which generates O2(3Zg -) + O(3p) as dissociation products. 

5.6 $202 ,  04  and FeI IO2Fe  II (S = 0) 
Each of FelIO2FelI, 04 and $202 has 24 valence shell electrons. The 

ground-states of the latter two species have D2h and C2v symmetries, 
respectively, and S = 0 states. The S = 0 wavefunctions for the four active 
space electrons of each of 04 and $202 are given by Eqs.(2)-(4), with a = ~*x, 
b = rt*'x, c = ~Z*y and d = rt'*y. Using the spin theory of the type described 
above for the photochemical dissociation of 03, it can be deduced that S -  0 04 
and $202  dissociate to form S = 1 02 and SO radicals, respectively. An 
increased-valence structure for $202 has been derived and displayed on several 
occasions elsewhere [ 2 , 4 , 5 1 ] .  The corresponding increased-valence structure 79 
for D2h 04  can be constructed either by n*x-n'*x and 7Z*y-g'*y spin pairings 
of the unpaired electrons of the 3 ~ g - 0 2  radicals of 52, or from the Kekul6- 
type Lewis structure 77 via structure 78. 

( + )  
" ( - )  

�9 o �9 .o :o.. .o--,. d. 

�9 o .o- - .  6 .o--." o. 
( + ) .  �9 . �9 . 

77 78 79 

Increased-valence structure 79 retains the double-bond character for each 
of the 02 moieties. This structure also involves fractional intermolecular O=O 
bonds - their t~ and x bond-numbers are both equal to 0.25 [43] - thereby 
implying that the latter bonds should be substantially longer than normal O=O 
bonds. These bond properties are in accord with calculated estimates of the O-O 
bond-lengths for 04 (1.21 and 3.2-3.5 ~ [43]). However the results of STO-6G 
V B  calculations show that the X*x-X'*x and 7Z*y-Tr,'*y spin-pairings alone are 
not sufficient to stabilize the dimer relative to the two monomers [43]. 
Dispersion and charge-transfer interactions are also needed to generate a small 
binding energy ( 1 4 - 1 5 4  cm- 1 ) for the dimer (cf. [43(b)] and Refs. therein, for 
example). 

By analogy with $202  and 04, an S = 0 state for FeIIO2Fe II, with an 
increased-valence structure of type 65, but with opposed spins for the two 
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unpaired electrons of this structure, would also generate FelIO(S = 1) radicals 
when its O-O bond is broken. Measurements of the magnetic susceptibilities for 
several Fe l IO2Fe II species indicate that the electron spins are coupled 
antiferromagnetically (for example J = -33 cm -1 [52]), but because the value of 
the magnetic exchange parameter J is small, an S = 1 state is thermally 
accessible. When this spin state is attained, the spin theory described earlier is 
relevant to account for the formation of the FelIO(S = 1) radicals. 

With S=S replacing O=O in VB structure 78, the primary increased- 
valence structure for C2v symmetry $202 is obtained [2,4,51 ]. 

5.7 $ 2 0 3 ( S  = 1) 

"0' �9 I 

0 0 

o o o 0 

0 

80 • • 

"'O'" 

o I .  
e O  �9 81 . 0  x 

O 0 o ~ 

Isomers of $203 have been studied recently [53.]. An OSOSO(S = 1) 
isomer is the ground-state, and it decomposes to form SO(S = 1) and SO2(S = 
0). An increased-valence structure for this isomer is obtained by bonding two 
SO(S = MS = 1) monomers to an 3P(Ms = -1) oxygen atom, as indicated in 80 
--> 81. A VB formulation for OSOSO(S = 1) ---> SO(S = 1) + SO2(S = 0).is 
provided in 82 --> 83. For SO2, the increased-valence structure of 83 and 
its mirror-image are identical to structures 57 and 69 for 03. 

�9 e 

o O  O o ~ 

0 o o 0 o ~  

-xo - - -  
* O .  82 .0 x *O �9 O. . .  ~ 83 -0 

o o  0 �9 

When proceeding from 80 to 81, the singly-occupied in-plane ~*x(SO), 
2p(O), 2p'(O) and rt*x(S'O') orbitals are the active space orbitals which 
correspond to the a, b, c and d orbitals of Eqs.(2) and (3). For structure 81, the 
spin-pairing scheme corresponds to that of Eq.(2). The active space orbitals for 
the dissociation of 82--> 83 are the rt*x(SO), 2p(O) and ~*y(S'O') of the 
planar $203, with geometrical changes occurring in order that the 2p(O) and 
~*y(S'O') orbitals can overlap. 
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6. E L E C T R O N  C O N D U C T I O N  IN A L K A L I  M E T A L S  

(a) Pau l ing  2po  AO mechanism 

Li Li �88 L i - - L i  L i - - L i  

(+) (-) . ~/U. ~ 
Li Li --,' Li Li - -  Li 

(+) 
Li Li ~ -  Li 

L i - -  Li 

L i - -  Li 

Li - -  Li L i - -  Li 

(b) A n t i b o n d i n g  o*2s  M O  mechanism 

( 0 " ) 2 ( 0 " ~ * )  0 
�9 ( - ) .  

Li �9 Li 

(o) 1 
(+) 

Li �9 Li 

(0') 1 (0") 2 
(+) 

Li �9 Li Li - -  Li 

(0) 2 

Li - -  Li Li - -  Li 

(0)2(0*)  1 ( 0 ) 2 ~ * )  0 

�9 ( - ) o  
Li �9 Li L i -  Li 

(0") 1 (0") 2 1 (0") 2 (0 " )2 (0 " * )~~~~ 
(+) �9 (-)  �9 

Li �9 Li L i - - -  Li L i - -  Li Li �9 Li 
Fig. 3. VB mechanisms for electron conduction in lithium with (a) 2po AOs and (b) o*2s 
MOs as "metallic orbitals". For simplicity in (b), the MO configuration (o) 2 is used to designate 
each electron-pair bond, i.e. k '= 1/k" in the Coulson-Fischer MOs a ' -  ~'ab = a + k'b and o" 

- ~"ba = b + k"a Cathode (-) on left, anode (+) on right. See Appendix to this Chapter for an 
elaboration of the antibonding orbital mechanism. 

Pauling has introduced a "metallic" orbital [54] in order to provide a VB 
representation for electron conduction in alkali metals. For lithium, this orbital 
is a 2p(~ AO, and use of it enables "bicovalent" VB structures such as 

Li(+)Li .Li(-)_Li 
to be implicated in the conduction process. The results of VB calculations [55] 
show that bicovalent structures help to provide an appreciable contribution to 
the cohesive energy for the metallic solid. However  whether or not such 
structures are of primary importance for the conduction process has yet to be 
determined. For a linear arrangement of atoms, use of the bicovalent structures 
implies that electron conduction proceeds according to Figure 3(a). 
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One of several alternative mechanisms involves the delocalisation of an 
electron from the antibonding ~* MO of Li2 + Li2- into the vacant antibonding 
cr* MO of Li2 [2,3(c),56)]. In its simplest formulation, this is the cy*2s MO. The 
formulation of Ref. [3(b)] is displayed in Figure 3(b), for which the conduction 
band has been entered via a [(cy)2][(a)2] ~ [(cr)l][(cr)2(cr*)l] excitation*. 
However to simplify the subsequent VB treatment, the formulation of Refs. 
[2,56] is used, in which Li(+)Li3(-) replaces Li2(+)Li2(-). 

We report here the results of STO-6G VB calculations for linear 
Li(+)Li3 (-) as Li(+)(LiyLiALiB)(-) in order to compare aspects of the first step 
for the two mechanisms, i.e. the transfer of an Liu electron into either the 
LiA 2pc~ AO, or into the antibonding LiALiB cr*2s MO. The calculations were 
performed using Roso's ab initio program [57], with Slater exponents for the 
l s, 2s(neutral) and 2s(negative) AOs, but with the exponent for the 2p(negative) 
AO energy-optimized. The nine canonical Lewis structures of Table 1 were 
initially included in the calculations, with Li-Li internuclear separations of 3.03 
/~ (as occurs in the bulk metal). The bicovalent structure VII  involves four 
singly-occupied AOs, and its S = 0 wavefunctions is given by Eq.(2), with a = 
2su b = 2pcrA, c = 2SA and d = 2sB. Structure V I I I  also has four singly- 
occupied AOs, and its S = 0 wavefunction is given by Eq.(3). The weight for 

each VB structure (Wi = Ci2/~-~Ci 2 [58]) ,  is reported in Table 1, for which the 
~IJi and tI'tf a re  the wavefunctions prior to and after the transfer of an electron 
from the Liu into an AO centred on either LiA or LiB. 

The results of the calculations show that prior to electron transfer, the 
dominant structure is structure I. On delocalising an electron from the Liu 
of structure I into either a LiA or a LiB AO, structures I I  and III  are  
calculated to have larger weights than has the bicovalent structure VII. 

We now demonstrate that, in the simplest treatment, it is more favourable 
energetically to delocalise an electron into an antibonding o*2s MO rather than 
into the 2p AO. To do this, we have performed separate calculations using 
structures I-V, and I, IV, V and VII.  The results (Table 1) show that 0.100 
a.u. of energy is needed to transfer an electron from Liy(-) into the cr*2s MO 
whereas the Liy(-) ---> LiA(2p) delocalisation requires 0.114 a.u. 

Of course the above treatment is not definitive, but it does suggest that the 
antibonding o*2s MO mechanism can compare favourably with the pivotal 
resonance mechanism as the primary VB formulation for electron conduction in 
metallic lithium. 

One way to include the 2pcrA as well as the 2s AOs in the antibonding 
MO mechanism involves an initial formulation of the wavefunction for the four 
valence-shell electrons of 

Li(+) Li(-) L i -L i  
*An alternative entry into the conduction band is via a [(0)2][(0) 2] ~ [(O)1(O*)1][(O)2] �9 
excitation. With ls and 2s AOs, the (S = 0) STO-6G energy separation between 
[(CY)I][(G)2(Cy*) 1] and [(G)I(~*)I][(cy) 2] is-0.054 eV for non-polar MOs. 
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Table 1. 
Shifted STO-6G electronic energies (E '= -E -  36.0 a.u.), and VB structural weights for 
resonance between VB structures I-IX. Structures VII-IX involve (2s)l(2p) 1, (2s)l(2p) 1 and 
(2p) 2 configurations for the Li(-). The wavefunctions for the electron-pair bonds involve Heitler- 
London AO formulations. 

I Li+ 

II Li+ 

o o  

Li- Li ~ L i  
. , . ,  . . , .  

Li Li- Li 
o o  

I I I  Li+ Li I Li Li- 
o o  0 o  

IV Li+ Li- Li+ Li- 
o o  o o  

v Li+ Li- Li- Li+ 

qJi ~IJf LIJi LIJf qJi qJf 

0.907 0.146 0.959 0.071 0.979 0.043 

0.008 0.234 0.009 0.410 

0.053 0.193 0.017 0.101 

0.000 0.128 0.015 0.333 0.001 0.404 

0.010 0.230 0.001 0.085 0.013 0.569 
o o  o o  

V I  Li+ Li+ Li- Li- 0.015 0.043 

VII Li+ Li 1 Li- 1 Li 0.006 0.022 

VIII Li+ Li ~ Li 0.00o o.oo3 
o ~ o o  I 

IX Li+ Li Li- Li 0.0oo o.ooo 

0.006 0.008 

E 
f 

0.421 0.330 0.418 0.318 0.418 0.304 

as [ytXyl3~a'btX~ta'bl3]. In this wavefunction, y, a and b are 2s AOs centred on 
the atomic nuclei Y, A and B, p = 2paA, ~l/a'b = a + ~,p + kb - a' + kb - ~ab + 

~,p, and ~, is a 2s-2p hybridisation parameter.  With < K a ' -  bla' + kb>  = 0, the 
orthogonal antibonding MO, ~l/*a'b- Ka'-  b, may then be constructed. When a 
y electron is delocalised into ~t*a'b, the S - 0 wavefunction of Eq.(24), 

q J ( Y A B ) - -  ly~V*a'bl3Va'bC~Va'bl31 + lyl3gt*a,bC~ta,bl3gta,b~l 

= (k~ + 1)(ly~a'13gta'b(Xbl3[ + [yl3a'(Xll/a'bl3bC~l) 
(24a) 

(24b) 

is obtained for a (YAB)- 4-electron 3-centre bonding unit. On substitution of 
a + ~p for a' into Eq.(24), we obtain the linear combination of Eq.(25). 

W(YAB)-= (kK + 1){tF(y-~*ab,~ab-~tab)/(kk*+ 1) 
+ ~(WVIII + kW(y-p,b-b))  + ~2WIX} (25) 
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in which ~t*ab = k*a - b is orthogonal to ~l/ab, andqJVlll and ~FIX are the 
wavefunctions for the p-orbital structures VIII  and IX of Table 1. However 
the Pauling bicovalent structure VII of Table 1 does not participate in this 
formulation of the antibonding MO mechanism. 

Recent presentations of new theory for 4-electron 3-centre bonding units 
are provided in Refs. [4,59] for example. In them, alternative VB formulations 
for electron transfer are described and discussed. 

7. CONCLUSIONS 

We have given consideration (with some speculation) to a variety of 
phenomena whose primary active space orbitals involve four singly-occupied 
AOs and/or MOs. Examples have been provided of homopolar versus 
heteropolar bond cleavages, for which different types of VB structures are 
involved. Other phenomena that we have considered elsewhere include (a) the 
n-electrons of triple bonds, where for N2, it has been demonstrated that 

�9 f i  N. resonance between the VB structures :N ~ : and : ,,4- �9 generates a 
lower energy than does the usual triple-bond structure with Coulson-Fischer 
orbitals to accommodate the four n-electrons [60], and (b) S1 + S1 ---> $2 + SO 
energy transfer via vibronic coupling [61]. Although some theory has been 
outlined in this chapter, the primary purpose has been to focus attention on the 
dictum that "a picture is worth 500 words"[62] via the use of qualitative VB 
descriptions of electronic structure. 
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A P P E N D I X  

(a) The results of minimal basis-set VB calculations [51(c),63,64] for N202, 
N203 and FNO show that lengthenings of the N-N and N-F bonds of these 
molecules relative to those of N2H4 and NH2F (with "normal" N-N and N-F 
single bonds) are, to a considerable extent, associated with the nature of the 
hybridisation of the nitrogen AOs. The optimum hybridisations lead to non- 
co-linear orientations of the overlapping AOs that form the N-N and N-F o- 
bonds, thereby forming "bent" bonds. Whether or not the nature of the oxygen 
hybridisation has some relevance for the lengthening of the O-O bond of 
NCO-OCN (cf. Section 3.2) has yet to be determined. 
(b) An elaboration of the antibonding mechanism of Figure 3(b) for electron 
conduction is displayed below. It enables positive hole transfer as well as 
electron transfer to occur. 
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We discuss the application of the valence bond method to systems with 
delocalized bonds, namely, metallic and anionic systems. We show that the 
admittance of extra orbitals in these systems is necessary, leading to new types 
of structures, which are related to processes of charge transfer. 

1. INTRODUCTION 

The valence bond (VB) theory, originally introduced by Heitler and London [ 1 ], 
is a natural tool for studying the formation and breaking of chemical bonds. The 
VB wave function is a linear combination of structures that can be formally 
interpreted as the former Lewis structures, therefore furnishing an intuitive 
localized and chemical description of the molecular system. On the other hand, 
this chemical appeal costs a high price, for the atomic orbitals used in the wave 
function must be nonorthogonal, which leads to the so-called N.t problem in the 
calculation of matrix elements [2-5]. If we try to circumvent the problem by 
orthogonalizing the orbitals, they will not overlap and therefore will not bind. If 
we insist on using orthogonal orbitals, then we are obliged to introduce many 
polar or ionic structures to recover the binding, but it costs the compactness and 
the chemical appeal of the wave function. Whatever the case, either with 
nonorthogonal or orthogonal orbitals, the VB wave function will reproduce 
exactly the same results of a molecular orbital (MO) based wave function, as 
long as both are carried to the full-CI limit. VB and MO theories are 
complementary and, in the end, are just different ways of expanding the 
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molecular wave function. 
According to Pauling [6-9], valence bond theory can also be used to 

describe metallic systems. At a first glance, this seems to be contradictory, since 
VB deals with localized chemical bonds and a metallic bond is thought of as 
completely delocalized. Pauling's argument is that the metal atoms in the crystal 
have an available orbital to receive an extra electron and thus form an extra 
covalent bond, through a mechanism he called unsynchronized resonance. 

In the present chapter, we explore the Pauling ideas in the context of an ab 
initio valence bond formalism. We do so by admitting extra orbitals in the 
constituent atoms of molecular systems, and devising the new types of VB 
structures that can be set allowing the atoms to form more bonds than their 
"atomic valences" admit. We will see that these Pauling's structures, as we 
named them, are important to describe some kinds of delocalized bonds and that 
they give some information about possible processes of charge transfer in the 
molecular systems. 

From all the applications we have done in recent years [10-12], we review 
those that show the essence of our methodology. After introducing the VB 
formalism, we study the four electrons problem, a cluster of hydrogen, in an 
unusual limit, in order to address the problem of insulator to metal transition in 
solid hydrogen under pressure. Then we proceed to the applications to neutral 
and anionic lithium clusters, which are systems with very delocalized bonds. 

1.1. The VB formalism 
Now we briefly outline the McWeeny's spin-flee valence bond 

machinery[2-4] used in our works. From the standard Young tableaux [2-4, 13] 

we obtain fs  orthogonal spin eigenfunctions { Ok}, for N electrons coupled for 

total spin S, that carries an irrep D~ of the permutation group SN. Where we have 

f s=(2S + 1)N!/[(N/2 +S + 1)!(N/2-S)!] 

A valence bond structure is defined as 

�9 k = p 11 ~2k, 

where p 11 is the Wigner projection operator, 

p~=( fUs/N!)Zp(-1)P Ds(P),~P 

associated with the first spin eigenfunction in { Ok}, and Ok is a product of N 
nonorthogonal atomic orbitals, 
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~ k  = ~ kl CI~ k2C~ k3... ~ kN. 

The VB wavefunction can be written as 

~J = 2 k C k (l) k �9 

The matrix elements to be evaluated are 

and 

where H is the electronic Hamiltonian in the Born-Oppenheimer approximation. 
These matrix elements are calculated through a permutation driven algorithm 
due to McWeeny [2-4]. The structure coefficients Ck are obtained solving the 
secular equation: 

HC = E S C .  

As the VB structures are nonorthogonal (Sk l~O) ,  w e  define the weight (Wk) 

of a structure as [ 14] 

2 

Wk=C k +Xt.kCkCtSkl �9 

Thus, 

ZkW~= 1 �9 

In our calculations, only the valence electrons are treated at the VB level. 
The inactive electrons are kept in a frozen core obtained through an atomic 
Hartree-Fock (HF) calculation. All geometry optimizations or relaxations are 
also performed at the HF level. 

The atomic orbitals that form the VB wave function are written as linear 
combinations of the atomic centered gaussian basis functions (Gaussian Type 
Orbitals - GTO) of all atoms in the system, with no constraints of orthogonality 
or localization, except for orthogonality against the core orbitals. The orbital and 
structure coefficients are determined simultaneously by solving the secular 
problem through a hybrid method of diagonalization and brute force  energy 
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minimization (David-Fletcher-Powell (DFP) variable metric method [ 15] mixed 
with the Pulay's Direct Inversion of Iterative Subspace (DIIS) procedure for 
accelerating convergence [16]). The required gradient vector in the energy 
minimization is obtained through the generalized Brillouin theorem [17]. To 
avoid bias in the orbital optimization, the initial guess is usually a combination 
of s GTOs centered in one atom. The orbitals so obtained are highly directional 
and delocalize over a few atoms. On the other hand, this simultaneous 
optimization of orbitals and structures can be a computationally very difficult 
task and, sometimes, it is more sensible to break the wave function into different 
sets of structures, usually related by symmetry, and to optimize the orbitals for 
these distinct sets separately, therefore reducing the number of parameters to be 
determined in this nonlinear problem. Once this is done, the VB wave function is 
rebuilt and the structure coefficients are determined as in a traditional CI 
calculation. As a consequence of orbital delocalization, coefficients for 
conventional ionic structures (i.e., VB structures with doubly occupied orbitals) 
tend to be very small. The ionic structures we use in our works allow two 
valence electrons in the same centre but occupying different orbitals. 

2. INSULATOR TO METAL TRANSITION IN HYDROGEN UNDER 
PRESSURE 

If we imagine a solid insulator whose lattice constant could be arbitrarily 
reduced, by application of pressure, for instance, then it would eventually 
become a metal as a consequence of the increasing atomic orbitals overlap: the 
so-called Mott transition. Hydrogen is known to form a highly compressible 
molecular solid, whose volume can be reduced more than tenfold in the pressure 
range of 0 to 150 GPa, the band gap being reduced by more than 10 eV [ 18]. It is 
believed to become a metal under such high pressures and, therefore, its 
structural and electronic properties have been the subject of intensive 
investigation. At about 150 GPa, a discontinuity is observed in the frequency of 
the intramolecular stretching (vibron) modes [19], accompanied by the onset of 
infrared activity by the same modes [20]. A possible explanation for these effects 
have been recently proposed by Edwards and Ashcroft [21 ], namely, a structural 
transition in which the hydrogen molecules spontaneously polarize in the solid. 

We apply Pauling's ideas to this problem in order to understand the valence 
bonding between hydrogen molecules in high-density hydrogen. We focus our 
attention to a pair of neighbor molecules in the solid and study the behavior of 
the chemical bonds as the intermolecular separation is decreased as a 
consequence of pressure. We perform ab initio valence bond calculations on the 
cluster H2H 2 (Fig.l) with a small set of carefully chosen VB structures (Fig.2), 

able to reproduce all possibilities of bonding in the system. Our inferences are 
based on the weights of the structures as the intermolecular separation is varied. 
The results we obtain allow the identification of four regimes of bonding in the 
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system, corresponding to different ranges of the intermolecular separation. Each 
regime can be associated to the possibility of infrared activity in the solid. 

Fig. 1. Geometry of the hydrogen cluster used in the calculations. 

Kehn/~ 

1.234 @ 

1'4'2'3' 

t22'Y 3' 

@ | 

io~'e 

1.32'3' 

Fig.2. Examples of the valence bond structures adopted in the calculations. The lines 
represent chemical bonds. The + sign means that one atom has lost its electron to another 
atom signaled with-. 



384 

We note that the four electrons problem, a cluster of four hydrogen atoms, 
is a prototype for testing correlation methods in electronic structure. McWeeny 
[2] had already addressed this problem in the context of a valence bond 
formalism and here we tackle the problem in a quite unusual range of 
intermolecular separations. 

2.1. Calculations 
We have applied Pauling's theory to the molecular hydrogen cluster as 

follows: the nonmetallic cluster is well described by the usual Kekul6 structure 
(1-2 3-4) (Fig.2), where orbitals 1 and 2 are at one hydrogen molecule and 3 
and 4 are at the other one. The synchronized resonance is the mechanism in 
which the system alternates between structures (1-2 3-4) and (1-4 2-3) (anti- 
Kekul6) (Fig.2), breaking simultaneously the two original covalent bonds and 
forming two new ones. 

In the unsynchronized resonance, just one bond is broken, with the 
concomitant transfer of one electron from one molecule to another and the 
formation of a new bond (Fig.2). In order for this to occur, one atom has to lose 
an electron, say atom 4, becoming a positive ion, and another atom must have 
an extra orbital to receive the extra electron, say atom 2, becoming a negative 
ion. Thus we form the structure (1-2 2 ' -3) ,  that we will call metallic structure, 
where 2', the metallic orbital, is the extra atomic orbital on atom 2. In a 
molecular hydrogen crystal, the unsynchronized resonance would provide a 
mechanism for charge transport and confer metallic properties to the system. 

We investigate the possibility of metallic structures and charge fluctuations 
as two hydrogen molecules approach each other. To do so, we associate two 
atomic orbitals to each hydrogen atom and select 14 VB structures from a total 
of 266 that can be formed with the set of 8 orbitals. 

Arranging the two hydrogen molecules in the geometry shown in Fig.l, and 
labeling the atoms in one molecule as 1 and 2, and in the other molecule as 3 and 
4, the 14 structures are as follows (Fig.2). Assuming labels 1, 2, 3 and 4 for the 
normal valence orbitals on each atom, we adopt labels 1', 2', 3' and 4' for the 
metallic orbitals. The main structure is (1-2 3-4), of Kekul6 type, bonding atom 
1 to 2, and atom 3 to 4. We have another Kekul6 type structure, namely, (1 ' -4 '  
2 ' -3 ' ) ,  with two intermolecular bonds, and we call this structure anti-Kekul6. 
Then we have 8 metallic structures, allowing for intermolecular hopping of one 
electron, which are (1-2 3 ' -2 ' ) ,  (3-4 1 ' -4 ' ) ,  (1-2 1 ' -4 ' ) ,  (3-4 3 ' -2 ' ) ,  (1-2 2 ' -  
4'), (3-4 2 ' -4 ' ) ,  (1-2 1 ' -3 ' ) ,  (3-4 1 '-3 ') .  Finally, we have 4 ionic structures, 
allowing for intramolecular hopping of one electron, which are (1-3 3 ' -2 ' ) ,  (1-3 
1 ' -4 ' ) ,  (2-4 1 ' -4 ' ) ,  (2-4 3 ' -2 ' ) .  With this small set of structures, we cover all 
possibilities of bonding and charge fluctuations in the system. 

In order to form the set of 8 atomic orbitals to be used in the VB 
calculations, we proceed as follows. We associate to each atom a (8slp) atomic 
centered gaussian basis set contracted to [2slp] (Table 1). Each orbital is ex-  
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Table 1 
Atomic centered cartesian gaussian basis set. 

Exponents Contraction Coefficients 

S type 

6.686331 0.0016700 

20.0855369 0.0048500 

6.0496475 0.0219600 

1.8221188 0.0874200 

0.5488116 0.2605400 

0.1652989 0.2295000 

0.0497871 0.0220900 

S type 

0.1000000 1.0000000 

P type 

1.0000000 1.0000000 

panded in the basis functions of all centres and optimized variationally, that is, 
for a given intermolecular separation, the total energy is minimized with respect 
to the form of the orbitals. We note, again, that the orbitals are allowed to 
delocalize during the optimization, which leads to vanishing coefficients for the 
conventional ionic structures, that is, VB structures with doubly occupied 
orbitals. The ionic structures we use are of Pauling-type, in the sense that there 
are two electrons in the same atom, but in different orbitals. 

The valence orbitals (1, 2, 3 and 4) and the metallic orbitals (1', 2', 3' and 
4') are optimized separately, using a VB calculation with just one structure, 
namely, the Kekul6 structure for the former and the anti-Kekul6 for the later. It 
is done for each intermolecular separation a (Fig. 1), which varies from 1.5/k to 
6.0 /k. The molecular bond distance d was kept fixed to 0.74 A for all 
intermolecular separations. We verified that if d is allowed to relax, at the SCF 
level, it varies at most by a few hundredths of an angstrom and the energy lowers 
by about 10 -4 Hartree. It therefore does not affect our results. Once the orbitals 
are obtained, we form the 14 structures and solve the VB secular equation. 
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The geometry adopted for the cluster has symmetry C2h (Fig. 1) and the set of 
structures spans symmetry species Ag and B,. All the point energy calculations 
we performed resulted in wave functions of symmetry species Ag for the ground 
state, as would be expected. The energy for selected points are listed in Table 2, 
where we have included Hartree-Fock results for comparison. 

2.2. Results 
We start by comparing the relative structure weights as the intermolecular 

separation is varied (Fig.3). Taking the weight of the main Kekul6 structure as 
unity, we plot, in Fig.3, the absolute value of the anti-Kekul6 structure, and for 
the ionic and metallic structures we plot the total summation of the absolute 
values of structure weights for each individual set. We can distinguish four 
regions with different bonding schemes in Fig.3. For intermolecular separations 

o 

around 5.0 A, the contributions of the anti-Kekul6 and ionic structures increase 
slightly, reaching a maximum at around 2.6 ,~. The weights drop from 0.002 at 
5.0 A to 0.08 at 2.6 A for the anti-Kekul6 structure, and from 0.003 to 0.01 for 
the ionic structures. The contribution of the metallic structures arises only at 
around 2.0 ,~, increasing abruptly and reaching a maximum at 1.7 A. These 
intermolecular separations correspond to pressures around 200 GPa [22]. Below 
1.7/k, the contributions of all structures are appreciable. The same results could 
be drawn from a plot based on the squared structure coefficients. 

Table 2 
Ground state (C2h lAg) total energy (a.u.) for some intermolecular separations (,~). 

Intermolecular Separation VB energy HF energy 

1.5000000 

1.6000000 

1.7000000 

1.8000000 

1.9000000 

2.0000000 

3.0000000 

4.O00OOOO 

5.0000000 

6.0000000 

-2.2238278 -2.1893468 

-2.2434224 -2.2087074 

-2.2585167 -2.2232051 

-2.2698090 -2.2340706 

-2.2782549 -2.2422125 

-2.2845541 -2.2483061 

-2.3015468 -2.2647516 

-2.3021682 -2.2653591 

-2.3021833 -2.2653744 

-2.3021831 -2.2653742 
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Fig. 3. Weight of VB structures versus intermolecular separation. 

The most interesting feature of Fig.3 is the sharp peak in the weight of the 
metallic structures around 1.7 A. Each metallic structure has two polarized H 2 

molecules as a result of the transfer from a molecular valence bond to a new 
bond to a neighbor molecule (Fig.2). Our results therefore support a hypothesis, 
previously made [20], that the ground state wave function will have a component 
of charge-transfer states at pressures around 150 GPa. Moreover, our results 
indicate that small variations of the intermolecular separation around 1.7 A (as a 
result of a structural modification, for instance) can induce sizeable changes in 
the polarization of the H2 molecules. This is fully consistent with the 
spontaneous polarization predicted by Edwards and Ashcroft [21], and it 
provides an explanation for this phenomenon in terms of the chemical bonding in 
the solid. 

The other interesting feature of Fig.3 is the increase of the weights for the 
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anti-Kekul6 and ionic structures around 3.0/k.  It means that intermolecular 
interactions have become stronger (anti-Kekul6 structure) and that the hydrogen 
molecules can polarize (ionic structures), although there is no charge transfer 
(metallic structures) between them. It is consistent with experimental 
observations of small infrared absorption for pressures below 150 GPa [23]. 

It is to be noted that with the C2, symmetry (Fig. 1), the cluster does not have 

a total dipole moment. However, an appreciable weight of the metallic or ionic 
structures (Fig.2), which is the case around an intermolecular separation of 1.7/k 
(Fig.3), will strongly contribute to the polarizability of the system. On the other 
hand, a small polarizability will arise if only the Kekul6-type structures 
contribute to the ground state wave function. 

We can explore our calculations in more detail so as to understand better the 
origin of the sharp peak in Fig.3. Let us look at the behavior of the overlap of the 
metallic orbitals with intermolecular separation (Fig.4). The overlap can vary 
from zero, no overlap at all, to unity, perfectly overlapped orbitals. In order for 
metallic binding to take place, the metallic orbitals should have an overlap 
comparable to that between valence orbitals forming the covalent bond in the 

1.0 
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CL 
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0 

E 0.4 
0 
z 
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0.0 
1.0 
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<1'14'> 
<2'14'> 

r ~\ ,I:,'  'iLl 

i 

, I , _ . .  i . I , I 

2.0 3.0 4.0 5.0 
Intermoleeular Separation (Angstrotn) 

6.0 

Fig. 4. Metallic orbitals overlap versus intermolecular separation. 
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hydrogen molecule, that is 0.8. The metallic orbitals overlap appreciably only 
below 2.0 ,~. At 1.7 A, all the metallic orbitals have an overlap of about 0.7 with 
each other, steadily decreasing for smaller intermolecular separations. This 
explains why the metallic structures reach a peak at 1.7 /k. That is where the 
metallic orbitals have the appropriate overlap to form the metallic bonds, and the 
decrease of this overlap will weaken these bonds. The re-increase of the metallic 
structures at 1.5 A is a consequence of the great proximity of the molecules 
compensating the smaller metallic orbitals overlap. This interpretation is 
corroborated by the relevant contribution of the anti-Kekul6 structure at that 

o 

intermolecular separation. Note that, at 1.5 A, atoms 2 and 4 are separated by 
o 

just 0.94 A. 

3. STUDY OF THE ELECTRONIC STRUCTURE OF ANIONIC 
LITHIUM CLUSTERS 

We apply the VB methodology to the study of the electronic structure of the 
small anionic lithium clusters L i -  (2~< n~< 5) . These clusters, in their lowest 

n 

energy state conformations, are shown in Fig.5. In this section, we show how to 
choose appropriately the VB structures and orbitals, how to understand the 
structure weights, what the aim of the metallic orbital is and, finally, how to get 
information about excited states of the systems. 

3.1. Calculation details 
In our calculations we associate to each Li atom a (10s2p) atomic centered 

gaussian basis set contracted to [4s,2p] (Table 3). We treat only the valence 
electrons at the VB level and keep the inner shell electrons (Lils) in a core 
obtained by HF calculations. Therefore we are neglecting the core-core and 
core-valence correlation effects, which are small for these small lithium clusters 
(Fig.5). 

The geometries of the Li n- clusters were determined by analytical gradient 

minimization procedure at HF level [24]. As usual, such geometries were also 
used in the VB calculations. Theoretical vibrational analysis has been performed 
at the HF level to check whether the stationary points on the Born-Oppenheimer 
(BO) surface are a local minima. 

3.2. Choosing the structures and characterizing the electronic state of the 
system 

The VB structures are the principal tool of the method, as they represent the 
possible chemical bonds present in the systems, and choosing them requires 
some care. Essentially, this choice will depend on the symmetry of the system 
at a specific electronic state and on its possible dissociation channels. In general, 
studying the main structures of smaller clusters is useful to give us a hint of the 
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Fig.5. Geometry, point group and electronic state of some small anionic lithium clusters. Up 
to Li4-, the most stable conformations are linear. The most stable conformation of Lis- is 
planar. 

probable structures of more complex systems, that may be formed out of these 
smaller clusters. 

There are several types of structures: the conventional covalent (also called 
Kekul6 structures), the ionic and the newest Pauling's structures (metallic 
structures). Below, the main structures of each small anionic cluster, shown in 
Fig.5, are discussed. 



Table 3 
The [4s,2p] basis set. 

Exponents Contraction coefficients 

S type 

921.30 0.001367 

138.70 0.010425 

31.940 0.049859 

9.3530 0.160701 

3.1580 0.344604 

1.1570 0.425197 

0.4446 0.169468 

S type 

0.0200 1.000000 

S type 

0.0472 1.000000 

S type 

1.0514 1.000000 

P type 

0.1135 1.000000 

P type 

0.0700 1.000000 

391 

3.2.1. The Li 2- cluster 

The minimum set of structures needed to describe the ground state 2s of the 

simplest anionic cluster Li 2- is shown in Fig.6, where a line represents a pairing 

of electrons (a covalent bond) and a single dot represents an unpaired electron. 
Two dots around the same centre represent two electrons at the same atom, with 
paired spins, as in an ionic bond, but occupying different orbitals. This 
characterizes the unconventional ionic structure that will be adopted by us, as we 
have already discussed. 

In the case of the ground state 2s + the final VB wave function is given by 

the following linear combination of those structures shown in Fig.6 : 

YIVB--" C 1 ( E l  - -  E2) + C2(E3 - E 4 )  ~ 
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It is shown in Fig.6 that the most important structures that describe the Li 2- 

cluster, in its ground state, are the ionic symmetric pair E~ and E2, which is 
almost six times more important than the covalent symmetric pair E 3 and E4. 

We observe that combinations of structures like (E~ + E2) and (E3 -t- E4) 
would lead to the excited state 2E +. 

g 

To form the structures of Fig.6, we need, in principle, two orbitals centered 
on each atom. However, the pairs of structures are of very different nature, ionic 
and covalent, and thus it becomes necessary to optimize a set of 4 orbitals for 
each symmetric pair of structures separately, amounting to a total of 8 orbitals. 

In Fig.7, we show the two pairs of VB orbitals optimized for atom 1 (Fig.5), 
corresponding to the two pairs of ionic and covalent structures of Fig.6. 

3.2.2. The Li 3- clusters 

The Li 3 cluster has several stable states for different geometric conforma- 

tions: Dooh, C2v and D3h. The most stable cluster is linear (symmetry group Dooh), 
although the planar conformations, a triplet of symmetry A'~ (symmetry group 
D3h) and a singlet of symmetry B2 (symmetry group C2~), are also sufficiently 
interesting to be studied. These clusters are shown in Fig.5. The preference of 
Li - clusters (2 ~< n ~ 4) for linear geometries is an interesting property that will 

n 

be discussed in detail soon. The structures that represent these clusters in their 
most stable geometries are shown in Fig.8. 

Li~ 

Ground State: 

St~ cl'u ~e$. 

�9 
Weights: 

E l  

t,ooo 
"O *O" ~- 

E3 

C~-C) ~ 

0,170 

Fig.6. Minimum set of VB structures needed to describe the ground state 2Eu+ of Li2-. A line 
represents a covalent bond and a single dot represents an unpaired electron. Two dots around 
the same centre represent two electrons with paired spins near the same atom, as in an ionic 
bond, but in this case occupying different orbitals. 
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Fig.7. Orbitals on the same centre (atom 1 of Fig.5) of D~h Li2-cluster. The pair of orbitals of 
the first line correspond to the ionic structures of Fig.6. The appropriate pair of orbitals of the 
covalent structures are also shown on the second line. The "black spots" are over the nuclei. 

The wave function of the ground state ~E § of the Li3-cluster is given by 
g 

~fVB- 'CI (E1  -Iv E 2 )  -31-- C 2 ( E 3  -~- E 4 )  ~ -  C 3 ( E 5 )  7t-  C 4 ( E 6 )  . 

We see, in Fig.8a, that the structures E~ and E2 (ionic structures) for the Dooh 
Li 3- cluster are the most important. This is the first anionic lithium cluster that 

needs a Pauling type structure (E6) in its total VB wave function. There is no 
structure like that in the neutral case. Note that in the anionic case it is necessary 
to use two orbitals on the central atom. As long as the size of the ionic clusters 
increases, the role of the Pauling's structures becomes more important, as we 
will see. 

In Fig.9, the orbitals of the central atom for several structures are shown. 
The first pair of orbitals is optimized for structures El, E2 and E6. The orbitals for 
the structure E5 are also shown. 

The planar Li 3 cluster of lowest energy is a stable conformation of 

symmetry D3h, state 3A'1. The VB wave function is given by 

~/VB-"CI (E  1 .-~ E 2 + E 3 )  J -  C 2 ( E  4 -q- E 5 -~- E 6 71- E 7 + E 8 q -  E 9 )  "-~- C 3 ( E l o  -~- E l l  -~- E l 2  ) 
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Fig.8. (a) Minimum set of structures needed to describe the ground state leg+ of the most 
stable conformation Do.h Li3-, (b) as well as the transition state tB2 C2v and (c) the stable state 
3A'l D3h Li3-. 

We need two orbitals centered on each atom to form each set of structures of 
the D3h Li3-cluster. They are delocalized on specific neighbor orbitals. A diagram 

of them is shown in Fig.10. In the optimization, orbital 1 is allowed to bind 
(covalent bond) just to orbital 2, orbital 2' is restricted to 3 and 1' to 3'. As the 
lowest energy state is a triplet, there are no Pauling's structures in this case. So, 
the structures of Fig.8c for the D3h Li3-cluster can be written as" (1-1 '  2' 3) (El), 

( 3 - 3 '  1 2) (g2), ( 2 - 2 '  1' 3 ' )  (g3), ( 2 - ' 3  1' 3 ' )  (g4), ( 2 ' - 3  2 1) (gs), ( 1 ' - 3 '  1 2 ) 
(F4), (1-2 1' 3') (ET), (1 ' -3 '  2' 3) (E8), (1-2 2' 3) (Fo), (2 ' -3  1 1') (E~0), (1 ' -3 '  2 
2') (E~) and (1-2 3 3') (El2). According to this representation, the first two 
electrons are paired and the other two are unpaired. 
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* �9 �9 | , , , 1 * / , I * * , I * . 

Orbital  2 - A t o m  2 - estr. E5 

Fig.9. Orbitals of the central atom (atom 2) of Doon Li3-cluster. The orbitals of the first line of 
this figure correspond to structures E t ,  E2 and E 6  of Fig.8a. The orbitals of atom 2 for 
structure E5 are also shown. The "black spots" are over the nuclei, which are numbered. 

1 0 1  ' 

2 
0 2 '  3 

Fig.10. Diagram representing the numbering of VB orbitals of D 3 h  and C2v Li3-clusters. 

In fact, the IE' state of the D3h Li3-cluster is affected by Jahn-Teller  distortion, 

which reduces the symmetry of the cluster to Czv and creates two distinct 
electronic states, ~A~ and ~B2, corresponding to triangles of internal angles 
(69.85 ~ 69.85 ~ 40.30 ~ and (63.34 ~ 63.34 ~ 53.32~ respectively. 

On the other hand, the 1 ~B2 state of the C2v Li 3- cluster is indeed a transition 

state. In Fig.8b, we also show the set of VB structures that describes this state, 
which has the particularity that the weights of structures E5 and E6 are null, as 
they do not have the symmetry of the electronic state. Therefore, the VB wave 
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function in this case is 

~ - , r V B - - - C I ( E  1 - E 2 )  - l - - C 2 ( E  3 - E 4 )  �9 

3.2.3. The Li4- clusters 

Although the Cz~ Li 4- cluster is stable, once more the linear conformation is 

the one of lowest energy. The set of VB structures that best describes the 2Eg+ 

ground state of the Dooh Li 4- cluster and their corresponding weights are given in 

Fig.1 l a. The ground state VB wave function is 

~Fvs=CI(E 1 + E2) + C2(E3 + E4)+  C3(E5 + E6) -b C4(E 7 -1- Es) -F Cs(E 9 d- El0 ) 

It is important to point out that, starting from the Do.h Li 4- cluster, more than 

one set of structures becomes important to describe correctly the system. As for 
the other linear clusters, two orbitals centered on each atom are necessary to 
form the structures in the case of the D~h Li4-. 

The wave function of the 2E' state of the D3h Li 4- cluster (MO electronic 

distribution a'~2e'2e ') suffers the Jahn-Teller distortion, which reduces the 
symmetry of the cluster to C2~ and gives rise to two distinct electronic states: 2B2 

a) Li~- l inear b) Li~ C~_~ 
? 

Ground State: -~'~ State: "-B 2 

Structures: Weights: Structures: Weights: 

O - - - O  -O "O- El t.000 ~XE) O/~ 
-O- O- O---O m 
o - - o  -o- o- ~3 6 6 

0520 E~ 

O ~ O "  O - - - O  
O - - - O  O - - - O  

0,340 

O - - - - O ~ O  O" 
-O O ~  F8 
"O O ~ O  - O - ~  
"O" O ~ O  O'~ lo  

O,L2L 

O O t,000 0.044 

E7 Eg 

~ 0.570 Q Q 
ci--o 0--45 o/L o-~ o.0o, 

E3 El- E-9 El0  

Q Q 

F_..5 F_.6 E l l  El2  

Fig. 11. Minimum sets of structures needed to describe (a) the ground state 2Zg* of Dooh Li4- and 
(b) the stable state 2B2 of Cev Li4-cluster. 
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and 2A~. 2B2 is the state of lowest energy and its VB wave function (Fig.1 lb) is 

~ [ I V B - - C I ( E  1 - -  E2) --[--C2(E 3 - E4) -[- C 3 ( E  5 - E6)  -~- C 4 ( E  7 - E8) -+- C 5 ( E  9 - Elo ) 

q-C6(E,,-E,2) �9 

Structures similar to E3 or E4, but with the extra electron near the central atom, 
which would result in totally symmetric structures, must vanish to represent the 
2B2 state. 

The VB calculations describing the :B2 state were performed using at most 
seven atomic orbitals for the pair of structures. To form structures E1 and E:, we 
need two different orbitals on the central atom (atom 2 in Fig.5). These orbitals 
are shown in Fig.12. One of them points toward the top atom and the other is 
spread inside the lower triangle. In this case, the orbitals are distinct, one being 
more delocalized than the other. The most diffuse orbital could be a typical 
"metallic orbital", because atom 2 is performing a metallic bond with atoms 3 
and 4 through it. Only one orbital on the first atom ( atom 1 in Fig.5) is enough 
to form each pair of structures of the planar Li 4- shown in Fig. 1 lb. On the other 

hand, if we want an excited state of symmetry A~, for instance, we must use the 
totally symmetric structures like those mentioned above and the sum of the 
symmetric pairs instead of the subtraction. 

3.2.4. The Li 5- clusters 

The ground state, 1A~ C2v, of the Li 5- cluster is practically degenerate with 

the state leg+ D~h . The latter is found to be, in fact, an unstable state, in 
disagreement with the literature [25]. In order to check this, we have made tests 
with several basis sets, starting from the [3s,lp] of Ref.25, up to 6-311G(d). In 
all cases, we verify the presence of imaginary frequencies at the SCF level. 

a b) 
C) 
2 

Fig.12. Two different orbitals on the central atom of the planar Li4-: a) one of them points 
toward the top atom and b) the other one, the most diffuse, spreads inside the lower triangle. 
The "black spots" are over the nuclei, which are numbered. 
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The VB description of the Do.~ L i f  system is given by (Fig.13a) 

~"vs=CI(E1 + E2) +Cz(E3 + E4) + C3(Es) �9 

The VB wave function for the ground state (C z~ ) is (Fig.13b) 

}P'vs=C,(E,) +C2(E2 +E3)+ C3(E4 + E s ) + c 4 ( e  6) + C5(E7 +E 8) + C6(E9 +E,0) 

For the C2v Li 5- cluster, we need 3 distinct orbitals on the central atom (atom 

5 of Fig.5) to form each set of VB structures, because this atom participates in at 
least 3 different bonds: one pointing toward the middle of the top pair (see 
orbital 3 of Fig.14, obtained from a VB calculation with structures E4 and E5 of 
Fig.13b) and the other two bonds associated with atoms 3 and 4 (like in El) of 
the base of the cluster (see orbitals 1 and 2 in Fig.14, which are optimized for 
structures E~, Ez, E3, E9 and E~0). 

a) Li~ linear 

State: l g  

Structures: Weights: 

0- - -0  O ~ - C - - - O  ~.l 
0 - - - 0  

0----0 ~ - 0 "  F.3 

" 0 "  0 - - - 0  0 - - - 0  

0 - - 0  <3- 0 - - ~ 0  

l..0O0 

0.759 
F_.4 

0.324 

b) Li~ C,_, 
1 State: A x 

Stmetures: Weights: 

0---0 ~ t.o0o ~ o.4.ot 
El  F_,6 

0 - - 0  0 - - 0  
0 "~'0 6 6 ~ 0.734 

153 

E4 F_.5 
qQ. o 

c ~ ~  0.275 
67 Eg 

EIO 

Fig.13. Minimum set of structures needed to describe (a) the unstable state 'Eg § of D.oh Lis- 
and (b) the ground state of Czv Li5-. 
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Orbi ta l  1 - A t o m  $ 
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�9 �9 �9 , �9 �9 �9 | , . , | . . r . . , 

Orbital  2 - A t o m  5 
. . . .  . . .  , . . . . . .  ~ . ~ . ,  . , . . . . . . .  

�9 . . , 

Orbi ta l  3 - A t o m  5 
, , , | , , , , , , , | , , , i , , , 

, , , ! , , , | , , , I | t t. I ! i ! 

Fig. 14. Orbitals of the central atom of C 2v Lis-. 

It is important to clarify that we used 3 orbitals on the central atom of the Czv 
Li 5- cluster because the nature of the bonds involved are quite different, although 

not more than 2 orbitals on an atom are occupied simultaneously. This choice of 
orbitals accelerates convergence and improves the accuracy of the calculated 
energies. The metallic character of this sort of cluster increases with the number 
of atoms, which makes necessary the use of an increasing number of VB orbitals 
centered on the same atom. Therefore, the number of resonating VB structures 
also increases for the planar Li 5- cluster. In this case, note that all structures have 

considerable weights in Fig. 13b. 
It is interesting to notice that as the systems become bigger and more 

compact, a larger number of VB structures becomes necessary to describe them. 
It means that the metallic character of these systems is increasing (that is why we 
usually say that small lithium clusters could be prototypes of metals). At the 
same time, Pauling's structures are showing their importance. From the C2v Li 4- 

cluster onwards, it is already possible to observe this tendency. Mainly for this 
reason, it becomes clear that the VB description that allows the existence of 
structures in which an atom is able to bind simultaneously with two neighbor 
atoms is fundamental to describe anionic metallic clusters. 
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3.3. The influence of the extra electron on the shape of the smal l  anionic  
l i th ium c lusters  

The existence of linear species as the most stable ones is, as a matter of fact, 
intriguing. Most of all, the presence of an extra electron changes not only the 
electronic structure but also the shapes of the clusters when compared to their 
neutral counterparts. Up to the Li 4- cluster, the D**h species are in fact 

energetically preferable. The ground state 1A1 of the CEv Li 5- cluster, as was 

already mentioned, is practically degenerate with the leg+ state of the D=h Li 5- 

cluster, although this latter is, in fact, an unstable state. From Li 6- onwards, it is 

known that the anionic clusters have similar shapes to the corresponding neutral 
systems. In this case, there are no linear geometries, as we will discuss in 
section 4. 

VB Charge Density 

Li=; linear L i 4  . n e a r  
0 . 2 0  , , . . . .  0 . 2 0  , - ,  , . . . . . . . . . .  

0 . 1 5  

..~- O. 1 0  
q ~  

0 . 0 5  

! , _ .~ -~1  I . - v - . ,  , , .  ..... ! ; o .  
0__20n .0 ' -  1 0 . 0  0 . 0  1 0 . 0  2 0 . 0  

D i s t a n c e  o n  m a i n  a x i s  (]~x) 

. . . , , .  
0 . 1 5  

0 . 1 0  

0 . 0 5  

0 . 0 0  
- 2 0 . 0 - 1 0 . 0  0 . 0  1 0 . 0  2 0 . 0  

D i s t a n c e  o n  m a i n  a x i s  (~)  

U;  linear 
0 . 2 0  , , , , , , . 

O.  1 5  

~ o .  1 0  

o . 0 5  

0.00 .... +...~ L,.- /-~, ......... 
- 2 0 . 0 - 1 0 . 0  0 . 0  1 0 . 0  2 0 . 0  

D i s t a n c e  o n  m a i n  axis  (~ )  

0 . 2 0  . 

0 . 1 5  
. . . . .  

J 

U ;  . n e a r  
i , I ' I ' 

0 . 1 0  

0 . 0 5  

0.00 ........ I,c,. ,-', ~-" ,~ ......... 

-20.0-10.0 0.0 I0.0 20.0 

D i s t a n c e  o n  m a i n  ax is  ( . ~ )  

Fig.15. VB charge densities along the molecular axis of D**h Lin-clusters. 
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Fig.16. Maps of electronic charge density of linear anionic lithium clusters. 

One of the reasons for the preference for less compact structures can be seen 
from the VB distribution of electronic charge in the linear Li n- ions in Fig.15. 

Observe higher peaks of charge at the extremes of their principal axis. The upper 
views of these charge densities are also shown in Fig. 16. 

The electrostatic repulsion is relatively weak for such linear geometries, 
making the linear clusters the most stable ones. In the Lis-case, a tendency of the 

charge density to turn out more compact can be observed because the central 
peak is almost similar to the end ones (see Fig. 15). We could say that in this case 
we are in a threshold situation: from the Li 5- cluster onwards, the lowest energy 

conformations are no longer the linear ones; the Dooh Li 5- structure is in fact an 

unstable state. 
The charge density for planar Li3-, Li 4- and Li 5- clusters are shown in Fig. 17. 

Observe the presence, in Fig.17, of three-body bonds [26], as they are named, 
common in planar clusters. They are characterized by peaks of charge inside 
triangles delimited by 3 atoms. The C2v Li 5- charge density is more delocalized, 

clarifying the necessity of using a larger number of structures, as already 
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Fig.17. VB charge densities of D3B Li3-, Car Li3-, C2v Li4-and C2~ Lis-clusters. 

discussed. The main reason is the considerable metallic character of this system. 
We have seen that the weights of all the structures in this case are relevant, 

which means that there is no principal structure that by itself could represent the 
VB wave function as a whole, as happens for practically every cluster up to Li 4 . 

On the other hand, for all anionic clusters studied, except Lis-, the preference for 

linear geometries is a consequence of a localized wave function, as the density 
maps show in Figs. 16 and 17. 

3.4. The VB energies 
In Table 4, total energies are given for several Li-clusters ,  with different 

basis sets and various levels of calculation. 
The VB energy values are lower than the HF values (Table 4), as expected, 

but they are higher than the QCISD values. This is explained by the fact that we 
are using a minimum set of VB structures. If we were using a complete set, the 
MO and VB results would be equivalent. On the other hand, we believe that the 
use of a small well-chosen set of structures is already appropriate for getting a 
correct description of the bonding in the system, with a compact and intuitive 
wave function. The Dooh Li 5- case is very illustrative. Using 10 orbitals, we can 

build 1050 VB structures. However, just 5 structures are sufficient to describe 
the properties of the system, as is shown in Fig.13a. Numerical results can be 
improved by enlarging the initial set of structures without any further orbital 
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Table 4 
Energy (a.u.) of ground and first excited states of the anionic lithium clusters. 

Cluster Simmetry State E HF(a) E VB(b) E HF+c~ (c) EQCISD(d) 

Li 2- D** h 2•u+ 

Li 3- D**h 1)-,g+ 
D3h 3A'l 

C2v tBa 

Li4- D~.h 2yg + 

Czv 2B2 

Li 5- D**h 1]~ + g 

Cav IAl 

-14.88018 -14.88875 

-22.31938 -22.35205 

-22.32759 -22.33109 

-22.32034 -22.32664 

-29.78694 -29.80279 

-14.79592 -14.90652 

-22.22021 -22.37836 

-22.36139 

-22.35508 

-29.63000 -29.83340 

-29.77854 -29.79509 -29.57176 (e) -29.82730 

-37.20089 -37.25616 -37.04217 -37.28067 

-37.20554 -37.25654 -37.04342 -37.29677 
(a) Hartree-Fock energy using the [4s,2p] basis set (Table 3). 
(b) VB energy using the [4s,2p] basis set (Table 3). All structures shown in Figs 6, 8, 11 and 
13 were used. 
(c) Har-tree-Fock energy plus Davidson correlation energy calculated using the [3s, lp] basis 
set of Ref. 25. 
(d) CISD energy calculated with quadratic convergence using the [4s,2p] basis set (Table 3). 
(e) There is an inconsistency in Ref. 25: The UHF energy calculated with the [3s,lp] basis set 
of Ref. 25 is -29.55251 a.u. Redoing the calculations, using the same [3s, lp] basis set, we 
found-29.57176 a.u. So, this result of Ref. 25 was ignored. 

optimization (VB-CI) .  If we had used all possible VB structures, we would have 
reached a result equivalent to that obtained from a MO ful l -CI  calculation. The 
great advantage of working with the VB method appears when we want to study 
qualitative aspects. Looking at the charge densities in Fig.15, for instance, we 

could say that the D~ h Li 5- cluster prefers to dissociate according to the channel 

Lis- ---> Li 2 + Li3-, because the bonds between the central atom and its first 

neighbors are weaker than the other ones. This behavior is in accordance with 
the linear Li 5- structures of Fig. 13a and with the literature [25]. 

We will investigate the stability of the anionic lithium clusters in Section 5. 
A relevant quantity is the dependence of the binding energy per atom on the 
number of atoms, as well as the electron affinity of neutral Li n clusters. From the 

latter, we evaluate whether these neutral clusters are able to receive an extra 
electron and to form an anionic system. ~ 

Q STUDY OF THE ELECTRONIC STRUCTURE OF NEUTRAL 
L I T H I U M  CLUSTERS 

Before starting an investigation of the stability of small anionic lithium clusters, 
it is necessary to study the conformations of lowest energy of the neutral Li 2, Li 3, 

Li 4 and Li 5 clusters using the VB approach. 
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4.1. The small neutral lithium clusters 
Several works about neutral and positively charged lithium clusters can be 

found in the literature (see, for instance, Refs. 10, 12, 27-29),  while there are not 
so many references for the anionic clusters. The main reason is that, for the 
anionic lithium clusters, experimental results are unusual and if they exist, they 
are related to the physical observables indirectly. 

Up to the Li 5 cluster, the most stable conformations are planar. Theoretical 

studies agree that the basic topologies of clusters such as L i ,  N a  and K n are 

identical (see Ref. 30). The geometries of the ground state of clusters up to Li 5, 

calculated with the [4s,2p] basis set (Table 3), are shown in Fig. 18. 

4.1.1. The Li2 cluster 

The ground state of the Li E cluster is well known: ~Z +. To describe it, we g 
need 3 structures, shown in Fig.19. The VB and MO energy values will be 
compared later, after discussing the properties of each neutral lithium cluster. 

It is necessary to use two VB orbitals to build the structure E~ and 4 orbitals 
for structures E2 and E3. In this latter case, a pair of orbitals is centered on each 
lithium atom. The VB wave function for the system, in its ground state, is 

7tvs=Ct(E,) +C2(E2 +E3) �9 

4.1.2. The Li 3 cluster 

The D3h conformation of the Li 3 cluster is affected by a Jahn-Teller 

deformation, producing a more stable C2v conformation of symmetry 2B2. The 
VB structures needed to describe the ground state are shown in Fig. 20. 

It is necessary to include at most 6 VB orbitals to form each pair of 
structures, with one pair of orbitals centered on each lithium atom. The VB 
wave function is 

7tvs=C,(E,- E2) + C 2 ( E 3  - E 4) -I- C3(E 5 - g 6) + C 4 ( E 7 -  Es) + C s ( E  9 - E,o) 
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Li 2 Li 3 Li ,  Lis 

D~h C,., D~_h C,_, 

+ A~ -A I 

Fig.18. Equilibrium geometries of some small neutral lithium clusters. Their lowest energy 
states and symmetry groups are also shown. 

Li2 D~h 

(]round State: l T_,~" 

Stmcturess: Weights: 

0 - - 0  ~t t . ~  

-0 -  0 ~ 

0 "0"  ~ 
0,210 

Fig. 19. Minimum set of VB structures needed to describe the ground state ~Zg § of the Li2 
system. As for anionic clusters already shown, a line represents a covalent bond and two dots 
around the same centre represent two electrons with paired spins near the same atom, as in an 
ionic bond, but in this case occupying different orbitals. 

4.1.3. The Li4 cluster 

The mos t  stable conformat ion  of the Li 4 cluster is a rhombus  (Fig. 18). Its 

ground state is ~Ag D2h, which  can be seen as a J ahn -Te l l e r  distort ion of  the Dab 
conformat ion.  

The ma in  VB structures are shown in Fig.21, and the VB wave  funct ion is 

~'r + E2) + C 2 ( E  3 -a t- E4) + C 3 ( E  5 -~- E 6 -a t- E 7 -~- E8) -+- C 4 ( E  9 -~- Elo ) 

+Cs(E~ + E12 + El3 + E~4) + C6(E15 + E~6 + E17 + E18) �9 
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Li 3 C~_, 
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Ground State: "B2 
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Fig. 20. Minimum set of VB structures needed to describe the ground state 2B2 of the Li3 
system. 
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Fig. 21. Minimum set of VB structures needed to describe the ground state 'Ag of the D2h Li4 
cluster. 
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We showed, in the last section, that Pauling's structures get  more relevant as 
the size of the anionic clusters increases, being the most important for clusters 
with more than four atoms. For instance, in the case of the neutral Li 4, the 

Pauling's structures E3 and E4 (Fig. 21) have large weights (0.774). The 
symmetric ionic structures Ell, El2, El3 and El4 also have considerable weights 
(0.299). The other structures, E9, E~0 and E~5 to EI8, are not so relevant for the 
ground state conformation, although they should be considered in order to give 
us a complete representation of the system. 

Let us describe briefly how to select the VB orbitals to be used in the 
structures of Fig.21. First of all, we have 18 structures grouped in 6 sets. The 
structures in each set are related by symmetry and, therefore, share the same 
weight. For each set, we perform a separate VB calculation with orbital 
optimization (the brute force energy minimization we mentioned before). In Fig. 
22, each arrow represents a possible direction in which the orbitals are pointing. 
We have 4 valence electrons that should be arranged in those orbitals. Structures 
E~ and E2 are represented as (1-7 4-10),  which means that we have a bond of a 
particular type between electrons in orbitals 1 and 7 and another one between 
electrons in orbitals 4 and 10, and similarly for (2-9 3-8).  For this set we 
construct 8 orbitals. For structures E3 and E4, represented as (1-7 2-9)  and (3-8 
4-10),  we have also 8 orbitals. The ionic structures Ell to E~4 are represented as 
(2-9 7-8),  (4-10 7-8),  (1-7 9-10)  and (3-8 9-10),  respectively, and again we 
have 8 orbitals. The sets E9, E~0 and Ell to El4 have also 8 orbitals each. The 
exception is the set E5 to E8, structures (5-6 3-8),  (5-6  4-10),  (5-6  1-7) and 
(5-6  2-9).  

9 

10 

Fig. 22. Representation of the possible orientations of the VB orbitals that are used to describe 
the most stable conformation D2h of Li4 system. Observe that on top and bottom atoms are 
centered three orbitals, although at most 2 of them are used in the representation of structures 
in Fig. 21. 
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Table 5 
Binding energy per atom (Edn) for the neutral Li 4 cluster ("). 

Cluster HF co) CI (e) QCISD(d) VB (e) RVB (f) SCVB ~) Exp. co) Exp. (i) 

Dzh Li 4 4.30 12.77 1 3 . 4 3  10.94 7.75 9.10 14.75 19.60 

(a) Values in kcal/mol. (Edn=[nE:E,,]/n, where E, is the energy of the neutral cluster with n 
atoms, and E~ is-7.43121 a.u.). 
(b) HF values calculated using the [4s,2p] basis set (Table 3). 
(c) MRD-CI from Ref. 25. 
(d) QCISD values calculated using the [4s,2p] basis set (Table 3). 
(e) Our VB result calculated using the [4s,2p] basis set (Table 3). 
(f) Best VB result from Ref. 10. 
(g) Single-configuration SCVB from Ref. 28. 
(h) Experimental value from Ref. 31. (i) Experimental value from Ref. 32. 

This last set requires 10 orbitals, as is clearly seen. In the end, we have 50 VB 
orbitals. Now we "rebuild" the VB wave function and diagonalize the CI 
problem, producing the weights shown in Fig.21. This procedure should be 
repeated for each geometry of the cluster. 

In Table 5, we compare our results with the literature through the binding 
energy per atom. 

It is important to note (Table 5) that even the experimental values [30,31] 
show discrepancies between them, and that among the VB approaches, ours is 
the one which describes the system best. 

4.1.4. The Li 5 cluster 

The most stable geometry of Li 5 is shown in Fig.18, corresponding to the 

ground state (2A,). Indeed this shape is similar to that of C2v Li 5- (Fig.5), and the 

choice of orbitals is also similar to that employed for that cluster. The VB 
structures used to describe this system are shown in Fig.23, and the VB wave 
function is 

~vB=CI(E, + E2) + C2(E3) -F C3(E 4 -I- E 5) -F C4(E 6 -F E7) + Cs(Es + E9) 
+C6(E,o + E,,) + C7(En + E,3) + C8(E,4 + E,5) + C9(E16 + E17) 
+C,o(el~+e, , )+c, , (e~o+e~,)  . 
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Fig.23. Minimum set of structures that describes the Cev Li5 cluster at its most stable 
geometry. 

From the structures shown in Fig. 23, we optimized the orbitals for the 
three symmetric pairs of highest weight and for structure E3, with is also very 
important. The other structures participate in the VB-CI ,  but without proper 
optimized orbitals. We realized later that it affected undesirably the VB results 
for this cluster, as we will see soon. 

The total energies are given in Table 6 and the VB charge densities for the 
neutral clusters are shown in Fig. 24. 
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Table 6 
Energy of small neutral lithium clusters (a.u.) 

Cluster State EnF(a) EvB(b) EQCISD(C) 

Dooh Li2 leg+ -14.86789 -14.88479 -14.89355 

C2v Li3 2B 2 -22.30920 -22.32465 -22.33895 

D2h Li4 lAg -29.75221 -29.79458 -29.81043 

C2~ Li5 EAt -37.21148 -37.24040 --37.26734 

(a) HF energy calculated using the [4s,2p] basis set of Table 3. 
(b) VB energy calculated using the [4s,2p] basis set of Table 3. 
(c) QCISD energy calculated using the [4s,2p] basis set of Table 3. 

Density- Li2 Density- Li a ~ v  
. . . . . . . . .  , . . . . . . . . .  , . . . . . . . . .  , . . . . . . . . .  , . . . . . . . . .  . 

Dcmity-  Li 4 ! ~  
. . . . . . . .  , . . . . . . . . .  , . . . . .  . . . .  i , , . '  . . . . . .  , . . . . . . . .  

Q 

Density - Li s C2v 
�9 . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  | . . . . . . . . .  | . . . . . . . .  

Fig.24. Charge densities of the LiE, CEv Li3, D2h Li4 and CEv Li5 clusters. 

5. STUDY O F  T H E  S T A B I L I T Y  OF L I T H I U M  C L U S T E R S  

5.1. Binding energy per atom 
Due to the lack of experimental results, quantities like the dependence of the 

binding energy per atom with the number of atoms are useful for giving us 
hints as to the quality of our VB results. Let us study the anionic and neutral 
clusters separately. 
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5.1.1. Anionic clusters 
The function Eb-/n is defined as: 

Eb-/n = [E l- + ( n - l )  E 1 - E - ]  / n 

where E -  is the energy of the anionic cluster with n atoms (Table 4). The value 

of E 1 calculated with the [4s,2p] basis set (Table 3) i s - 7 . 4 3 1 2 1  a.u.. E , - i s  

calculated as El-(VB) = -7 .43469  a.u., and E,- (QCISD) = -7 .44673  a.u.. The 

results are reported in Table 7. 
The VB values of Table 7 show a trend that agrees with the QCISD results 

and with the literature [25]: they increase regularly without significant even/odd 
alternations, as the nuclearity increases. In fact, with the lack of experimental  
results, these results indicate the stability of these clusters. 

5.1.2. Neutral clusters 

The function Eb/n is defined as: 

EJn = [nE, - E ] / n  

where E is the energy of the neutral cluster with n atoms (Table 6). The results 

are reported in Table 8. According to that Table, both the experiment and the 
theory confirm the stability of these small neutral clusters. Except for the C2v Li 5 

cluster, the trend of our VB results agrees with the other CI and SCVB values. 
The discrepancy of the binding energy per atom of the C2~ Li 5 cluster is a 

consequence of the poor basis of VB orbitals used in the calculation. It stresses 
the importance of the proper choice and optimization of orbitals. It is certainly 
the most difficult part of our methodology, but it is rarely a problem for the 
smaller systems. 

Table 7 
Binding energy per atom Eb-/n (kcal/mol) of the small anionic lithium clusters. 

Cluster State E HF(a) E vac~ g QCISD(c) g CI-Dav(d) 

Li 2- D=h zE § 8.06 7.17 8.97 9.77 
t l  

Li 3- D~h 11~ § 7.05 11.49 14.48 16.02 g 
Li4- D= h 2]~ § 10.99 11.68 14.60 16.14 

g 

Li 5- Czv 1 A1 7.21 12.17 15.71 16.96 

(a) Calculated using the HF energy (Table 4) and the [4s,2p] basis set of Table 3. 
(b) Calculated using the VB energy (Table 4) and the [4s,2p] basis set of Table 3. 
(c) Calculated using the QCISD energy (Table 4) and the [4s,2p] basis set of Table 3. 
(d) MRD-CI result from Ref. 25. 
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Table 8 
Binding energy per atom Edn (kcal/mol) of the small neutral lithium clusters. 

Cluster E HF(a) E VBco) E QCISD(c) U I-Day(d) E SCvB(e) Exp. (~ Exp. ~) 

Li z D..h 1.72 7.02 9.77 8.66 12.68 12.45 

Li 3 C2v 3.26 6.49 9.48 8.01 3.84 13.84 11.53 

Li 4 D2h 4.30 10.94 13.43 12.77 9.10 19.60 14.75 

Li 5 C2v 6.96 10.59 13.97 13.78 9.74 22.14 (h) 

(a) HF energies calculated using the [4s,2p] basis set (Table 3). 
(b) VB energies calculated using the [4s,2p] basis set (Table 3). 
(c) QCISD energies calculated using the [4s,2p] basis set (Table 3). 
(d) MRD-CI with Davidson corrections of Ref. 25. 
(e) Single-configuration SCVB from Ref. 28. 
(f) Experimental result from Ref. 31. 
(g) Experimental result from Ref. 32. 
(h) It reports a 3-D structure as the most stable one, instead of that of symmetry C2v. 

5.2. Electron affinities 
Values of electron affinities of the neutral clusters are also an indication of 

the stability of the corresponding anionic clusters. In fact, it is important  to check 
if the neutral system is able to attach an extra electron to form a stable species. 
The adiabatic electron affinity is given by the difference between the energy of 
the neutral system L i ,  at its most  stable geometry,  and of the anionic Li n- 

cluster, also at its most  stable conformation. In general, a greater electron 
affinity implies a lower tendency of the atom to accept an extra electron. In 
Table 9, experimental  results of the electron affinities of some neutral clusters 
are shown, as well as ab initio results. All of the results confirm the stability of 
the anionic li thium species. 

Table 9 
Adiabatic electron affinities (EAa) (kcal/mol) of the small neutral lithium clusters. 

Cluster VB (a) HF co) QCISD (c) MRD-CI (d) Exp. (e) 

Li 2 D=h 2.48 7.71 8.14 2.47 

Li 3 C2v 17.19 6.39 24.73 22.43 

Li 4 D2h 5.11 21.79 14.41 12.04 

Li 5 C2v 10.23 3.73 18.47 14.75 

10.15 

23.17 

(a) Calculated with VB energies (Tables 4 and 6) and using the [4s,2p] basis set of Table 3. 
(b) Calculated with HF energies (Tables 4 and 6) and using the [4s,2p] basis set of Table 3. 
(c) Calculated with QCISD energies (Tables 4 and 6) and using the [4s,2p] basis of Table 3. 
(d) Results of Ref. 25. 
(e) Experimental results of Ref. 29. 
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6. C O N C L U S I O N  

Following Pauling, we have admitted extra orbitals on monovalent atoms 
involved in molecular systems with some metallic character or very delocalized 
bonds. In conjunction with a spin-free valence bond formalism, these extra 
orbitals have allowed us to devise new kinds of VB structures, the Pauling's 
structures, as we call them. These structures permit the monovalent atoms to 
form two covalent bonds simultaneously, as a consequence of electron transfer 
from neighbors and, thus, give information about delocalization of charge in the 
system, that is not directly inferred from the usual Kekul6 or ionic structures. 
Therefore, the Pauling's structures complement the VB description of molecular 
systems. 

In the case of the hydrogen cluster, we have obtained, through the Pauling's 
structures, a description of the metallization of the system under pressure, that is 
completely consistent with other sophisticated ab initio calculations and with 
experiments. 

For the lithium clusters, we have seen that the Pauling's structures can have 
the highest weights in the VB wave function, e.g. the C2v Li 4- and C2v Li 5- 

clusters. The structures are certainly very important when three-body bonds are 
present. According to our results, a VB description of the anionic or neutral 
lithium clusters without the Pauling's structures would be incomplete or would 
result in a less compact wave function. 

In the methodology we have developed, the "orbital optimization" can be a 
source of grief, as is obvious in our results for the neutral Li 5 cluster, but it is 

rarely a problem for smaller systems. Therefore, this is a point that deserves 
additional attention in the future. 

Financial support by FAPEMIG and a post-doctoral fellowship by FAPESP 
(Brazilian agencies) are acknowledged. 
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Chapter 14 
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reactions in solution 
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In the last few years, the polarizable continuum model for the study 
of solvation has been extended to consider multideterminantal wavefunc- 
tions. Such novel techniques allow the study of the most important sol- 
vent effects on chemical reactions. In this context, the valence bond the- 
ory provides a way to analyze such effects through the transcription of 
the, generally, complicated multiconfigurational wavefunctions into sums 
of few selected classical structures, which are, in fact, more useful to un- 
derstand the electron distribution rearrangement along a reaction path. 
In this chapter, the valence bond analysis of CASSCF wavefunctions cal- 
culated for chemical reactions in solution is discussed in details. By way of 
example, the results for some basic chemical processes are also reported. 

1. I N T R O D U C T I O N  

After Valence Bond (VB) theory was formulated for the first time [1, 
2, 3], the meaning of chemical bonding [4] became rapidly simple and 
comprehensive to all chemists. The result has been the development of a 
key mode of interpretation which is still a solid basis for the explanation 
of a great variety of chemical reactions, namely the processes for which 
bonds can break or form allowing the matter, regarded as an assembly of 
molecules, to change. The great advantage of such a mechanistic approach 
is that, regardless of an enormous quantity of known data on chemical 
reactions, everything can be handled in terms of a relatively small number 
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of guidelines [5]. 
The aim of this chapter is to illustrate some of the most important sol- 

vent effects on a reaction path, for a chemical reaction in solution, from 
a typical VB point of view. The reaction path is a walk representing the 
variation of the geometrical configuration of reactants in the transforma- 
tion to products; the position of the system on this walk is given by a 
parameter called the reaction coordinate and the path chosen by the sys- 
tem is the most energetically convenient. A plot of the free energy against 
the reaction coordinate is the basic diagram that experimentalists would 
like to know in order to define, for example, a strategy for the synthesis 
of products of chemical interest. From a computational point of view, 
the above plot can be obtained by analyzing a portion of the potential 
energy surface (PES), namely the surface representing the dependence of 
the electronic energy on nuclear positions. The knowledge of the PES al- 
lows the determination of both the minimal energy path and the nuclear 
vibrational contribution to the free energy along the path itself. In this 
chapter the latter contribution will not be considered because it is less 
important for a VB analysis of a reaction mechanism. 

The accurate calculation of the electronic energy requires the aver- 
aging of the Hamiltonian onto a good approximation of the electronic 
wavefunction; it is well known that far from the equilibrium geometry 
the PES depends strongly on the quality of the wavefunction itself. 
The simplest method, namely the Hartree-Fock method, which describes 
the wavefunction in terms of a single Slater determinant within a mean 
field theory, although is used for many practical purposes, especially in 
large molecular systems, cannot be applied in principle for PES evalua- 
tion. Woodward and Hoffmann [6] have shown that the presence of a high 
free energy barrier along a reaction path is evidence of strong changes in 
the wavefunction when the system overcomes the barrier. Although these 
authors focused their attention on orbital symmetries, it is a general fact 
that such strong changes cannot be described within a one determinantal 
approximation and then, to correctly reproduce the curvature of a PES, 
one has to resort to a multiconfiguration method. 
The more interesting opportunities for interpreting a chemical process 
come out at this point. A multiconfigurational wavefunction can be de- 
composed into a sum of contributions with which to describe the main 
variations when the nuclear geometry changes. Each individual term 
could describe reactants, intermediates or products, and commonly the 
energy surface for each of them turns out to be much simpler. The plot 
of all these energies against the reaction coordinate is a kind of correla- 
tion diagram; in Figure 1 a typical plot is shown. In this example the 
wavefunction is decomposed into three contributions according to 

~I/ - -  Cl ~I/1 + C2~I/2 "~- C3~I/3 (1) 
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where r C2 and c3 depend on the reaction coordinate. The energies Ej 
are given by 

%1H1% >, (2) 

with [ /be ing  the electronic Hamiltonian. 
Looking at Figure 1 it is clear that the reactants, in order to evolve to- 
wards the products of the reaction, must overcome two barriers passing 
through a minimum, at which is located an intermediate, in this case 
described by ~2. This simple diagram shows clearly how the presence of 
crossings between the energy curves Ej (diabatics) of the partial contri- 
butions �9 j leads to the appearance of maxima in the expectation value of 
the Hamiltonian and, consequently, to barriers along the reaction path. It 
is important to remark that these maxima are saddle points with respect 
to full variations of nuclear positions while minima are true minima. 

1 0 0  - 

5 0 -  

O _ 

E 
1 

E 2 

- 5 0  ' ' ' ' I ' ' ' ' I 

0.0 0.5 1.0 
Reaction coordinate 

Figure  1. Generic energy diagram for a reaction which involves the formation 
of an intermediate. The dashed curve corresponds to the expectation value of 

the Hamiltonian for the electronic wavefunction ty. 
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Very often, as in the case of the Woodward-Hoffmann rules, the crossing 
between the diabatic curves can be predicted without resorting to com- 
plicated calculations. A simple and interesting review on VB correlation 
diagrams has been recently given by Shaik and Shurki [7] (see also other 
useful Chapters in this volume). 

Another type of diagram, often used in combination with the energy 
diagram, is the plot of the weights of partial contributions ~j  against the 
reaction coordinate. The definition of a weight is not unique; the one 
most commonly used is the following 

w~ - ~ + Z ~j~ < % 1 ~  > (3) 
kCj 

where Wj is the weight of the term ~j assuming that the ~j and �9 are 
all normalized. The sum of all Wj is thus equal to unity. A good choice 
of ~j leads to positive weights but it is important to remark that this is 
not guaranteed by Eq. (3) when the functions ~j  are not orthogonal. 

1.0 

~0 0.5 
�9 

�89 

0.0 ~ , - - - - ~  
0.0 0.5 1.0 

Reaction coordinate 

Figure 2. Generic weight diagram for a reaction which involves the formation 
of an intermediate. 
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Referring again to the example of Fig. 1, the plot of weights W1-3 against 
the reaction coordinate is shown in Figure 2. 
This diagram shows in a clear cut way how the wavefunction changes 
along the reaction coordinate: it starts from the reactancts' wavefunction 
~1, then moves towards the products' wavefunction ~3, passing through 
an intermediate represented by a function which results from the reso- 
nance of all the contributions, but with a predominance of ~2. 
Having recalled these few basic concepts, which are important in a VB 
analysis of a reaction mechanism when the contributions ~j  to the wave- 
function are classical VB structures, we can now move our attention to 
the solvent. 

The solvent effects are essentially of two types: physical, when they 
allow the reactants to show a different behaviour with respect to the gas 
phase, and chemical, when the solvent itself participates in the reaction. 
Moreover, it is generally observed, for reactions in the condensed phase 
that the conversion rate constants are better described by transition state 
theory than for reactions in the gas phase [8], a consideration that enforces 
the importance of determining energy diagrams like that  of Figure 1 by 
quantum theory calculations. 
The physical effects are always present: they are in fact the effects of 
a condensed state environment, and are the more complicated to study. 
The main difficulty arises from the dynamical response of the solvent in 
the presence of a molecular system which is transforming under a chemical 
reaction. Actually, no one has so far developed a general method that 
can treat in detail this difficult aspect, but the literature is dense with 
contributions which try to study the solvent dynamics (see for example 
Reference [9]). 
In the present chapter, the solvent will be considered always at equilib- 
rium with the reacting system. 

2. S O L V E N T  E F F E C T  

One of the first attempts to introduce the solvent effect in a VB analysis 
for the comprehension of a chemical reaction in solution has been given by 
Warshel and Weiss [10]. These authors introduced the Empirical Valence 
Bond method (EVB) for the modeling of proton transfer processes in 
enzymatic reactions in aqueous environment. 
The EVB method is a semiempirical method based on the construction 
of the wavefunction by solving a secular problem in which the Hamilto- 
nian matrix elements are written in terms of empirical parameters. In 
order to obtain these parameters, the reaction is first studied in the gas 
phase with the most convenient method, ab initio when possible, and 
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then the energy along the reaction path is reproduced by diagonalization 
of an effective Hamiltonian built on a basis of well selected VB classical 
structures as diabatic functions. This effective Hamiltonian contains pa- 
rameters which allow the correct reproduction of bond dissociation energy 
curves. When the solvent is included, the diagonal effective Hamiltonian 
matrix elements are modified in order to consider the solvent electrostatic 
polarization in such a way that the stronger is the ionic character of a VB 
structure, the larger is the correction to the relevant diagonal Hamilto- 
nian matrix element. In the EVB method, the contribution of solvation 
to the off diagonal elements is instead neglected. 

Later, in 1990, Kim and Heynes [11] investigated the role of solvent po- 
larization in fast electron transfer processes and pointed out that, when 
the solvent is instantaneously equilibrated to the quantum charge distri- 
bution of the solute, the Hamiltonian itself is a functional of the wave- 
function, giving a non-linear SchrSdinger equation. The resulting solvent 
contribution to the Hamiltonian matrix on the diabatic basis thus cannot 
be simply described as in the former EVB method. 
Nowadays the solvent effect is introduced in multiconfiguration quantum 
calculations in two ways: (i) directly from Monte Carlo or molecular 
dynamics simulations [12] or (ii) by means of the dielectric model [11, 13]. 
In the first method, the solvent is represented by a system of point charges 
that can interact with the solute as in a standard simulation. The main 
problem arises by the formal requirement to solve a SchrSdinger equation 
every time that a solvent configuration is generated. This fact limits 
enormously the range of applicability of the method to small reacting 
systems and to small basis sets. Very recently Mo and Gao [12] studied 
in this way a prototype proton transfer reaction in water by using a mixed 
Molecular Orbital Valence Bond (MOVB) methodology for the solute and 
Monte Carlo simulation for the solvent. Some discussion on this study 
will be given in Section 4. 
The methodology that uses the dielectric model is instead the simpler 
and in principle the more suitable for the study of chemical reactions 
involving large molecular systems. In 1998, Amovilli et al [13] developed 
a computer code in which the solvent reaction field, including all the 
basic solute-solvent interactions, has been considered for Complete Active 
Space Self Consistent Field (CASSCF) calculations. 
Following this method, the electronic wavefunction is obtained by mini- 
mizing self-consistently the free energy functional 

a n  
N 1 N 

< + E + E > 
i - - 1  i-----1 

1 n u c l e i  _~ 

(4) 
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where [-Ivac is the free molecule Hamiltonian, ~ and ~ are the contribu- 
tions to the effective potential due to the solvent and acting on the solute 
electrons, and the term outside the brackets represents the contribution 
to the free energy given by the interaction between the solute nuclei and 
the polarized solvent. Here V0 does not change during approach to self- 
consistency while V1 is determined by 9n-1, the function calculated at 
iteration n -  1. At convergence, 9n and 9n-1 must be the same. 
Adopting the usual decomposition of the solute-solvent interaction energy, 
V0 contains contributions arising from repulsion and dispersion while V1 
contains those from polarization and dispersion. In terms of a given basis 
set {Xr} the matrix elements of each of these contributions are defined as 
follows: 

~d 
= 2 E{rsltu}s-l t (6) 

s t  

E{rsltu}P t (7) = 2 

- f (8) 

in which 

_ 1 /s Ers(~da (9) (~) 
rs 47r (o) 

1 
{rsltu} - -2/s(c) da [Vrs(~Etu(~ + Vtu(~Ers(~] (10) 

(11) V~(~ - / s ( c )  dal 

where P is the solute electron density matrix, S is the overlap matrix, and 
Vrs and Ers are, respectively, the potential and the outward component 
of the field due to the distribution XrXs. a is the apparent surface charge 
density induced by the charge distribution of the solute on the surface of 
the cavity and depends on the dielectric constant of the solvent. It should 
be noted that in this polarizable continuum model (PCM), the solute is 
embedded in a cavity of a dielectric medium which is defined in terms of 
interlocking spheres centered on the solute nuclei. The integrals (9), (10) 
and (11) are surface integrals defined over the surface of this cavity [14] 
and they are computed by exploiting a partitioning of the surface itself 
in terms of tesserae. 
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For ~r and ~d, in atomic units, the expressions are [15] 

B 
rival ~ - 0.063 p .  ~ (12) 

eCd -- 0.036 (r/~ -- 1) (13) 
WA + 

where PB is the density of the solvent relative to the density of water at 
298 K, nva zB and MB are the number of valence electrons and the molecular 
weight of the solvent, yB and Is are the refractive index and the ionization 
potential of the solvent, and finally WA is a suitable average transition 
energy for the solute. 
To the quantum mechanical contribution to the solvation free energy (4) 
it is also necessary to add the work required to create the cavity in which 
the solute is placed; this quantity, namely the cavitation free energy, is 
calculated with the Pierotti-Claverie formula [16, 17]. 
All the details on the PCM, here only summarized, can be found in the 
source papers (see Refs. [13, 14, 15]). 
The CASSCF wavefunction obtained by minimization of G in Eq. (4) 
can be transcribed, in the spirit of Eq. (1), in terms of diabatic contri- 
butions, resorting to a given set of VB structures. A standard spin-free 
VB calculation (see for example [18]) can be performed in the space of 
the previous active orbitals, freezing the MCSCF core. The localization 
of the active orbitals can also be enhanced by a VB calculation with a 
restricted set of structures. It is important to remark that in this process 
the valence orbitals lose their orthogonality and the minimal energy of a 
wavefunction expanded in terms of the selected VB structures is reached. 
The VB structures must be selected in order to have the best pairing of 
electrons. The quality of this choice can easily be tested by calculating 
the percentage of the CASSCF correlation energy recovered, where 100 % 
corresponds to the CASSCF result. 
Actually the transcription of a MCSCF function into a VB formalism, 
instead of a direct optimization of a VB function, is preferable in order to 
exploit the capabilities of the standard packages for ab initio calculations 
which, in fact, work with orthogonal orbitals [19]. 
In the next few sections, the role of the solvent in a reaction mecha- 
nism is shown by analyzing, from a VB point of view, the electron cloud 
rearrangement in some basic chemical processes. 
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Q T W O  E L E C T R O N -  T W O  C E N T R E  B O N D  
B R E A K I N G  

The simplest chemical process is the breaking of a bond between two 
atoms involving two electrons. In this dissociation there is a competition 
between the homolytic fission, in which each atom maintains one electron, 
and the heterolytic fission, in which one of the atoms retains the electrons. 
This competition is very sensitive to the polarization of the environment 
because in the heterolytic dissociation there is a separation of charges. 
In order to focus the problem let us take two atoms, A and B, initially 
bonded through a classical resonance scheme involving three structures 
written in terms of two hybrids, XA and XB, located on different atoms. 
Denoting all electrons not involved in the bond as 'core' the wavefunction 
can be well approximated by 

- -  Cl ~ c o v  -~- C21~ion ~- 53 ~t" (14) 

with 

~cov -- K lZ~(core )XA(~I ) )CB(~2)[o l (~I )~(~2)  -- ~(01)0/(02)] (15) 

ffgion -- K22~ ( c o r e ) x A  (r'1)XA (r'2) [oz((r1)~ (cr2) -- ~(Ol)OZ(ff2)] (16) 

- - 

where the Kj denote suitable normalization constants, .A the full anti- 
symmetrizer and a and fl the usual one electron spin functions. The first 
of the three functions in the Equations (15-17) is normally referred as 
a covalent structure while the other two are ionic structures; they are 
perfectly analogous to those given in the Heitler-London treatment of the 
H2 molecule [1]. 
Although a single covalent structure written in terms of new hybrids 
obtained by mixing XA and XB could reproduce the wavefunction �9 of 
EQ. (14), as Coulson and Fischer did in their H2 VB study [20], in this 
Section the role of each contribution will be examined separately in order 
to analyze the solvent effect. 

3.1 D i s s o c i a t i o n  of  LiF 

The first illustrative example is the dissociation of LiF. It is well known 
that alkali halides are compounds with strong ionic character and that 
they dissociate as neutral atoms in vacuo but as a pair of ions in aqueous 
solution. By means of the model shown in the previous Section, this effect 
can be observed quantitatively. In the example the LiF has been studied 
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both in  v a c u o  and in the dielectric medium at a CASSCF level distribut- 
ing two active electrons in two valence orbitals and using a good even 
tempered basis set. The VB transcription has been performed localizing 
the two active valence orbitals on the separate atoms. In this particular 
case, one of the two ionic structures does not contribute to the wavefunc- 
tion because the situation in which the lithium is negatively charged and 
the fluorine is positively charged is energetically too unfavourable. 
In Figure 3 the plot of the diabatic energies referring to the two main 
VB structures is shown against the LiF interatomic distance. It is quite 
evident looking at this diagram that  at the equilibrium geometry 
( d L i F  - -  1.7A), both in  v a c u o  and in solution, that  the molecule is charac- 
terized by essentially an ionic description: ~ion dominates in the expres- 
sion for ~,  while, at dissociation in  vacuo ,  the molecule gives two neutral 
atoms, because in this case the wavefunction is represented by ~cov. 
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Figure 3. Diabatic energy curves (hartree) for the dissociation of LiF in 
vacuo (solid line) and in aqueous solution (dashed line). The LiF distance is 
measured in .~. Curves A refer to the covalent structure and curves B to the 
ionic structure corresponding to Li+F -. 
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The solvent water instead allows the LiF to dissociate into Li + and F -  
compensating the energy required for the separation of opposite charges 
with the polarization interaction. 
It is important  to note at this point the quanti tat ive effect on the en- 
ergy surfaces of solute-solvent interactions. As already anticipated, the 
dominant effect is due to electrostatic polarization; in fact, in the range 
of distances of Fig. 3, the fluctuations of dispersion, repulsion and cav- 
itation contributions are respectively 0.3 kcal//mol, 1.1 kcal//mol and 0.9 
kcal/mol, which must be compared with 100 kcal//mol, the order of mag- 
nitude of variation of polarization in this case. 
Turning to the VB analysis, the behaviour of the wavefunction along 
the path to dissociation is more evident in Fig. 4, where the weights of 
VB structures, calculated as defined in Eq. (3), are plotted against the 
interatomic distance. The ionic contribution at equilibrium is more or 
less the same in the two cases, close to 90 percent, while it falls rapidly 
to zero i n  v a c u o  and it is enhanced in water as the distance increases. 
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Figure 4. Weight curves for the dissociation of LiF in vacuo (solid line) 
and in aqueous solution (dashed line). The LiF distance is measured in A. 
Curves A refer to the covalent structure and curves B to the ionic structure 
corresponding to Li+F -. 
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3.2 D i s s o c i a t i o n  of  t h e  C F  b o n d  in C H 3 F  

The second example of this Section shows instead an opposite be- 
haviour. In this example, the dissociation of the methyl fluoride (CH3F) 
CF bond in methanol (CH3OH) solution is illustrated. Similar reac- 
tions, namely the production of carbocations in polar solvents from alkyl 
halides, are important  in organic synthesis where very often they are 
favoured by the presence of a catalyst, normally a metal cation. Methanol 
is a polar solvent: the dielectric constant e is 32.6 at 298 K, about half of 
that  of water, but the ratio ( e -  1)/e is close to unity, showing a strong 
capability to polarize in a static external electric field. Nevertheless this 
dissociation is energetically unfavourable. 
The carbon-fluorine bond is a polar covalent bond in the sense that  it 
exhibits a not negligible ionic character. This polarity is reflected in the 
weight of the ionic VB structure, ~Iqo~(H3C+F-), which is calculated to 
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Figure 5. Energy curves (hartree) for CH3F dissociation i n  v a c u o  (solid line) 
and in methanol (filled circles) against the CF distance (/~). Curves A refer 
to the covalent structure, curves B to the ionic structure corresponding to 
H3C+F -, and curves AB to the adiabatic electronic wavefunction. 
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be 0.39 at the equilibrium geometry in free space. For this calculation, a 
s tandard 6-311G** basis set has been used. 
The energy curves are plotted in Fig. 5. For this case, the diabatic curve 
corresponding to the ionic structure is the higher at all the distances con- 
sidered. For this reason, the polarization of the solvent is less pronounced 
than for LiF because it depends on a wavefunction which is dominated 
by covalent character. 
The solvation contributions to the free energy functional of Eq. (4) cannot 
be distinguished on the scale of Fig. 5 for the lower two curves, which 
are respectively, the total free energy and the covalent structure diabatic 
curve. Instead in the region of the minimum of the upper curve, the 
solvent lowers the free energy by about 15 kcal/mol, but  this effect is 
not sufficient to product a particularly significant variation in the total 
wavefunction. 
In Table 1, the individual contributions to the total  free energy in sol- 
vent, for various CF interatomic distances, are presented according to the 
decomposition made in Ref. [15]. 
It is clear from Table 1 that,  for this example, the solvent does not change 
significantly the solute wavefunction. Looking first at the internal energy 
change, which is a measure of the change of the wavefunction in passing 
from vacuo to the solvent, being the change of the expectation value of 
the free solute Hamiltonian, one sees that  0.3 kcal/mol is a very small ef- 
fect and it is largely within the precision of the model. The main changes 
to solvation free energy due to the solute wavefunction, when the CF dis- 
tance increases, come from polarization and dispersion, but  their effects 
are restricted only to a small change in the value of the PES. 

The presence of a metal cation in close proximity of CH3F alters sig- 
nificantly the shape of the curves in Fig. 5 but it is important  to remark 
that  a metal cation is better solvated than a carbocation because of the 

Tab le  1 
Solvation free energies and their components (kcal/mol) for methyl fluoride 

in methanol at 298 K, calculated at various C-F interatomic distances (/~). 
C-F 
distance 
1.20 
1.35 
1.50 
1.70 
2.00 
2.20 
2.50 
3.00 

components 
iec* polarization repulsion dispersion cavitation 
0.0 -1.1 1.1 -5.2 5.3 
0.1 -2.4 1.1 ~.3 5.4 
0.1 -3.8 1.1 -5.5 5.6 
0.2 -5.5 1.1 -5.8 5.8 
0.3 -6.2 1.1 -6.5 6.0 
0.2 -5.1 1.2 -7.2 6.2 
0.1 -2.5 1.3 -8.6 6.5 
0.0 -1.0 1.4 -9.6 6.9 

total 
0.1 

-1.1 
-2.5 
-4.2 
-5.3 
-4.7 
-3.2 
-2.3 

*iec- internal energy change 
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smaller radius. This fact could render useless the metal ion for catalysis 
in solution, because in this case the exchange of F -  ion between CH3F 
and the metal remains energetically unfavourable. A different situation is 
offered by transition metal complexes, which instead can play a different 
role owing to their larger size. 

@ F O U R  E L E C T R O N -  T H R E E  C E N T R E  
R E A R R A N G E M E N T S  

Reactions involving four electrons and three centres can include the 
formation of a chemical bond at the expenses of another bond which is 
consequently broken. A large variety of reactions can be explained by 
such a mechanism, by way of example attention here will be focused on 
bimolecular nucleophilic substitutions (SN2) and proton transfers. Typi- 
cally a four electron- three centre unit AXB, in which the central atom 
X could be a hydrogen or a carbon atom, is mainly described by the 
resonance of the following three classical VB structures 

A: X - B  , A + - X  "B- , A" X + :B- (18) 

to which, according to the notation given in the previous section, one can 
associate the three functions 

~ 1  - -  K I A ( c o r e ) X A X A X X X B [ a f l  - flo~][o~fl- flo~] , (19) 

qd2 -- K 2 A ( c o r e ) x A X x X s X s [ a f l -  ~a][a/~ - ~a] (20) 
and 

~3 - K 3 A ( c o r e ) X A X A X B X B [ a ~  - - /~ a] [a /~ -  ~a] ,  (21) 

now written in terms of three hybrids located on A, X and B. Of course, 
for four electrons displaced in three orbitals, three other structures can 
be generated, but those given above remain the most important. 
One of the problems in studying a PES by using multiconfiguration 
methodologies comes from the balance of correlation energy for all the 
nuclear configurations considered. Clearly, an unbalanced PES, could 
lead to wrong estimates of barrier heights and reaction energies. In prin- 
ciple it should be better to allow single occupancies of orbitals in the 
active space because electrons tend to repel each others. Therefore the 
above proposal, for the study of a reaction involving a four electron- 
three centre rearrangement, could be improved by a CASSCF calculation 
distributing the four active electrons in four orbitals. The studies of the 
zr system of 1,3-dipolar molecules using the increased valence structures 
[21] and the spin coupled valence bond (SCVB) approach [22] meet the 
latter consideration. 
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4.1 M e n s h u t k i n  react ion be tween  NH3 and CH3CI 

Recently Amovilli et al [13] studied the Menshutkin reaction (MR) in 
aqueous solution using a similar approach. 
The MR is in a special SN2 reaction where the reactants are neutral, as 
opposed to most usual SN2 reactions where one of the reactants is charged. 
Thus, while along the reaction coordinate of usual SN2 reactions there is a 
charge migration, in MRs there is a creation of two ions of opposite sign, 
followed by their separation. In gas phase, this reaction is an extremely 
unfavorable process due to Coulombic interactions, with a huge energy 
barrier. As a matter of fact, MRs have never been reported in the gas 
phase. However, hydration very significantly reduces the energy barrier, 
and the reaction becomes largely exothermic. These experimentally ob- 
served solvent effects and also some other specific features of the MRs 
have been put forward in computational studies. 
In the present chapter a preliminar study, made on an approximate reac- 
tion path of the MR between ammonia and methyl chloride in aqueous 
solution, is reported. In this study a deeper VB analysis than that given 
in Ref. [13] by Amovilli et al is attempted. 
As in the earlier paper, because C3v symmetry is maintained for all the 
geometries studied, the active orbitals are taken to be of al type. The 
complete active space is then spanned by all the configurations arising 
by distributing four valence electrons in four orbitals. This choice is able 
to reproduce correctly, for reactants, a lone-pair and a diffuse orbital on 
nitrogen and a bonding and an anti-bonding orbital between carbon and 
chlorine; and, for products, a lone-pair and a diffuse orbital on chlorine 
and a bonding and an anti-bonding orbital between carbon and nitrogen. 
The calculations have been performed using a 6-311G** basis set. 
In Figure 6, the energy curves for the reaction in vacuo and in solution 
are plotted against the CC1 distance. 
The approximate reaction coordinate has been characterized by keeping 
the NC1 distance at the fixed value of 4.3 A and optimizing all other 
geometrical parameters. 
In Ref. [13] the CASSCF wavefunction was transcribed in terms of VB 
structures. The localization of the active orbitals was imposed by making 
a calculation with one perfect pairing structure. Comparing the energy 
of this calculation with that obtained using all 20 Weyl-Rumer configura- 
tions, corresponding to the full-CI limit of four electrons in four orbitals 
coupled to singlet as in the CASSCF, the authors recovered 99 % of 
the correlation energy. This was the most important result of their VB 
analysis because it shows that this MR may be formulated according to 
a mechanism in which one VB structure is used to describe the rear- 
rangement of the electronic distribution along the reaction path. With 
the notation used in this chapter, this perfect pairing structure can be 
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Figure 6. Energy curves (hartree) against the CC1 distance (A) for the reac- 
tion between ammonia and methyl chloride in vacuo (solid line) and in aqueous 
solution (dashed line). The NC1 distance is fixed at 4.3/~. 

wri t ten as 

- K A ( c o r e ) r 1 6 2 1 6 2 1 6 2  --  ~O/] [O/fl --  ~O~],  (22) 

where the final orbitals r were shown to be of the form 

r  - -  XN (23)  

r - a X c + b X~ 

r -- a' Xc + b' XC1 

(24) 

(25) 

' (26) r -- XCl 

where XN, XtN, XC, XtC, XCl, Xtcl, are six hybrids located on nitrogen, carbon 
and chlorine atoms, and where the coefficients a, b, a ~, b ~ play the role of 
bond polarization parameters  which change along the reaction coordinate. 
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Looking at the composition of these orbitals, the VB structure (22) is 
very similar to that involved in the Linnett-type non-paired spatial or- 
bital representation for a four electron, three-centre bonding unit [23], 
discussed by Harcourt in Ref. [24]. The only difference is related to the 
number of hybrids involved; in the Harcourt paper only three hybrids, 
one for each atom, are considered while here, owing to the use of an ex- 
tended basis set, the four localized orbitals in Eq. (22) derive from the 
six hybrids described above. 
The same scheme applies to the reaction in the gas phase, the main 
difference being the degree of the polarization of the orbitals r and r 
corresponding to the different location of the transition state. 
The great flexibility of the orbitals r makes it difficult to compare 
the present result with the weights obtained by Shaik et al [25] in their 
classical VB scheme. 
Turning to the expression of orbitals r and r it is of interest now to 
analyze the solvent effect on CN and CC1 bond polarization. Because of 
the simplicity of Equations (24) and (25), it is convenient to perform a 
Mulliken population analysis (see for example [26]) on the above orbitals 
at different CC1 distances in vacuo and in solution. In terms of contribu- 
tions coming only from r and r the Mulliken charges on nitrogen and 
chlorine turn out to be as follows 

qN -- b 2 + ab < XClX~N > 

! 
qcl - b '2 + a'b' < XclXcz > 

(27) 

(2s) 
Fig. 7 shows the behaviour of these charges with variation of the CC1 
distance. As was to be expected in going towards the products, namely 
CH3NH~" and Cl-, qN tends to a minimal value while qcl tends to unity. 
The effect of water, the solvent, results in a further enhancement of qcl 
and in a further reduction of qg with the increase of CC1 distance. This 
effect is completely due to the solvent polarization when the ionic prod- 
ucts begin to form. It is important to note that such small changes in the 
Mulliken charges (27) and (28) correspond instead to a strong change in 
the value of the energy along the reaction path (see Fig. 6). Repulsion 
and dispersion contributions to the solvation free energy do not have any 
visible effects on the solute wavefunction in this reaction. 
The apparently strange behaviour of qN, namely the presence of a mini- 
mum at the CC1 distance of 2.1 A, could be a sign of resonance of struc- 
tures involving diffuse orbitals on nitrogen, with the perfect pairing func- 
tion (22) being representative of a more complex CASSCF wavefunction, 
or it could be simply related to the quality of the basis set. As antici- 
pated, this is a preliminary result of work in progress: a full account will 
be published elsewhere in due course. 
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Figure 7. Mulliken charges on nitrogen (N) and chlorine (C1) derived from 
orbitals r and r (see text) against the CC1 distance for the reaction between 
ammonia and methyl chloride in  vacuo  (solid line) and in aqueous solution 
(dashed line). 

4.2 P r o t o n  t r a n s f e r  b e t w e e n  H20  and  [Fe l l (CO)4]-  

When the central atom X in structures (18) is a hydrogen, the reaction 
involved is a proton transfer (PT) process. This kind of reaction is very 
similar to SN2 reactions, the main difference being that  the proton is much 
smaller in size and mass than a CH3 group and thus a proton transfer can 
be influenced by quantum effects like tunneling. Nevertheless the PES 
can be calculated in the same way as in the previous MR case. 
Although, from a classical VB point of view, it is difficult to imagine a 
hypervalent hydrogen atom, from a computational point of view there 
are no difficulties in using a perfect pairing structure in which a hydrogen 
atom is simultaneously bonded to atoms A and B. This situation corre- 
sponds exactly to the interpretation of a CASSCF calculation, performed 
on a system in which a proton is exchanged, with an active space gener- 
ated by distributing four electrons in four orbitals as in the MR. Such a 
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description could be insufficient only in cases when the proton migration 
is coupled to electron transfer or more complicated bonds reorganization, 
a frequent situation in biological systems (see for example [27]). 
The effect of solvents on PT is complicated by the fact that usually the 
solvents which exhibit a strong activity are both proton donor and proton 
acceptor, like water, and thus can participate in the reactions. A model 
of proton transport in water which uses the EVB model has been recently 
published by Schmidt and Voth [28]. 

One of the first ab initio calculations on a PT in aqueous solution has 
been presented by Mo and Gao [12]. Those authors developed a mixed 
MOVB method to treat the solute and a Monte Carlo method for the 
solvent, the latter described by a system of point charges. In Ref. [12] 
they report a calculation on a PT reaction between the NH~- ion and NH3. 
It is important to remark that they used the classical VB scheme (18). 
Because reactants and products are the same species, the solvent effect 
is small, although a large percentage of the barrier height, which is low. 
The effect increases the activation energy by about 1 kcal/mol. Such a 
value cannot correspond to significant changes in the solute wavefunction, 
as shown in this chapter, and so it is not necessary to solve again the 
Schrhdinger equation for the reacting system every time that a solvent 
configuration is generated, like Mo and Gao did in their calculation. The 
large computational effort restricted them to a small and consequently 
poor basis set. 

The solvent effects on PT reactions begin to become important when 
reactants and products are solvated differently as in the example below 
involving iron complexes. 
The proton transfer reaction 

[Fell(CO)4]- + H20 -~ FeH2(CO)4 + OH- (29) 

is the slow step of the water gas shift reaction (WGSR), a key process 
for the production of hydrogen for the chemical industry, and catalyzed 
by Fe(CO)5 [29, 30]. The homogeneous catalysis by Fe(CO)5 allows the 
WGSR to be carried out at considerably lower temperatures, with water 
present as a liquid. Experimental data reported by Sunderlin and Squires 
[31] suggested that the above process (29), largely endothermic in the 
gas phase, is considerably less endothermic in aqueous solution owing 
to the strong solvation of the species OH- which is a smaller ion than 
[Fell(CO)4]-. 
The mechanism of the WGSR catalyzed by Fe(CO)5 in the gas phase has 
been analyzed in detail through a quantum mechanical study published by 
Torrent et al [32]. In that paper, the authors confirmed, for the catalytic 
cycle, the following scheme: 
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Fe(CO)5 + OH- -~ Fe(CO)aCOOH- 

Fe(CO)aCOOH- --+ Fell(CO)4 +CO2 

Fell(CO)4 + H20 --+ FeH2(CO)4 + OH- 
FeH2(CO)4 -+ H2 + Fe(CO)4 

Fe(CO)a + CO --+ Fe(CO)5. (30) 
The global process was found to be exothermic, while the step (29) was 
found to be endothermic, in good agreement with experiments. 
Most of the energy required to overcome the process (29) is provided by 
the initial formation of the ion Fe(CO)4COOH- from Fe(CO)5 and OH-, 
which is a highly exothermic process. 
In a very recent paper, Amovilli et al [33] analyzed the effect of water 
as solvent on the slow step (29) by means of the polarizable continuum 
model used for the MR. 
Their results confirmed a considerable lowering of the endothermicity al- 
though, for a final consideration about the energy balance on the WGSR, 
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Figure 8. Fell and HO distances (/~) againsts the reaction coordinate (A) for 
the proton transfer between H20 and [Fell(CO)4]-. 
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Figure 9. Energy (kcal/mol) profiles along the reaction coordinate (/~) in  
v a c u o  (solid line) and in aqueous solution (dashed line) for the proton transfer 
reaction between H20 and [FeH(CO)4]-. The horizontal lines correspond to 
the energies of the products at infinite separation. 

a complete PCM study of all the other processes of the scheme (30) will 
be necessary. 
In Ref. [33] a reaction coordinate has been defined by constraining the 
motion of the transferred hydrogen to a line connecting the oxygen of 
water to iron. In such a way, a two dimensional map of the energy, in 
terms of the distance of hydrogen from iron (Fell) and the distance of 
hydrogen from oxygen (HO), has been derived. Each position on the 
map corresponds to a geometry in which the above distances are fixed 
and all the other internal coordinates are optimized to the best energy. 
For simplicity in Fig. 8, the variation of the Fell and HO distances with 
the selected reaction coordinate is shown. Fig. 9 instead shows the energy 
curves for the transfer in the gas phase and in aqueous solution. Here, for 
a better  comparison, the two curves start  from the same point at which 
the energy is set to zero. 
All the computational details for this reaction can be found in the source 
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paper [33] while, in this chapter, the same more-refined VB analysis is 
presented as for the reaction between ammonia and methyl chloride de- 
scribed earlier. 
The same perfect pairing scheme used to study the previous MR applys 
also to this PT reaction. Now there is a hydrogen atom simultaneously 
bonded to iron and oxygen with different polarization depending on the 
reaction coordinate. If the orbital r is located on iron and orbital r on 
oxygen, then orbitals r and r show the following modifications: 

~2 ~ " )(,Re -+ aXFe '[  bXH -+ XH 

r " AXo q- XtH -+ a'xo q- b'X~H -+ Xo 

where the mixing coefficients are arranged to give the best overlap with 
the partner orbitals r and r in the perfect-pairing structure (22) for all 
geometries. 
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Figure 10. Mulliken charges on iron (Fe) and oxygen (O) derived from orbitals 
r and Ca (see text) against the reaction coordinate (/~) for the proton transfer 
reaction between H20 and [Fell(CO)4]- in the gas phase (solid line) and in 
aqueous solution (dashed line). 
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Performing a Mulliken population analysis on hybrids r and r the 
following charges on iron and oxygen are derived: 

qFe -- b 2 + ab < XHIX~Fe > (32) 

! 
qo --  bt2 + a~b ~ < XHIXO > �9 (33) 

A plot of these against the reaction coordinate is given in Fig. 10: it is 
evident that  the solvent, again through the polarization contribution to 
the solvation, 'anticipates' the transformation (31) of orbitals r and r 
in comparison with the gas phase behaviour. This effect is less pronounced 
than in the MR; it is important to remark that  in this PT process the 
solvent lowers the reaction energy by about 50 kcal/mol while in the MR 
this lowering is stronger. 

0 E L E M E N T A R Y  P R O C E S S E S  I N V O L V I N G  M O R E  
T H A N  F O U R  E L E C T R O N S  

An elementary process of a reaction is commonly described by chemists 
as a concerted mechanism in which the electron distribution rearrange- 
ment is schematically shown resorting to graphical symbols like points, 
lines and arrows. In chemistry it is difficult to find a concerted step 
which involves more than six or eight electrons although the six elec- 
trons rearrangements are very frequently encountered. In the previous 
sections some processes have been analyzed in order to show the effect of 
a solvent on VB structures and hybrids. It is clear now that  the solvent 
becomes important only when it can determine a strong variation of the 
reacting system free energy along the reaction path. At present, such 
strong variations are observed only when ionic products are formed start- 
ing from neutral reactants or when the ions involved change significantly 
their volume along the reaction walk. 
In order to study more complicated bond rearrangements, by using the 
same approach shown in previous sections, one needs to pay attention to 
the following two points: (i) the MCSCF calculation must be performed 
using an appropriate but limited active space and (ii) to elaborate a 
comprehensible and reliable analysis it is now very important to exploit 
the full flexibility of the VB methodologies. At this level in fact, with 
more than four active electrons, the complexity of the problem does not 
allow a simple description like that given in the cases discussed so far and 
proliferation of optimization parameters could lead to a difficult analysis. 
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5.1 Elec t rophi l ic  a t t a c h m e n t  of chlorine to e thy lene  

An illustrative example is the electrophilic attachment of chlorine to 
the carbon-carbon double bond of ethylene. 
It is well known that in polar solvents this attachment determines the 
formation of the chloronium ion intermediate starting from an initially 
neutral T-shaped intermolecular complex, while in the gas phase the same 
mechanism is unfavourable. It has been shown [34] that once the sol- 
vent polarization compensates the energy requested for the separation 
of opposite charges, a reaction path can be found which maintains the 
C2v symmetry of the T-shaped complex and which exhibits a low barrier. 
Thanks to such symmetry constraints, the Woodward-Hoffmann rules can 
be applied in order to define a reliable active space for the PCM-MCSCF 
calculation. Amovilli et al in Ref. [34] distributed six electrons in five se- 
lected orbitals. Their choice was sufficient to describe, for the reactants, 
the C-C 1r-bond and anti-bond, the C1-C1 a-bond and anti-bond and a 
p orbital on the approaching chlorine atom lying in the C2CI plane; and, 
for the intermediate, the two C-C1 bonds and anti-bonds of the ring and 
an axial p orbital on the detached chlorine atom. This CAS(6,5) falls into 
two limiting CAS(4,4) descriptions in the regions of the reactants and of 
the intermediate: the p orbital on the approaching C1 for the T-shape 
complex and the p orbital on the detached C1 when the chloronium ion 
is formed are doubly occupied in these two limits. 
After the CASSCF calculation with the above choice of orbitals, in order 
to perform an efficient VB analysis, it is better in this case to resort to 
an overcomplete non-orthogonal hybrid set. The five active orbitals, in 
fact, can be split into ten hybrids, in term of which the VB transcription 
of the wavefunction turns out to be the simplest and the most compact. 
Such kinds of overcomplete basis sets are commonly used in constructing 
the so called non-paired spatial orbital structures (NPSO, see for example 
[35]), but it should be remarked that their use is restricted to gradient 
methods of wavefunction optimization, such as steepest descent, because 
other methods, which need to invert the hessian matrix (like Newton-- 
Raphson) clearly have problems with singularities. 
Turning to the electrophilic attachment of chlorine to ethylene, Amovilli 
et el in [34] recovered between 93 and 99 % of the CAS(6,5) correlation 
energy using four structures and ten hybrids with the following classical 
coupling scheme 

l I / 1  - -  KlJ(core)r162162162162162 -/3c~][c~/3-/3c~] , (34) 

(35) 

(36) 
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Figure 11. Contour map of hybrids r used for the VB structure ~1 ob- 
tained by analyzing the CASSCF wavefunction at the transition state geometry 
for the electrophilic attachment of chlorine to ethylene in aqueous solution. 

~I/4 -- K4A(core)r162162162162162 - /~o l ]  [oL/~-/~0~] [0~/~ - /~o l ]  . (aT) 
The countour maps of the ten hybrids are shown in Figures 11 and 12 
at the transition state geometry, when resonance of reactant  and product 
structures is strong. It is evident, looking at the shape of orbitals r 
that  the configuration ~1 is able to describe the reactants very well, while 
the configurations 1I/2_ 4 a re  the most important  for the description of 
the chloronium ion intermediate; in particular ~2 represents a C2CI ring 
configuration, while in ~3 and ~4 the ring is opened with the consequent 
localization of the positive charge on one of the two carbon atoms. 
The orbitals plotted in Figures 11 and 12 are generalized hybrids: they 
are mainly defined on one atom but they show contributions also from 
neighbouring centres. 
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tained by analyzing the CASSCF wavefunction at the transition state geometry 
for the electrophilic attachment of chlorine to ethylene in aqueous solution. 

The localization of such hybrids comes from the combination of the CAS- 
SCF orbitals minimizing the energy for a wavefunction written in terms 
of structures ~1-4; the degree of polarization can thus be easily studied 
for all geometries through these kinds of plots. 
In Ref. [34], this attachment is discussed in detail along an optimized path 
obtained for reaction in aqueous solution; here, instead, a comparison 
with the reaction in gas phase will be presented. It is useful to recall that 
the ring structure has a maximum weight at a geometry close to that of 
the transition state, while ~3-4 increase monotonically, starting from zero 
at the T-shaped complex and arriving at a maximum when the chloronium 
ion intermediate is formed. The wavefunction of the intermediate is very 
well represented by the resonance of structures ~2, ~I/3 and ~4 with the 
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same weights. 
The reaction coordinate in Figures 13 and 14 refer to a portion of the 
path studied in [34], more precisely to that in which the C1-C1 distance 
(x) and the C-C bond midpoint C1 distance (y) vary according to 

X 

y 

1 
2.2+~A 

1 2.4 x/~A 

(38) 

where A is the present reaction coordinate and all distances are in/~. All 
other geometric parameters are optimized to the best energy after A is 
fixed. 
Figure 13 shows the energy diagrams calculated with the same basis set 
used in Ref. [34]. The plot [a] of the figure refers to adiabatic curves 
for reaction in  v a c u o  and in aqueous solution. As expected, owing to 
the separation of opposite charges, the process is unfavourable in the gas 
phase but can occur in water, where a modest barrier must be overcome. 
The plot [b] of the same Figure shows instead the diabatic curves obtained 
from structures ~1-4. The ionic structures ~I/2_ 4 in the total wavefunction 
determine a strong polarization of the solvent, which changes significantly 
the diabatic energy curves in going from the gas phase to the solution; 
curve 1 increases more rapidly with the reaction coordinate but curves 2, 
3 and 4 become much lower in energy. In this analysis, curves 3 and 4 
coincide because they refer to equivalent structures and do not correspond 
to curve III+IV of Ref. [34] which is given by 

EIII+IV -- < II/3 -}- II/4[/2/III/3 ~- II/4 > �9 (39) 
< ~3 + ~41~3 + ~4 > 

Finally, in Figure 14, the plot of the weights of reactancts and products 
against the reaction coordinate is shown. The weight of products, shown 
as the curve (2 + 3 + 4) of the Figure, is taken to be the sum of the weights 
W2, W3 and W4. From this diagram, it is evident that the solvent water 
'anticipates' the formation of the chloronium ion intermediate. 
Repulsion, dispersion and cavitation contributions to the solvation free 
energy do not affect significantly the shape of the PES, their effect being 
about two orders of magnitude smaller than the polarization effect in this 
reaction. For non-polarization contributions, it is possible to conclude 
that they are not important in variations of wavefunctions when studying 
thermochemical reactions, where only the ground state is considered. 
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Figure  13. Adiabatic ([a]) and diabatic ([b]) energy curves (hartree versus 
~) for the electrophilic attachment of chlorine to ethylene in  v a c u o  (solid line) 
and in aqueous solution (dashed line). Curves 1-4 correspond to VB structures 
~1-4. 
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Figure  14. Weights of reactant (1) and product (2+3+4) VB structures 
against the reaction coordinate (/~) for the electrophilic attachment of chlorine 
to ethylene in  v a c u o  (solid line) and in aqueous solution (dashed line). 
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6. C O N C L U D I N G  R E M A R K S  

The detailed study of electron distribution rearrangements in a chem- 
ical reaction needs a multiconfiguration ab initio method, because one 
determinantal wavefunctions are unreliable away from equilibrium ge- 
ometries. By means of the CASSCF method it is possible to focus at- 
tention on the electrons more directly involved in the reaction, allowing 
the calculation to be done with a relatively limited number of Slater de- 
terminants. Moreover, CASSCF uses orthogonal orbitals which are sim- 
pler than non-orthogonal orbitals in the development of computer codes. 
Nowadays CASSCF is, in fact, efficiently included in practically all dis- 
tributed packages for molecular quantum calculations. 

The calculations presented in this chapter have been done using the 
MCSCF code of the package GAMESS [36] which contains also the more 
recent developments, made in our laboratory, on the solvent dielectric 
model for the study of solvation (see for example [37]). Our solvation 
model implemented in GAMESS allows a CASSCF calculation with the 
inclusion of all the basic solute-solvent interactions. 
The CASSCF wavefunctions correspond to limited but complete config- 
uration interaction and, when are not too complicate, they can be tran- 
scribed in a VB formalism through a transformation of the active orbitals. 
There are several ways in which this transformation can be applied; in 
this chapter it has been done by the minimization of the energy of a 
function corresponding to a restricted sum of selected VB classical struc- 
tures. The selected structures must be sufficient to describe bonding in 
the reactants and products. The accuracy of this choice can be measured 
by checking the percentage of CASSCF correlation energy recovered: if 
100 % corresponds to CASSCF, the restricted VB calculation must give 
more than 90 % in order to be acceptable. The result of such a pro- 
cedure is a localization of orbitals mainly on atoms; these orbitals lose 
their orthogonality and can be viewed as generalized hybrids in the sense 
given by Coulson and Fischer in their H2 study, which is of course also 
the modern VB point of view. 
The interpretation of reactions can be made at this point by analyzing 
the weights of VB structures, calculated according to Eq. (3), along the 
reaction path. This type of study shows immediately how the electronic 
wavefunction changes with nuclear configuration within the adiabatic ap- 
proximation. 
The energy profile in terms of the reaction coordinate is taken instead 
from the CASSCF calculation. The importance of this diagram is related 
to the shape of the curve. The presence of a barrier is relevant to the 
reaction kinetics: it is well known in fact that the higher is such a barrier, 
the smaller is the conversion rate constant. 'Forbidden' thermochemical 
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reactions show typically high energy barriers. 
The solvent, through solute-solvent interactions, can modify significantly 
the potential energy surface, thus influencing the kinetics. When this 
occurs it is interesting to study the solvent effect on the diabatic energy 
curves which come out from the above VB transcription of the CASSCF 
wavefunction. Because the solvent reaction field depends on the wave- 
function itself, it is difficult to predict the changes on diabatic energies 
and, consequently, the suggested method of calculation presented in this 
chapter becomes an important  new theoretical tool for the understanding 
of solvent effect on chemical reactions. 
The examples treated in this chapter have shown that  only the Coulom- 
bic polarization of the solvent, represented as a continuum medium, is 
responsible for significant changes of the behaviour of reacting systems in 
passing from the gas phase to the solution. Dispersion, Pauli repulsion 
and cavitation do not lead to significant effects. 
The reader should notice that  in this chapter only thermochemical reac- 
tions have been considered. A completely different situation is expected 
with photochemical reactions because of the excited states involved. The 
solvent model included in the MCSCF code of GAMESS package can 
work with excited states, but it is important  to remark that  the model in 
this case is incomplete and needs substantial improvements. The inter- 
molecular interactions, when one of the molecules is in an excited state, 
are not yet fully understood and solute-solvent interactions in this case 
must account for complicated charge transfer and resonance effects. 
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Chapter 15 

Resonating Valence-Bond theories for carbon  r-networks 
and classical/quantum connections 

D. J. Klein 

Texas A&M University at Galveston, Galveston, Texas 77553-1675, USA 

1. INTRODUCTORY HISTORICAL SURVEY 

Modem quantum-mechanical Valence-Bond (VB) theory has firm roots back 
to classical ideas even of a century and a half ago. These connections are of 
special interest, especially if greater general insight and extension of the classical 
concepts can be made. The interconnecting simpler semiempirical approaches, 
such as are of the prime focus here, are historically inextricably mixed with that 
of the ab initio theory, and the development has been via a peculiarly torturous 
road toward quantitative relevance. Thence here some brief historical commentary 
which also sets some nomenclature and ideas is first made. 

1.1. Quantum-mechanical genesis & promise 
The idea of valence structures goes back to classical chemistry. And indeed 

it was even then at the heart of chemistry, primitive in many ways though the 
theory was in rationalizing molecular structure. There are both brief surveys 
[1,2,3] encompassing this history, as well as whole books on the subject [4,5]. 
Indeed before 1925 the main achievements seem to have been primarily concerned 
with the structural possibilities, with considerations for individual molecules being 
of a quite qualitative nature. 

Then quantum mechanics in the mid-1920s brought a prospect for the 
quantitative treatment of molecular electronic structure. Quite early on in 1926 
Heitler & London [6] developeda quantitative "valence-bond" (VB) description 
for the H 2 molecule, though at this stage the quantitative agreement was not perfect 
- the equilibrium distance was accurate to within a few percent (which was as good 
as the then accepted experiments), the force constant for vibrational motion was 
good to ~ 10% (which was comparable to what was earlier accepted and somewhat 
worse than results from experiments only coming to be properly interpreted), and 
the dissociation energy was too small by roughly a factor of 2 (which was seemed 
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notably worse than experiment). But the treatment of Heitler & London was 
evidently only an approximation, with a clear-cut (variational) approach to 
improvement, and the variational form of the solution combined with the 
essentially exact treatment of the separated atom limit of two H atoms indicated 
that the computed dissociation energy was only a lower bound to a more accurately 
computed one. Thus this held out much promise for quantitative agreement, and 
in addition there were notable aspects ofHeitler & London's approach which were 
quite consistent with classical chemical bonding theory. Soon there were several 
even more approximate VB treatments of more complicated molecules. Then in 
1932 Rumer [7] identified key aspects of VB theory that correlated with a large 
body of which correlated well with classical chemical ideas. And on the fully ab 
initio front very satisfactory high accuracy close agreement had been achieved (by 
Hyleraas [8]) for a variety of aspects of the He atom, and during this same period 
of time James & Coolidge [9] surmounted (then current) immense computational 
difficulties to achieve great accuracy (notably <1%) in the already-mentioned 
physical properties of H 2, though the complexity of their computations was 
daunting, and tended to loose site of simple pictures. Further properties (& small 
atoms & molecules) were beginning to be treated by several researchers with 
evident promise of further quantitative agreement with experiment. Rumer's VB- 
theoretic ideas were then further discussed by Pauling [10] and by Eyring & 
Kimball [ 11 ]. And especially Pauling & Wheland [ 12] went ahead with the VB 
picture, introducing the idea of"resonance" as of central chemical significance in 
understanding the so-called "aromaticity" not only of benzene but of other 
benzenoid molecules. It was emphasized that the general VB ideas merged neatly 
with pre-quantum mechanical theory concerning bonding and electron pairs, as of 
Lewis [ 13] & Langmuir [ 14], and even the idea of resonance merged neatly with 
the classically developed ideas, e.g., of Armitt & Robinson [15] or Fries [16], 
which in turn derived from much even earlier work back into the 1800s. (Again see 
[1,2,3] for some earlier history.) By the late 1930s Pauling had extended the 
"resonance" concept to apply in describing bonding for a great variety of 
molecular structures, all as explicated in a qualitative format in Pauling's 
masterwork [ 17] The Nature of  the Chemical Bond, emphasizing the nearness with 
which it connected with & extended classical chemical-bonding concepts. And 
Wheland followed up with a more detailed consideration [18] of resonance for 
conjugated hydrocarbon n-networks, again emphasizing the connection with & 
extension of classical chemical concepts. With all this qualitative success and 
promise for the resonance-theoretic VB approach, much less attention seems to be 
found in purely chemical texts (before say 1950) for an alternative molecular 
orbital (MO) approach. For example in the now classic quantum chemistry text 
[19] of Eyring, Walter, & Kimball of 1941 one finds a discussion of the VB 
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approach, while the self-consistent-field (MO-like) approach is quite subdued 
(being largely confined to a mention of Hartree's work on atoms). 

1.2. Eclipse of VB theory by MO theory 
Despite the promise of VB theory the MO approach had been applied in 

several papers [20] by E. HOckel in the early 1930s to treat the same type of 
benzenoid hydrocarbons as considered by Pauling & Wheland [ 12], while further 
Htickel neatly rationalized the evident scarcity of 4-membered rings in conjugated 
systems as well as the special stability of tings with 6 n electrons. More 
comprehensively Htickel's contributions are very nicely covered by Berson [21 ]. 
Also F. Hund had been [22] an early advocate of the MO-theoretic approach, 
though he considered it mostly in a formal framework for diatomics, and R. 
Mulliken went on through the 1930s with rather detailed semi-quantitative MO- 
based considerations [23] for whole families of(ground- & excited state) potential 
curves for one diatomic molecule after another. Yet further starting about 1930 a 
number of physicists such as F. Bloch [24] and J. C. Slater [25] formally developed 
MO theory for crystalline solids (integrally incorporating the consequences of 
translational symmetry), and the resultant band theory was utilized in developing 
the functional expressions for a variety of physical properties of metals (where the 
theory seemed to work best). Still in the bulk of chemistry for a period of time not 
so much attention was paid to MO theory, because a number of the treated systems 
(Mulliken's oft exotic unstable diatomics, and the physicists' metals) seemed more 
physical than chemical, while Pauling & Wheland [ 12] had indicated connections 
of the alternative VB theory to classical chemical-bonding ideas. Many of the 
workers were viewed more as physicists than chemists. Still some few theoretical 
chemists paid attention to the MO approach for general chemically interesting 
molecules, with Hall [26] & Roothaan [27] developing an efficient (self-consistent- 
field Hartree-Fock) computational matrix formalism. 

Then in 1950 Coulson's influential book [28] on Valence appeared, ushering 
in the era of widespread recognition of the chemical utility of MO theory. 
Thereafter MO theory became of ever increasing interest, and with the emerging 
electronic digital computers it seemed that both semiempirical & ab initio MO 
computations (following Roothaan's & Hall's formulations) could be relatively 
readily be implemented (as compared to VB theory). Further in the 1950s a wide 
appreciation developed (as in [29,30]) for the diverse applicability of Htickel's 
qualitative rules concerning the correlation between chemical stability & number 
of n-electrons in a ring of a conjugated organic molecule. Much qualitative, semi- 
quantitative, and quantitative MO theory then followed, with many texts 
emphasizing different aspects then appearing. The English school of Coulson, 
Longuet-Higgins, and Dewar especially in the 1950s obtained numerous 
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qualitative MO-framed theorems for conjugated hydrocarbons - see, e.g., [31-34]. 
Even more generally in the 1960s Woodward & Hoffmann's [35] "orbital 
symmetry conservation" rules and Fukui's [36] "frontier orbital" ideas developed 
significantly the qualitative aspects of MO theory. And at the same time the 
accuracy of the MO-theoretic self-consistent-field computational approach kept 
developing in pace with the ever improving electronic computers. By the 1970s 
canned MO-based computer programs became ever more widely available, not 
only for molecules but also in the band-theoretic formulation of physics for solids. 

Thence during the 1950s and on through the 1960s & 1970s VB theory came 
to be largely eclipsed by MO theory. Some nice early articles by Hartmann [37] 
in 1947, by Vrolent & Daudel [38] in 1949, and by Kasteleyn [39] in 1952, 
approached VB-theoretic models from then-novel many-body viewpoints, but 
these articles seem to have been largely ignored and almost completely forgotten - 
with the many-body techniques these researchers developed later independently 
rediscovered. Similarly much work [40,41,42] by McConnell and his students 
starting in the late 1950s used the VB model presented as the Heisenberg model 
so that much of this work seems to have been classified by most researchers of the 
day as semiempirical work on exotic molecular species, often presumed to be 
without much relation to VB theory, though quite clearly McConnell realized the 
relation [42]. Of course too there was a great quantity of work in the physics 
literature on the Heisenberg model as applied to magnetism, though the solution 
techniques looked vastly different than those envisaged by Pauling & Wheland, 
and in addition primary focus was on non-zero temperature magnetic properties for 
quite different systems (such as transition-metal or rare-earth oxides and salts) - 
thence this too was typically viewed by chemists as unrelated to VB theory, or at 
least unrelated to resonance theory. Several theoretical criticisms of VB theory 
spread, concerning not only computational difficulties but also perceived 
conceptual conondrums, e.g., involving exchange-integral signs as well as 
nonorthogonality & size-consistency. That Hartmann [37] and Vrolent & Daudel 
[38] and Kasteleyn [39] had in fact quite neatly resolved some of these many-body 
problems in a VB framework went unnoticed, and much more attention was paid 
to parallel many-body resolutions in the MO framework in the mid-1950s (by 
Brueckner, Goldstone, Hubbard, Bethe, and others, as reviewed in a multiplicity 
of many-body books, e.g., as in [43]). In fact Kasteleyn's Ising-related cluster 
function [39] was also treated even earlier (in 1938) in two seldom noted sections 
ofHtilthen's article [44] which is often otherwise noted for its tour de force exact 
ground-state solution of the infinite linear-chain Heisenberg model. And 
enormous numbers of many-body MO-based (or more especially band-based) 
applications were made, so that the impression was left that non-trivial advances 
had been made in many-body theory, while VB theory remained anachronistically 



451 

computationally difficult. From a more traditional quantum-chemical view some 
few woi'kers sought to overcome the computational difficulties seemingly inherent 
in the VB approach, and the ab initio results were often limited to disappointingly 
small molecules, as in the (relatively accurate)computations of Matsen's group 
[45] on LiH & (several states of) Hez ,  entailing discouraglingly much 
configuration interaction. Or similar disappointment seemingly was registered for 
Poshusta's work [46] on small (chemically somewhat exotic) polyatomic ions (of 
say _<4 electrons), though the results were quite accurate. In the mid-1960s Fisher 
& Murrell [47] obtained a VB analogue (at least for ionic tings) of Htickel's 
fundamental correlation between n-electron count and stability, and about 1970 
Oosterhoff 's group explicated [48] a VB-theoretic analogue of the Woodward- 
Hoffmann rule for Cope-reaction cyclo-additions. But this V B  work was 
somewhat special and came sometime after the same developments via MO theory, 
which in the meantime had been pushed to yet further insights. Thorson & co- 
workers [49] consideration of distinctive natural-geminal eigen-distributions for 
VB wave-functions was deemed by many to be an esoteric mathematical curiosity, 
and thence largely ignored. Around 1970 Goddard [50] & Gerratt [51] started 
advocating formulations for VB computations With variationally optimized 
orbitals, but this first work was largely formal. These optimal orbitals were to 
remedy McWeeny's [52] rather disappointing semiempirical VB-based 
computations in the 1950s as well as the (-~1970) quantitative all-electron ab initio 
computations of Gallup [53] for benzene, as had seemed to confirm VB theory's 
short-comings - the resonance-theoretically anticipated important resonance 
structures seemed in fact to be of relatively minor importance, so that a great 
multiplicity of higher-order VB structures seemed to be required for quantitative 
results. From 1950 through 1980 the ratio of MO-theoretic to VB-theoretic 
computations may have been as great as 100 to 1. Quantum chemistry texts came 
to focus almost entirely on MO theory, with some sort of brief discussion and 
cursory dismissal of VB theory (one book being somewhat exceptional in this 
approach being that of McWeeny & Sutcliffe [54]). MO/band-theoretic 
approaches completely dominated in physics, and physics texts. The still frequent 
occurrence of qualitative resonance-theoretic arguments in most introductory text- 
books for general chemistry & for organic chemistry seemed to many to be merely 
an anachronism which would surely fade away in future decades. 

1.3. Reemergence of VB theory 
Of course there was a reason for the retention of resonance-theoretic 

explanations in text-books; such explanations offered conceptual simplicity and 
connection with the classical chemical-bonding ideas. Moreover starting in the 
1970s and more especially so in the 1980s there turned out to be dramatic 
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successes for resonating VB theory. As a first point Epiotis identified [55] the 
appropriate modification to rectify the difficulties McWeeny & Gallup had found, 
Epiotis (working in a semiempirical mode) emphasizing how the chemically 
anticipated important resonance-theoretic structures should indeed be more 
dominant if the structures were built using appropriately "anti-orthogonalized" 
atomic orbitals rather than bare atomic orbitals, or even worse orthogonalized 
atomic orbitals. And this expectation was also somewhat implicit in the 
formalisms of Goddard [50] & of Gerratt [51 ] in utilizing orbitals obtained through 
an energy optimization. As discussed more fully elsewhere in this volume, both 
Goddard [56] & Gerratt [57] as well as others [58-61 ] pursued such ideas with 
several concrete ab initio computations by the 1980s, though at first there often 
were limitations, say as to perfect-pairing wave-functions in Goddard's group's 
work, and to fairly small molecules in Gerratt's and Harcourt's work. Ultimately 
the relevance of such optimal orbitals in the context of resonance was dramatically 
verified in the highly accurate quantitative ab initio computations of Cooper et al 
[62] in 1985 on benzene. And thereafter many more computations further 
supported this favorable conclusion, as further discussed in many other chapters 
in this book. Goddard's group also computationally implemented his "generalized 
VB" theory in an ab initio framework by the end of the 1970s, and (successfully) 
used the resultant program in application to a fair number of molecules, with some 
modest degree of distribution of the programs. This theory which usually entailed 
a single VB structure (sometimes referred to as "perfect pairing") then differed 
from the less frequent ab initio computations based on the approach centered 
around Gerratt & Cooper. Such ab initio approaches are discussed more fully in 
other chapters in the present book. 

There too were some developments along semiempirical lines. Some 
theorems [63,64,65] concerning the semi-empirical Pauling-Wheland VB model 
for conjugated hydrocarbons were established, one having been proposed by 
Ovchinnikov [66] and indicated to imply interesting results concerning radicaloid 
conjugated hydrocarbon structures. Especially the consequent ground-state spin 
multiplicity predictions were quite favorably tested, initially with full 
configuration interaction computations on Hubbard-PPP models [67,68]. 
Moreover in the early 1980s, Malrieu & Maynau [69,70] published several articles 
making approximate (Neel-state-based) solutions to the Heisenberg model for 
application to conjugated hydrocarbons. And there was a degree of related work 
on full covalent-space VB models by others [71-74]. It may also be mentioned that 
in the early 1980s a variety of accumulated criticisms of VB theory were in tum 
(supposedly cogently) criticized [75]. 

Further in 1986 P. W. Anderson suggested [76] that resonating VB theory 
would be crucial to the understanding of high-temperature superconductivity. This 
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suggestion quickly led to a great out-pouting of several hundreds of papers 
concerning "many-body" VB theory in the physics literature, as discussed in 
several reviews [77], and other chapters here. Some brief aspects of overlappings 
of this work in physics with the theory of conjugated n-networks also are 
mentioned in [78] and in the present chapter. 

But approaches from a more nearly classical point of view were also 
developed, for application to the benzenoids, which provide the prototypical 
example of non-localized bonding. In particular, in the mid-1970s Hemdon [79] 
& Randi6 [80] independently developed a fairly successful quantitative resonance 
theory for stable (i.e., non-radicaloid) benzenoids. And there have been a number 
of uses of this approach (including work on fullerenes [81]). Further a great 
number of"chemical graph-theoretic" articles appeared giving a variety of neat 
methods to enumerate the resonance-theoretically relevant Kekule structures - 
Cyvin & Gutman's book [82] gives a few hundred references in this area, up 
through 1987, with much discussion of selected methods of enumeration - and a 
more recent survey is found in the article of Cyvin et al [83], applying several 
techniques to an examplar class of benzenoid fragments of a certain selected 
shapes. Novel many-body long-range ordering aspects of resonance-theoretic 
descriptions were noted [71,72,84,85]. Numerous additional articles on very 
simple approaches appeared (e.g., [86-90]) in the 1980s, and on up to the present. 
A further example of a much simplified theoretical framework [91 ] is found in a 
what might be termed a "mean-field" resonance-theoretic view, applied especially 
to extended systems. The general area involving the simplest most nearly classical 
ideas particularly as applied to conjugated ~-networks is in fact a primary focus of 
the present chapter. 

2. VB THEORETIC FRAMEWORK 

There are a number of frequently occurring ideas in VB theory which often 
are used in slightly different manners by different authors, so that it may be well 
to try to formulate such ideas in a clear and precise manner, at least for use in this 
present chapter. These ideas include that of VB bases, of VB diagrams (especially 
those more readily relatable to classical chemical bonding ideas), of VB models, 
of VB-theoretic solutions (or wave-functions for various models), of resonance, of 
resonating VB wave-functions, etc. 

2.1. VB bases and diagrams 
First, a VB basis may be defined to consist of configurations constructed 

from spin-paired localized orbitals, at least for the overall spin singlet case, while 
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for higher spins there are additional unpaired spins. Such a basis configuration is 
developed in terms of (singlet) spin-pairings, which most simply vewed take the 
form 

(1) 

where ~ ~+o is a Fermion creation operator for the (c,o)th spin-orbital which first is 
localized in the neighborhood of an atomic region also labelled by c and which 
second has spin o (which can be spin-up or -down, a or [3). In general the ;~+o need 
not generate bare (or simple) atomic orbitals, but may generate be linear 
combinations of such so as to give a result in the general region of the site c. 
Indeed the simple form of the spin-free pairing may sometimes be replaced by a 
more general geminal with density still localized primarily in the region of sites a 
& b. Then a (generalized unnormalized) VB configuration is 

eV+ eVo 

IV) = H Aa, a, H ~c. 10> (2) 
a e 

where a' is the second site in a spin-pairing in which a is the first site, V+ is the set 
of first sites in the configuration, V, is the set of unpaired orbitals in the 
configuration, and 10) is the so-called "vacuum" (from which the state IV) is 
obtained by the application of the various operators Aa. .. & )r ). Such 
configurations exhibit an overall spin S which is just half the number of unpaired 
orbitals (in Vu). If the spin-pairings take the simple geminal form of Eq. (1), then 
(with S and the overall set of spin-free orbitals fixed) a VB basis is a maximal set 
of linearly independent such VB configurations. Within the assumption of the 
fixed set of atomic orbitals, these are a sufficient set of configurations to treat the 
systems described by an ordinary spin-free Hamiltonian. 

As an aside, it may be noted that our notation of Eq. (1) & Eq. (2) is of the 
so-called"second-quantized" form. This is convenient in different ways, including 
the suppression of electron indices - electrons being indistinguishable according 
to the Pauli Exclusion principle. If the "first-quantized" notation is used instead, 
then in place of Aa. O o n e  has spin-pairings {L(i)7~(/') + zb(i)L(/)}a(i)~(/) with 
z~(k)o(k) a spin-orbital for site c & electron k, and one worries about some sort of 
correspondence between sites & electrons, though after antisymmetrization the 
electron labels also appear permuted about in all possible ways. In the second- 
quantized approach antisymmetrization is implicit throughout. 

To each VB configuration IV) there is a corresponding VB spin-pairing 
diagram V which is a graph with the orbital labels identified to sites and the spin- 
paired sites corresponding to edges. E.g., for the case of six electrons in six 
orbitals (as for the six occupied atomic n-orbitals of benzene) one has 
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which displays an evident close analogy to the primary classical valence structures 
for benzene, especially if augmented with the rest of the spin-pairing diagram for 
the a-orbitals. Rumer [7] focused on the sing!et case with orbitals singly occupied, 
it being recognized that the extension to states with doubly occupied orbitals is 
trivial. Too Pauling [ 10] early pointed out the ready extension to the overall spin 
doublet case, and the approach taken hinted at further extension, e.g., as done in 
Simonetta's group [92]. But it is to be emphasized that there are other possibilities 
- such as that of Ruiner, Weyl, & Teller [93] which though providing a nearly 
exactly complete basis does not generally provide basis structures corresponding 
so closely to classical VB structures. That is, such Rumer (or Weyl) bases are 
often developed in terms of orbitals arranged around a cycle, and in many cases a 
chemical structure may have little to do with a simple cycle. More important 
should be spin-pairing patterns involving pairing between nearer pairs of localized 
orbitals, independently of a relation to the formal basis ofRumer et al [93]. That 
is, a basis related to the particular molecular graph G under consideration would 
in general be desirable. The subject of different means by which to build up 
overall spin bases is nicely considered by R. Pauncz [94], where he also deals 
much with the alternative Young-Yamanouchi basis [95], which does not build up 
the overall spin functions from local spin-pairing structures but rather involves an 
iterative construction obtaining all N-spin functions from the set of all N-  1-spin 
functions. This alternative basis is widely used, especially in the context of 
"unitary-group" methods [96], and if related to any molecular structure, it 
presumably would be that for a linear chain. Also, as has long been noted [97,50], 
the first (or last, depending on convention) of the Young-Yamanouchi functions 
corresponds to a Ruiner type spin-pairing function. VB bases made to incorporate 
more local spin pairings on other graphical structures are largely undeveloped, 
though there are some limited results [98] on linear independence for suitable 
relatively small subsets of near-neighbor spin-paired patterns for certain classes of 
interesting (benzenoid) graphs. 

2.2. VB models 
Granted a VB basis, a semiempirical model represented on such a basis often 
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is described as a VB model. Of course such models can be represented on any 
basis spanning the same space, but the semiempirical integral approximations are 
(usually) motivated from considerations in terms of the localized (atomic) orbitals 
as appear in VB basis states. One such case is the VB model of Pauling and 
Wheland [ 10] expressed on the covalent space of configurations built from singly- 
occupied orbitals. Indeed the model so developed turns out to be essentially the 
Heisenberg spin Hamiltonian, as long ago noted by Van Vleck & Sherman [99], 
though Heisenberg's original formulation [100] was spin-free. The model may 
be viewed to be expressed on a basis of what is essentially Slater determinants of 
atomic orbitals, but especially in physics the model may be re-represented 
(following Dirac [ 101 ] & Van Vleck [102]) equivalently to act just on spin space. 
This spin formulation takes the general form 

a - -  s jp pspin (3) 
P 

where t h e / ~ n  are spin space permutations and the Je are parameters. And this 
may be viewed as an approximation to a more complete representation including 
all structures covalent or ionic built out of the given set of orbitals, which for the 
benzenoids would be the set of n orbitals one for each n center. One systematic 
manner of derivation [ 103,104] is to consider these orbitals to be orthogonal, and 
develop H of (3) via degenerate perturbation theory from a PPP-type model, but 
for the typical parameter values for benzenoids there is a problem with the 
adequacy of such an approximation. But there is a related cluster-expansion 
procedure for the derivation which yields an improved result for the various Je 
which arise, as discussed in [ 105,70,106]. There are a number of other derivations 
[ 107] which incorporate improvements on the standard (degenerate) perturbation- 
theoretic expansion. A type of derivation which sticks closer to the ideas of 
Pauling & Wheland is discussed in [108], and a more abbreviated fashion in 
section 3 here. 

Approximations for the covalent-space model retain only lower-order 
permutations, from Eq. (3). Most simply (and most commonly) just the terms 
involving a transposition P=(ab) exchanging the ath & bth (site) indices are 
retained, whence the exchange parameter can [ 109] be nicely approximated to be 
of the form 

J ( a b )  --" {ESab-(~l(ab)Hl~)}/{ 1-S~b 2 } (4) 

with E--(~IHI~), Sab-(~[(ab)l~), and q~ most simply being taken as a product 
of non-orthogonal atomic-like orbitals, one assigned to each center. Often i & j  
may be restricted to nearest neighbors, and the interaction operator may be recast 
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as  

(ab) ~pi" = 2 s,. sb + 1/2 = 2 s~ s~, + s~ + s~ + s a s2 + 1/2 (5) 

in terms of the (usual) spin operators s z , Sc + , s c , & s~ for site c. Then the 
Hamiltonian (with a further shift of energy 0) is written as 

H =  2~ J.b 2 s." sb (6) 
a-b  

which is the more commonly presented form, whence it is known as the 
Heisenberg spin Hamiltonian. Evidently reference to Rumer or VB bases is now 
quite hidden, and many other bases are used - those involving "spin-waves" are not 
uncommon in physics. Working with representations on such alternative bases can 
lead to non-locally interpreted wave-functions, and results can end up being rather 
far divorced from apparent classical-chemical connection and interpretation. In the 
physics literature there has been much study of this model from a many-body 
viewpoint. A simple traditional approach [110] identifies approximate eigenstates 
of the system as simple products of site spins- for the antiferromagnetically signed 
case (i.e., for J,b>0, with a ~ b). A still quite traditional refinement to this picture 
is the [ 111,112] spin-wave representations (as well as not unrelated more recent 
"slave boson" schemes [ 113] from solid-state physics) embed the physical space 
in a much larger one, and typical approximate methods of solution of H inter-mix 
non-physical with physical states - and the contact with chemical interpretation of 
the wave-functions seemingly becomes quite opaque. Generally the problem of 
solution of the Hamiltonian of Eq. (4) may be viewed in a variety of mathematical 
ways, with those (few) based on Kekule structures consistent with the particular 
molecular structure being those which offer most promise for contact with classical 
chemical-bonding ideas. 

2.3. Resonance 
Resonating VB theory should make use of a VB model treated in terms of 

VB states, especially the more chemical basis states corresponding to more the 
more local spin-pairing patterns. This really is the focus of this review, including 
attention to the many-body case. The use of VB theory (without the adjective 
resonating) should be more general, but in order to connect it most directly back 
to classical chemical-bonding ideas, it would be preferable to use a VB basis 
accommodated to the molecular structure under consideration, though often 
researchers refer to anyting using the Rumer basis as "VB theory". Often the spin- 
pairing patterns where all spin-pairings are between nearest neighbors are termed 
a Kekule structures, at least in dealing with benzenoids. Again elegant systematic 
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methods for a VB basis including Kekule structures plus some additional pattems 
based preferentially on more local spin pairings have not yet been developed. The 
Kekule structures for benzenoid graphs have been proven [98] to be linearly 
independent, and for even a variety of other chemically interesting molecular 
frameworks they often empirically appear [ 114] as linearly independent. 

A question of the adequacy of resonance theory naturally arises. In the ab 
initio realm this question is addressed in other chapters in this book. But in the 
semiempirical realm the Pauling-Wheland model (for benzenoids) turns out to be 
mathematically equivalent to the Heisenberg model of magnetic theory, where 
seemingly quite different (approximate) solutions have long been used. For the 
antiferromagnetically signed Heisenberg model on a bipartite (altemant) network, 
this traditional approach thinks about the Neel state [ 110], which corresponds (in 
spin space) to a simple product of up & down spins on the two respective types 
(starred & unstarred) of sublattices. In much of the physics magnetism literature 
there may be developed "spin-waves" on top of this. That is, there is no mention 
of spin-pairing, as in resonance theory, and these Neel-state-based approaches have 
met with great success in solid-state magnetic theory. Moreover for extended 
bipartite lattice networks, these two types of approaches must be fundamentally 
quite different in that they associate [71,72] to two different (likely mutually 
exclusive) types of long-range order. Thus a question of which approach is (more 
nearly) "correct" arises. And rather interestingly the resolution [115] of this 
seeming paradox appears to be that each approach is "correct" in different 
structural realms. That is, if one compares simple resonance-theoretic and Neel- 
state approaches for the nearest-neighbor Pauling-Wheland model on bipartite 
lattices one finds an interesting behavior as a function of the average number z of 
nearest neighbors, as displayed in figure 1. Here the Neel-state and single Kekule- 
structure curves (each independent of the details of the structure beyond the value 
of z) are variational upper bounds for the exact ground-state energy, and the 
resonance-theory curve (including the effects solely of Kekule structures) is an 
upper bound for a particular class of benzenoid polymers of a whole range of 
widths. Evidently one finds that: 

* resonance-theory does better for small degree z (say for z_<3, as for all 
benzenoids) when there are many Kekule structures; and 

* Neel-state-based approaches do better for higher z (say for z>3, as for the 
realized systems of classical solid-state magnetic theory). 

Thence a neat resolution arises of what at first sight might seem quite ominous 
(because of the great success of the Neel-state-based approaches). 
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Figure 1 - Plots of resonance energies per site for several simple ground- 
state approximants. The single-Kekule-structure plot applies for general graphs, 
the Neel-state plot for general bipartite graphs, and the RVB plot for a special class 
[ 115] ofbenzenoid polymers. 

The relevance of resonance-theoretic wave-functions naturally suggests at 
least one more derivative VB model, obtained by restriction of the covalent-space 
(Heisenberg) VB model to the subspace of (neighbor-paired) Kekule structures. 
In fact a whole hierarchy of models begins to emerge, as discussed a little more in 
the next section. 

3. HIERARCHY OF VB MODELS 

There are a variety of VB- or resonance-theoretic models which have been 
considered at one time or another, and for which a systematic organization might 
be desired. Preferably the organization should also indicate their derivation and 
relation to one another. 

3.1. Restriction & Orthogonalization 

The general idea of restriction to a model space underlies the development 
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of most model Hamiltonians. That is, a restricted model space which is a subspace 
of the full space of the parent Hamiltonian is identified, and it is sought to treat 
eigen-levels which have states with much overlap with this subspace. Typically 
the space includes the ground state and a few low-lying excited states, and one 
seeks to obtain their energies exactly through solution of a suitable effective 
Hamiltonian restricted to the subspace. In some cases one identifies a whole 
sequence of 
ofsubspaces, the overall collection of which spans the full space, and the effective 
Hamiltonian model is to be defined on the whole space in such a way that it is 
block-diagonal on the different model subspaces. Indeed this is what is imagined 
with degenerate perturbation theories, with the various model subspaces being 
identified as the 0-order eigenspaces. 

In fact degenerate perturbation theory provides a systematic scheme to 
obtain such model Hamiltonians, say as discussed in general in [ 116]. This folds 
in the effects of the interactions between the different 0-order eigenspaces, so that 
the restriction is in principle not an approximation but rather a recasting of the 
Hamiltonian, as has been done [70,103-107] to proceed from a Hubbard-PPP 
model to the Heisenberg model. But in applying perturbation theory there 
generally is a question of convergence of the series for the so expanded 
transformed Hamiltonian - and one expects this to occur if: first, the perturbed 
states of the full Hamiltonian have much overlap with correspondent 0-order 
eigenspaces; and second, the perturbed eigen-energies associated to different 0- 
order eigen-space are separated in energy from one another. But notably one 
expects these conditions never to be met for realistic many-body systems. That is, 
if for a N-body system where the 0-order picture corresponds to N independent 
subsystems, the energy corrections may be expected to be size-extensive (i.e., .-N) 
so that the energy splittings arising from a 0-order level should be -LN with )~ the 
strength of the perturbation, whereas the 0-order difference between the energies 
of the ground-eigenspace and the first-excited-eigenspace should be an excitation 
energy -N O= 1. Thus for sufficiently large Nthe perturbation splittings - kNexceed 
the 0-order splittings -1, even if the perturbation with strength ~. is small. But 
despite this difficulty many-body effective Hamiltonians are very useful, and in a 
number of cases capture the essence of the physics involved. Indeed some 
undeniably many-body areas such as magnetism have the understanding of the 
whole subject both qualitative & quantitative based on such models (as the 
Heisenberg model for the magnetic case). Basically the degenerate perturbation 
formulas may be expected to give reasonable approximate results in low order, 
while higher orders lead to instabilities associated with the interpenetration of the 
different 0-order eigenspaces. And indeed we note a cluster expansion approach 
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to the development of many-body model Hamiltonians, this approach presumably 
often should being better than corresponding degenerate-perturbation-theoretic 
treatments, such as has been now been applied [ 103,104] done in developing the 
VB-theoretic Heisenbery model from a PPP-Hubbard model. Still this approach 
ultimately should suffer from this same problem interpenetration if pressed to too 
high an order of approximation, and one hope eventually for a better resolution. 
Indeed this interpenetration problem is a disease of all many-body models, VB- or 
MO-theoretic. In any event the restriction to a model space is a general key step 
in building models. 

Sometimes the model space has a natural basis which is not orthogonal, and 
a transformation to achieve orthogonalization may be desired. There are different 
orthogonalization procedures, e.g. ,  as reviewed by L6wdin [ 117], but generally 
orthogonalization results in a transformation of the initial Hamiltonian H with 
overlap operator S to a new Hamiltonian 

H = S-1/2HS-1/2 (7) 

This new Hamiltonian is with respect to an orthonormal basis. If the square-root 
is that ofL6wdin orthogonalization [117,118], then the new basis is [117,119] "as 
similar as possible" (in a well-defined mathematical sense) to the initial basis 
subject to the constraint of orthogonality. 

3.2. The hierarchy of models 
The restriction and orthogonalization constructions may be repeated several 

times to yield a whole hierarchy of model Hamiltonians. This hierarchy is 
indicated in fig. 2. It may be noted that older criticisms concerning non- 
orthogonality or size-consistency "catastrophes" connected with several of the 
intermediate models are largely irrelevant or misleading, responses to these (and 
other) criticisms of VB theory having been presented elsewhere [75]. The atomic 
orbitals on the different sites are best imagined to be non-orthognoal, and perhaps 
not even bare atomic orbtials, but rather anti-orthogonalized from this stage. The 
first restriction in figure 2 is from the space of covalent & ionic valence structures 
to the space of purely covalent structures, as discussed more thoroughly in [120] 
(along with the subsequent orthogonalization step). This restriction is most 
reasonable in the absence ofhetero-atoms (and to some degree the approximation 
may be a little better in the absence of odd cycles). The next step in the 
hierarchical scheme of figure 2 indicates an orthogonalization of the different 
covalent-space Slater determinants to one another. The third step in figure 2 is the 
restriction of Pauling & Wheland [12] to the subspace of nearest-neighbor spin- 
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paired Kekule structures, every one of which has a non-zero overlap with every 
other, as is neatly computable via Pauling's island counting scheme [10]. The 
subsequent orthogonalization of these Kekule structures has been shown [ 120] to 
lead to the Hemdon-Simpson model [79,121 ], which in turn with a proper ground- 
state wave-fimction ansatz leads to the so-called "conjugated circuits" model, such 
as discussed in section 5 here. A conjugated circuit in a Kekule structure K of a 
graph G may be identified to a cycle of G such that every other edge of the cycle 
is in K, and it is called a conjugated n-circuit of K if there are n sites in this cycle 
(and thence n/2 of its edges in K). There is [121] another motivation and 
derivation of sorts for the Hemdon-Simpson model: one takes the classical ideas 
seriously as well as quantum mechanics, and on the basis of the classical evidence 
for benzene notes that the symmetric & antisymmetric combinations of the exact 
~A~g ground state and the exact ~B2, excited state yields two (orthogonal) states 
with many of the characteristics of the two Kekule structures - so that postulating 
these two combinations as the "exact" Kekule structures for benzene Simpson 
identified an exact model for benzene on this basis, and through seemingly 
reasonable arguments involving transferability of interaction matrix elements from 
one system to another, Simpson built up much the same form of model as arises 
from the derivation indicated in figure 2. The next restriction to a yet smaller 
subspace of so-called "Clar structures" is possible, as suggested in [ 108]. Such a 
Clar structure may be described as a spanning subgraph of G with every 
component either a 6-cycle or an edge, and such that no triplet of isolated edges 
forms a conjugated 6-circuit. The states labelled by such a Clar structure C may 
be viewed as a linear combination of the different Kekule structures having spin- 
pairings corresponding to each isolated edge and pairs of conjugated-6-circuit 
structures corresponding to each 6-cycle of C. That is, the Clar-structure state I C) 
is taken as a sum over all I K) for Kekule structures KcC, so that if C has n cycles, 
then 1(2) is a sum over 2" different IK). Thence this subspace of Clar structures is 
typically substantially smaller than that of the Kekule structures. In a lucid & 
charming book [122] E. Clar called the 6-cycles in such structures "aromatic 
sextets" in as much as the greater the number of such sextets in a Clar structure C, 
the greater importance he ascribed to C. It is amusing that if one tries to quantify 
Clar's qualitative ideas (which are classically derived, more from Robinson's pre- 
quantum-mechanical work.[ 13] than from Pauling's work), one is rather naturally 
led to conjugated-circuit theory, as discussed elsewhere [ 123]. Thus the quantum- 
chemically based derivation of figure 2 touches on classical ideas not only at the 
Pauling-Wheland model (as often emphasized by Pauling), but also perhaps even 
more closely at the conjugated-circuits model, which again arises directly from the 
Hemdon-Simpson model for a suitable wave-function ansatz. The Clar structures 
taken as the indicated linear combinations oforthogonalized Kekule structures turn 
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Figure 2 - Fundamental hierarchical scheme for VB models, and an 
indication of their methods of solution (with question marks marking less explored 
possibilities). 
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out themselves to be non-orthogonal, but can be orthogonalized to yield what we 
have [108] termed a "Hosoya-Hemdon" model, which with a suitable wave- 
function ansatz (as an equally weighted sum over all Clar structures) should lead 
to the energetic form actually considered by Hemdon & Hosoya [ 124]. It may be 
noted that there is even another model possible, based on Fries structures, defined 
[ 125] following Fries ideas [ 15] as those Kekule structures ~c of a benzenoid graph 
G such that these K achieve the maximum number (for the given graph G) of 
conjugated 6-circuits. Notably for catacondensed benzenoids [ 125] and for some 
important fullerenes there is a unique such Fries structure, and Fries (classically 
based arguments) would seem to suggest [108] that such a model might work 
reasonably well for benzenoids, while there is also some interesting support for 
this idea based on recent computations [114] for buckminsterfullerene (a non- 
altemant). All the models here involve explicit electron correlation. And 
numerous many-body solution techniques are possible, as summarily indicated in 
the boxes on the fight in figure 2, solution methods marked with a "question mark" 
being relatively little explored.. Some discussion of some solution methods for the 
covalent-space VB (or Heisenberg) model are found in Refs. [62,106]. Most other 
models in figure 2 have been comparatively less studied, though there is some 
discussion for the Herndon-Simpson model, and conjugated-circuit methodology 
in section 5 here. 

3.3. Further inter-relations 
The various models of our hierarchy in figure 2 may be related to a number 

of other models of one sort or another. This is indicated in figure 3. As already 
mentioned, the derivation from the Hubbard or PPP model to the Heisenberg 
(covalent VB) model has in the last few decades been done via a variety of 
methods [70,103-107]. Standard degenerate perturbation theories, which through 
second-order yield the simple nearest-neighbor Heisenberg model, really do not 
apply for the values of the parameters appropriate applicable to conjugated 
hydrocarbons (at equilibrium geometries) - that is, the values of the Hubbard or 
PPP model parameters seem to be out of the range of the usual perturbation 
expansions, (disregarding the many-body full-convergence problems mentioned 
in section 3.1). But the general form of the model is believed to be suitable, and 
reasonably valued quantitative results for the Heisenberg model parameters in 
terms of the Hubbard or PPP model parameters are obtained via a fairly simple 
cluster expansion [ 105,106]. The so-called tJ-model (with a tremendous literature 
[ 126] since about 1990), is defined on a space of size intermediate between that of 
the full Hubbard model and the ordinary Heisenberg model, it includes low-lying 
ionic structures, and it has engendered much interest in connection with the 
perovskite high-temperature superconductors, though there in fact was some earlier 
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Figure 3 - Some additional inter-relations to further models. 

consideration [ 127]. The derivation from the Htickel (or even Hubbard) model to 
the conjugated circuits model is accomplished in a somewhat unusual manner, as 
described in several articles by Zivkovid [128]. The lower-level model of simply 



466 

enumerating Kekule structures is that advocated most notably by Pauling [ 12], and 
is rationalized in that the greater the number of Kekule structures, the greater the 
potential for resonance. Of course the resonance also depends on how strongly the 
various Kekule structures interact and admix, and this additional aspect is just what 
is taken into account in the Hemdon-Simpson and conjugated-circuits models. 
Though Pauling most commonly advocates Kekule-structure counting for 
qualitative purposes, one may also utilize it in a quantitative format, so that one 
would imagine the resonance energy to be some specified function of the number 
of Kekule structures. Now for independent subsystems U & V of a total system 
G, the total Kekule-structure count is K(G)=K(U).K(V), while resonance energies 
should be additive Ec=Eu+E v (at least if the two subsystems really are 
independent). That is, K(G) may be anticipated to be multiplicative while 
resonance energy is additive, so that one naturally imagines [129,130] that the 
functional dependence of E~ on K(G) is 

E C = c.logK(G) (8) 

with c an appropriate constant. Indeed if one presumes that the functional form is 
continuous and differentialble (with respect to K(G) viewed as a variable), then this 
functional form is required. Thence one naturally expects the number of Kekule 
structures for stable benzenoid systems typically to increase exponentially with 
system size, so that even for moderately sized systems it can be a challenge to 
generate all these Kekule structures. (If the number does not increase 
exponentially with system size, then for sufficiently large systems one anticipates 
a less stable benzenoid, which would be reactive to form one with an appropriately 
greater number of structures.) Even just the simplest traditional approach, namely 
that of Kekule-structure enumeration might prove a challenge, at least without a 
suitable computational algorithm (e.g., there being 12500 Kekule structures [81 ] 
for buckminsterfullerene C60 ). And this counting problem is discussed in the next 
section. 

4. ENUMERATION OF KEKULE STRUCTURES 

The computational methods developed to deal with the various (explicitly 
correlated) resonance-theoretic models tum out to be most powerful for the more 
highly simplified models, of the preceding section 2. It is emphasized that these 
more highly simplified schemes need not necessarily entail significant 
approximation or loss of accuracy when properly parameterized. Moreover, these 
more simplified schemes often allow general conclusions for whole sequences or 
sets of molecules. For the higher-level models the manner of solution tums out to 
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be such a serious problem that there are many methods advocated and under 
development, including: various many-body perturbation methods; various Green's 
function methods; various Monte-Carlo methods; various fragment extrapolation 
and moment methods; various wave-function cluster expansion methods ; various 
renormalization group methods; and more. The on-going development of these 
sophisticated many-body ideas is discussed elsewhere [78,131 ], while_here focus 
is on more traditionally chemical methods, including the enumeration of Kekule 
structures and of conjugated circuits. As such these enumeration problems are 
mathematically neatly defined problems of interest not just in the quantum- 
chemical context discussed here but also in statistical mechanics and even in 
mathematics. 

4.1. General recursion 
Evidently the earliest [ 132-134] and now quite extensively considered 

[82,135-138] method for Kekule-structure enumeration is based on a recursion to 
smaller graphs. Let e be any edge of graph G, let G - e  be the graph obtained from 
G by deleting e, and let Gee denote the graph obtained by deleting e as well as the 
Sites at its ends (so that all the edges incident to e are also deleted). Then there is 
a simple recursion 

K(G) = K(G - e)+K(Ge e) (9) 

which is readily seen and also is readily implementable in a computer program. 
But also this general recursion may be advantageously manipulated in different 
ways for different special types of graphs. It is noteworthy that if the recursion is 
iterated with a choice for a sequence of edges so as to disconnect the resultant 
graphs into disconnected fragments then the fragments are separately treatable. 
For regular polymer graphs it can be used [133,136-138] to yield recursions on 
Kekule structure counts for chains of different lengths. Typically with KL defined 
as the number of Kekule structures in a polymer chain of L monomer units one 
finds linear recursions of the form 

M 
K N = ~ a  nKN_ n ( 1 0 )  

n=l 

with the coefficients a n being largely fixed for the particular type of monomer unit. 
The ends of the polymer chain make a difference in the values of the counts, and 
such ends identify a polymer to one of a few "long-range-order" classes (discussed 
in section 6.2) such that all those within the same class satisfy the same monomer- 
unit-dependent recursion, with different ends of the same class influencing the KL 
through initial values of the first smaller K L. From such recursions quite explicit 
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formulas for K L as a function of L may often be developed, and perhaps the bulk 
of Cyvin & Gutman's book [82] is given over to the such development for a fair 
number of different particular polymer strips. Often the formulas are for a range 
of strip widths w which then also appears in these formulas. Often also the 
formulas are for particular "long-range-order" classes, with notable modifications 
when the ends of a polymer chain are changed from one such class to another. 

Even for non-regular polymer graphs and especially catacondensed species 
there are elegant results, e,g., described in chap. 6 of ref. [82]. This scheme of 
Gordon & Davison [133] has a neat pictorial presentation which might be 
illustrated for a catacondensed polyhex chain: 

* first, given the displayed graph one begins to write in a sequence of numbers 
in the hexagons starting from one end with a 2 in the first hexagon and a 1 
adjacent to it (in a 0t__h hexagon); 

* second, each number in subsequent hexagons then is the sum of that 
immediately preceding and the 1st preceding number around a "kink" in the 
chain; and 

* third, the (desired) number appearing in the last hexagon is K(G). 
For instance, 

so that for this species K(G)= 25. Also there is a quite easy to use extension [135] 
to branched catacondensed polyhex species. 

4.2. Transfer-Matrix Methods 
The recursions of the preceding section can be alternatively cast into an 

especially elegant form for polymer graphs. The Kekule-structure count K L for a 
polymer chain of length L monomers can [ 139-144] quite generally be cast into the 
form of a trace 

K L = Tr(~" UL ) (11) 

where Y' is a transfer matrix characteristic of the monomer unit and ~ is a matrix 
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encoding the character of the boundary conditions, i.e., of the polymer chain ends. 
Basically ~ gives the number of ways a Kekule structure can propagate from one 
local pattern at the boundary of one monomer unit to another local pattern at the 
subsequent boundary of the next monomer unit. For narrow chains of say a couple 
hexagons width there are but a few such patterns, so that 2e is of a small size (say 
no more than 4x4), and upon diagonalization of ~ one has a quite explicit 
expression for arbitrary length L. From eq. (11) one may often find asymptotic 
long-chain behavior for K L in terms of the maximum eigenvalue A of ~, 

K L = A.A L (12) 

where the chain-end dependence (for all ends of a given long-range-order class, 
discussed in 6.2) occurs in A. In somewhat "exceptional" cases where the 
maximum eigenvalue of ~r occurs in a Jordan block of dimension d> 1, an extra 
factor of N e-1 occurs in Eq. (12). In the "common" case that A is nondegenerate 
the factor A is given in terms of the normalized maximum-eigenvalue (columnar) 
eigenvector c to ~ (and the transpose c* ) as 

A = c t ~ c (13) 

Moreover, for a (MxM) transfer matrix ~ with characteristic polynomial 

M 
p(x )  ~ det {xE-~  = x M - ~ a, x M-" (14) 

n=l 

it turns out that the number K N of Kekule structures for a polymer chain of N 
satisfy the recursion of Eq. (10), with the a, of Eqs. (10) & (14) the same. In fact, 
the recursion can oft-times be made even briefer using the minimal polynomial of 

in place of the characteristic polynomial. Thus the transfer-matrix is intimately 
related to such recursions as also are encountered [82,83,133,136-138]. As strip 
width w increases (as measured in terms of the number of bonds crossing a 
monomer boundary) the size of~increases exponentially with w, but the technique 
is still readily applicable for w up to about a dozen. 

Here the technique was first developed in a statistical mechanical framework 
[141], with in fact applications of the technique to other lattice combinatorial 
problems going back [ 145] to the 1940s. In this area the most focus has been on 
the infinite-length infinite-width limit as the solution for an extended 2- 
dimensional surface. In the resonance-theoretic context the treatment of some 
polymer chains of arbitrary width has also been made [142]. A flow chart for 
subroutines for the recursion of the preceding section and its use in developing 
transfer matrices for finite-width chains is described in [ 143]. Ref. [ 145] gives a 
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listing of transfer-matrix results for a few dozen different polymers. 

4.3. Kasteleynian Adjacency-matrix-based methods 
The most general Kekule-structure-count method of the present type was 

devised by Kasteleyn [146], though there is slightly earlier work for different 
special cases [33,147]. This too involves certain matrices, most simply the graph 
adjacency matrices A(G) with rows & columns that are labelled by the sites of G 
and elements that are all 0 except those Aab=+l with a & b adjacent sites in G. 
Then Kastelyn shows how for "planar" graphs to set up a "signed" versionS(G) of 
this matrix with half of its + 1 elements replaced by - 1 such that 

det {~(G)} = + {K(G)}2 (15) 

The signs appearing in ~(G) are to be such that: 
* first, ~(G) is antisymmetric; and 
* second if for an embedding of G in the plane one follows the edges of~ around 

any even face (i.e., minimal ring) of this embedding, then the number of times 
a minus sign is encountered is odd. 

That is, if one proceeds around a ring of sites i(1),i(2),...,i(n) then 

S l (1)i( 2 ) ~ 1 7 6  ~ l )i(n) ~ )i( l ) = - 1 (16) 

Kasteleyn [146] describes how this "odd orientation" is readily achievable for any 
planar graph. For instance, if one inserts arrows on edges of G so that an arrow 
from a to b indicates Sab=+l while Sba =- l, then an example of one such odd 
orientation is 

For the special case of polyhex benzenoid structures (such as is of importance for 
chemical applications) the determinantal formula for K(G) holds but in fact one 
need not even go through the signing procedure, using just Al(G) in place of S(G), 
as was earlier noted by Dewar & Longuet-Higgins [33]. 

4.4. John-Sachs Determinantal Method 
This scheme rather readily lends itself to hand computation on polyhex 

benzenoids of up to a dozen or so hexagonal tings, and of course even larger 
systems when computer automated The scheme is based on a 1-to-1 
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correspondence between Kekule structures and certain sets of mutually self- 
avoiding directed walks on the graph, and indeed this correspondence was noted 
earlier on in special contexts [ 133,134,148], and was utilized [ 141 ] in a statistical 
mechanical context in modelling collections of partly disordered polymer chains. 
The walks proceed from "peak" to "valley" without any regression - the 
correspondence between a Kekule structure and two such sets of 2 mutually self- 
avoiding directed walks is illustrated by 

where the diagonal-oriemed double bonds and (bold-face) vertical single bonds are 
the steps of the walks. Granted this correspondence John and Sachs [149] 
developed a neat algorithm to give the Kekule-structure count as the determinant 
of a small matrix W whose elements count the numbers of possible directed 
(individual) walks from a position on one side of the polyhex graph G to each 
position on the other side (independently of any other such walks). Also see 
[ 150,151 ]. Moreover, the elements of this matrix are conveniently obtained via a 

simple construction, not unlike that involved in "Pascal's triangle". For example 
the path enumerations from either "peak" to either "valley" of the benzenoid 
structure below are readily obtained as indicated 

! 1 

5 4 4 6 
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and then there follows a Kekule-structure count as 

(5 4) 
K(G) = det(W) = det = 14 

4 6 
(17) 

The consideration of the sets of mutually self-avoiding walkers has a wider import 
in revealing a fundamental invariant (the number of walkers) which turns out to be 
important in transfer-matrix solutions, as applied to polymer graphs extending 
even to the 2-dimensional limit [141,142]. Also this invariant or "order" has 
physical implications [71,72,84,85,152]. 

4.5. Other Methods 
Really very few significantly different other schemes for computation of 

Kekule structures or conjugated-circuit counts seem to have been explored to any 
great extent, presumably because the preceding schemes have been so successful. 
Dewar & Longuet-Higgins [33] and Herndon [153] describe an enumeration 
method based on the identification of non-bonding MOs for radical fragments of 
the graph under consideration. Randid [154] has considered a Monte-Carlo 
scheme, but the range of sizes ofbenzenoids up to a couple dozen tings are really 
quite easily treated exactly by the John-Sachs scheme - still the Monte-Carlo 
scheme is more evidently extendable to the treatment of the higher-level VB- 
theoretic models. There are some other less common schemes, e.g., as in [ 155]. 
Various special recursions are discussed in [82]. Several different schemes (most 
of which are as in the preceding sections) are applied to the enumeration problem 
for a particular set ofbenzenoids with particular edge-types but variable latitudinal 
& longitudinal dimensions. 

There are some notable special schemes for determining Pauling bond 
orders, which for a given bond e of a ~-network G is defined to be the fractionf~ 
of Kekule structures of G which have a spin-pairing at e. Of course, fe may be 
given as K(G-e)/K(G), so that it might be imagined that such f~ are readily 
obtained. In this regard an extension of the Gordon-Davison algorithm to obtain 
bond orders of a linear catacondensed polyhex has been made [ 156]. Especially 
neatly for a general benzenoid (i.e., polyhex) graph G, Ham [ 157] has shown that 
thesef~ are given as the corresponding elements [,~l-l]v (for e={i,j}) of the inverse 
of the adjacency matrix A for G. A related result applies [158] for all planar 
graphs G, giving the bond orderf, j as [S-~]ij with S the Kasteleyen matrix of the 
preceding subsection. Moreover, correlations of Pauling bond orders with MO- 
theoretic Coulson bond orders (for benzenoids) have been empirically observed 
[159], as also have correlations with experimental bond lengths [160]. 

Other powerful approximative many-body techniques which are more 
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standard in other quantum chemical areas such as renormalization group or wave- 
function cluster expansions are surely applicable to enumerating Kekule structures, 
such techniques having already been applied to some extent for the treatment of 
the higher-level models noted in sections 2 & 3. Indeed the more powerful 
methods of the preceding subsections 4.2-.4.5 seem to be limited to certain general 
classes of graphs, so that applications to Kekule structure counts for other types of 
graphs (particularly of a non-planar type representing 3-dimensional crystal 
structures) likely will make use of such approximation methods. Indeed Kamb & 
Pauling [161 ] have used a type of mean-field approximation for 3-dimensional 
lattices arising in conjunction with Pauling's resonating VB theory of metals. 
Different mean-field resonance-theoretic approaches are returned to in subsections 
6.4 & 6.4 here. 

5. CONJUGATED-CIRCUITS THEORY 

The conjugated-circuits model is one of the simplest quantitative models that 
has been reasonably well studied. As already mentioned this model may be 
motivated from classical chemical bonding theory (extended a la Clar's classical 
empiricist argument) or from Simpson's existential quantum-theoretic argument 
[ 121 ], or from a quantum chemical derivation indicated in our hierarchy of section 
3.2. But beyond derivation of the model there is the question of its solution, such 
as we now seek to address. 

5.1. Herndon-Simpson model 
To solve the Hemdon-Simpson model a more precise description of the 

model is desirable. Being defined on a space with a basis of orthonormal Kekule 
structures, the model Hamiltonian is naturally built from operators which 
transform different Kekule structures about amongst one another, presumably in 
a "local" way. This condition of locality means that we are interested in 
(interaction) operators which act on a Kekule structure only locally, in the sense 
that such an operator rearranges only a few nearby spin-pairings in a Kekule 
structure. The simplest operator Ad(a-b), for a-b an edge of G, is such that when 
applied to a Kekule-structure state I K) the result is merely either I K) back if the 
edge a-b is in K or else 0 if the edge a-bqiK. There are of course of course similar 
diagonal operators for two or more bonds, e.g., for taro disjoint bonds a-b & c-d, 
one has Ad(~-b c-d)= Ad(a-b)Ad(~-d ). But of course these are diagonal, and we 
naturally need off-diagonal operators also. For a benzenoid system the simplest 
off-diagonal operators give a nonzero result if a given circuit has alternating 
double & single bonds whence it simply move the double bonds of this conjugated 
circuit one step around the circuit, and the sum over all such off-diagonal circuit 
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operators for all cycles of size n we denote by Aod(n ). Similarly the sum over all 
diagonal n/2-fixed-bond operators for all cycles of size n is denoted by Ad(n ). For 
benzenoids all the "basic" tings are of size 6, and the only size conjugated circuits 
which arise are [ 162] Hiackeloid in the sense that they are all of a size n=4m+2 for 
m an integer, so that the only operators which occur are A~ (n) & A d (n) with 
n=4m+2. Then for benzenoids the Hemdon-Simpson model up through "5th 
order" turns out to be [ 120] 

HHS = 7~ Aod (6) + T~ Ad (6) + 72 Aod (I 0) (18) 

At the next higher stage (at "2 orders" higher) a 10-site diagonal t e r m  A d (10) 
appears along with off-diagonal circuit operators for each of the three possible 
types of 14-cycles. That is, there arise 14-site operators Aod (14a), Aod (14ph), & 
Aod (14py) each with different coefficients and each associated to different 14- 
cycles taking the respective shapes of anthracene, phenanthrene, or pyrene: 

The derivation via the hierarchy of section 3.2 catches the diagonal terms and the 
distinction between the different types of 14-circuits, which in other formulations 
were not included. They can of course be imagined to be included via the other 
approaches, though they were not. The diagonal terms are perhaps the most subtle 
in other approaches, because seeking for a resonance energy to result from the 
conjugated-circuits model, one realizes that the diagonal terms for a single edge 
should be 0. 

For non-benzenoids a Hemdon-Simpson model is also possible, though less 
well explored in a fundamental way. Indeed Rothksar & Kivelson [163] have 
given the very first terms, through "2nd order". The diagonal t e r m  A d (4) plays 
a key role and occurs with a negatively signed coefficient, so as to counteract the 
"effect" of the off-diagonal term A d (4), with a smaller coefficient and such as to 
-otherwise enhance stability. In a derivation from the Hubbard model the 2nd- 
order form appears only to be reasonable perhaps up through t tl/U= 1/4, which is 
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considerably smaller than is appropriate for a conjugated carbon network (for 
which [t[/U=2/3, at equilibrium bond lengths). Such small Itl/U~l/4 may 
however be appropriate for the couplings between Cu 2+ ions of the Perovskite 
lattices of interest to Rokhsaar &K.ivelson [163]. For non-altemants there is a yet 
further complication in that there are questions about the choice of phase of VB 
structures, even of Kekule structures. Still of course one could move ahead with 
a more empirically motivated form of the conjugated-circuits model, and indeed 
this is what now often has been done - see, e.g., the reviews [ 123,164], or the C60 
computations [81 ]. 

5.2. Solution of the model 
One approach to solving the Hemdon-Simpson model is tos imply  go 

through standard matrix diagonalizations. This is what was considered by 
Simpson [121], and so long as there are not too many Kekule structures this is 
quite reasonable. Indeed, this is applicable for all well-characterized benzenoid 
molecules, which seem to so far be limited to ---20 rings, with no more than a few 
thousand Kekule structures. But larger benzenoids surely occur in various 
pyrolysis mixtures, and benzenoid polymers are starting to be prepared, and of 
course graphite itself is viewable as an extra large benzenoid (infinite to a first 
approximation). 

A second approach to solving the Hemdon-Simpson model is to make a 
wave-function Ansatz which then leads to an upper bound to the ground state. The 
simplest Ansatz (of Pauling & Wheland [12]) is a uniform sum over all Kekule 
structures, 

G 

I W, ) - E ] K )  (19) 
K 

From a classically motivated view this should in fact be a good approximation to 
the ground state, and as it turns out it has the correct phase relationship between 
all the Kekule structures (if we make the restriction to alternants, and choose the 
phase such that in Pauling's spin -pairing diagrams all spin-pairing arrows are 
directed from Starred to unstarred sites). An improved Ansatz is 

G 

I Wx) - g x~(~) I K) (20) 
K 

where x is a variational parameter, and c(K) is the number of conjugated 6-circuits 
in K. This is a reasonable Ansatz, with the expectation that 0<x< 1, while for x = 1 
it reduces to the simpler Pauling-Wheland Ansatz. Even better, for the coefficient 
of I K) one could include an additional term yC.(K) with y a further variational 
parameter and c '(K) the number of conjugated 10-circuits in K. But such cluster 
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expanded wave-functions have been relatively little explored. One such cluster 
expansion developed [ 165] for a homologous sequence ofbenzenoid polymers has 
been developed, and found to yield an exact ground state, for a specific choice of 
Hamiltonian parameters, not overly different from those actually preferred. For the 
usual parameterizations the Ansatz is very close to the exact ground state of these 
polymers, with the Pauling-WhelandAnsatz even being quite reasonable. Another 
related ansatz which has been proposed [166] entails c(K) in place of the 
coefficient x ccr) in Eq. (20), and is expected to be quite decent for not overly large 
molecules. In addition, with such a variational ground state as ]Lt' x), as in Eq. (20), 
there arises [167] a neat description for excited states, in terms of so-called 
"single" excitations (where the "single" here refers to single local rearrangements 
of spin-pairings). 

Indeed the vast bulk of work with the Herndon-Simpson model has been in 
terms of the simple uniform sum I ~  ). For this case one finds 

(W~ [q~, ) = K(G) (21) 

and 

G 
(kIJ1 IHHsIWI ) = E {(Y~ + Y~ ) #6(K, G) + Yz #10 (K,G)} (22) 

K 

Where #n(K,G) is the number of conjugated n-circuits of K in G. But (as 
emphasized in [89]) this is just the conjugated circuits model, such as used by 
Hemdon [79] and by Randid [80] with parameters interpreted as 

R1 = Yl+'Y; & R2 = Y2 (23) 

With higher order terms in the model additional counts #,(K,G) arise. 
For various non-benzenoids the model has been more or less empirically 

extended. One simply includes [79,80,168] additional terms #4(K,G) & #8(K,G) 
with associated additional coefficients, -Q~ & -Q2 respectively, where the 
negative sign emphasizes (with the Q~ & Q2 of the same sign as R~ & R2) the 
resonance-destabilizing nature of the new terms. See, e.g., [ 123,164] for reviews 
referencing a number of applications. 

5.3 Matrix Element Evaluation Schemes 
There are different methods to evaluate the numerator ( ~  I HHsI~ ) in the 

conjugated-circuits expression for the resonance energy. One approach is simply 
to go through each Kekule structure identifying and counting up conjugated n- 
circuits as occur in each. In another approach this numerator is recast as 
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6 10 

C C 

where the sums are over conjugated 6- & 10-circuits, and the K(Ge C) are Kekule- 
structure counts for Ge C (much as in section 4.1). 

Thence all the various methods we have noted for the enumeration of Kekule 
structures also apply for obtaining the conjugated-circuit numerators. For polymer 
graphs recursions on the polymer length can be developed, as e.g., in [ 136]. The 
special pictorial Gordon-Davison algorithm (as described in section 4.1) extends 
[ 139,143] nicely to conjugated circuit counts. In the context of conjugated-circuits 
counts for a regular length-L polymer graph, the conjugated n-circuit count #s 
is obtained as 

L 

#L(B) "--- /~=1 Tr(~ 'F ' -"C '~  s (25) 

where C is a connection matrix also characteristic of the monomer unit. Really 
C can be viewed as a sum of modified transfer matrices each with a different n- 
cycle deleted within the considered cell. (If n is sufficiently big or the monomer 
cells are sufficiently small, the n-cycle deleted structure may span two monomer 
units so that C would instead replace two powers of Y'.) Again this leads to quite 
explicit solutions, at least for polymer chains of not too great a width. And 
sometimes arbitrary width polymeric systems can be relevantly treated, as in [ 169], 
for a sequence of polymers which then converge toward graphite. The recursion 
method for regular linear polymers also extends neatly, so that 

#s = ~ b; #s (n) (26) 
i 

with the unit-cell dependent coefficients bi given as 

2M 
{p(x)} 2 = x TM - ~ bi x 2M-~ (27) 

i=1 

where the polynomial p(x) is the same as that of Eq. (14). That is, the linear 
recursion for conjugated-circuit counts has a characteristic polynomial which is 
simply the square of that for the Kekule-structure enumeration. 

Notably Kasteleyn' s method [ 146] of Kekule-structure enumeration extends 
[ 158] neatly & computationally efficiently to the solution for conjugated-circuits 
counts for general planar graphs. One inverts the matrix Z(G) and computes 
determinants for submatrices associated with each cycle for which conjugated- 
circuit counts are sought. That is, the mean conjugated circuit count for a 
particular cycle C of a graph G is given as 
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(C)G = det( S'I )c (28) 

where a subscripted matrix/~c indicates just the submatrix of a matrix/~ for the 
rows and columns associated to the sites in C. The method has been applied to 
several thousands [170] of fullerenes (many with more than a million Kekule 
structures), to numerous polymeric systems [ 171], and also [ 172] to a couple dozen 
different extended (i.e., infinite) planar carbon- network graphs, most with some 
5- & 7-membered tings. All this proceeds with the difficult part of the 
computation being the inversion of the adjacency-like matrix ~, and as a 
consequence the computations are of comparable difficulty as ordinary Htickel- 
theoretic (or tight-binding) ones. 

Thus many of the Kekule-structure enumeration methodologies of section 
4 have been shown to rather neatly extend to conjugated-circuits enumerations, 
with but modest trouble beyond the overall Kekule-structure count K(G). 

6. MISCELLANEOUS QUALITATIVE APPROACHES 

As it turns out though even the simplified VB-theoretic formulations giving 
rise to conjugated-circuit theory or even just Kekule-structure enumeration, may 
become challenging for sufficiently large (perhaps formally infinite) systems, or 
for non-Kekulean (i.e., radicaloid) systems. It might oft be convenient if explicit 
enumeration of Kekule structures could be avoided. Notably for such cases there 
are some few alternative sorts of means by which to obtain some partial 
information about the system, within a VB-theoretic context. 

6.1. Isoresonance 
One ultimately simply applicable theoretical tool is that of"isoresonance". 

Naturally isoresonance should be a type of equivalence for which two different so 
equivalent molecular structures exhibit especially similar resonance interactions. 
Clearly such interactions depend on superpositions between pairs of VB pairing 
patterns (as early considered by Pauling [ 10]). But the most important Kekule 
structures to superimpose typically are the nearest-neighbor spin-pairing ones, the 
Kekule structures. Such a superposition between K & K' is conveniently 
graphically represented by a spanning subgraph S of G such that the edge set of S 
is the union of that for K & K' together. E.g., for naphthalene 

u ," 7 1  = [ / '7  
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Then [ 173] two molecular graphs G & G' are said to be isoresonant iff the set of 
superposition graphs for the two are in one-to-one correspondence such that 
corresponding pairs of superpositions are isomorphic as graphs. This condition of 
isoresonance is notably stronger than the condition that G & G' have the same 
number of Kekule structures, this weaker condition having been termed [174] 
isoarithmicity, and considered as a condition for similarity of two .conjugated 
networks. In terms of our simple definition azulene and 10-annulene would be 
isoresonant (each having two Kekule structures, with two different alternation 
pattems around the 10 cycle), and also isoarithmic. In fact one may modify the 
definition ofisoresonance to strengthen it, e.g., so that the correspondence between 
superposition graphs S & S' is required to be augmented with a correspondence 
between some additional edges of the n-network graphs G & G' not appearing in 
S & S' (especially these additional edges might be required to occur between 
correspondent relative locations of components in the superposition of S & S'). 
Such additional possibilities are considered in more detail elsewhere [ 173]. In any 
event any of these definitions of isoresonance imply that for two isoresonant 
molecules G & G': 

* first the conjugated circuits energies are the same; and 
* second there is a correspondence between Pauling bond orders (specified for a 

bond e as theffraction of Kekule structures which contain that bond). 
Indeed there are correspondences within different levels of approximation for 
higher-level models too, as discussed in [173]. Thence there indeed is a 
consequent degree of equivalence between two such structures, G & G'. 

Notably there are certain types of benzenoid structures which can be 
recognized as isoresonant by theorem without recourse to the explicit generation 
ofsuperposition diagrams, or even of Kekule structures. These special benzenoids 
involve those with chains of cata-condensed hexagons, such a chain being 
identifiable by a sequence of labels for each non-terminal hexagon specifying the 
manner of cata-condensation of the hexagon to the hexagons on either side, either 
as para-fused (as for the center ring of anthracene) or as recta-fused (as for the 
center ring ofphenanthrene). Thence tetracene would bear the fusion label para- 
para, or more simply just pp, whereas both of the species 
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would be labelled as m e t a - m e t a ,  or more simply just mm.  Then the theorem is that: 
two benzenoid cata-condensed chains are isoresonant if they each have the same 
such fusion label (with the sequence for a label recognized as the same in either 
forward or reverse order). Indeed such benzenoid structures have long been noted 
to satisfy the weaker condition of isoarithmicity (as is readily evident, e.g., from 
the Gordon-Davison enumerative scheme [ 134] for cata-condensed chains). But 
being isoresonant implies of itself a greater degree of similarity. And this is 
bourne out in comparisons [173] involving a great variety of different 
computational schemes, and even of some experimental data on reactivities of such 
benzenoids. Thence at least for this subclass ofbenzenoids this qualitative bit of 
information as to similarity is very easily obtainable. 

6.2. Theorematics for Pauling-Wheland resonance theory 
Within the presumption of the resonance theory ofPauling & Wheland there 

are some results which reveal a type of long-range spin-pairing order, with some 
apparent chemico-physical consequences. This ordering in fact may be seen to be 
of a long-range nature and to have some interesting consequences, as regards 
different ground states with different degrees of this order and as regards novel 
excited states, which can under suitable circumstances be of a solitonic nature, 
thereby making possible the dissipationless propagation of information from one 
end of a polymer chain to the other. As such this suggests the possibility of 
quantum computation at a very small scale without generation of much (resistive) 
heating. 

These ordering ideas may developed in terms of some fundamental graph- 
theoretic notions. A cu t se t  c of a connected graph G is defined to be a set of edges 
such that if deleted from G (without deleting any sites of G) the result G-c is 
unconnected, with disconnected parts G+ and G_ such that every edge of c has one 
end in G+ and one in G_. As earlier, letA& Bdenote the two sets of types (starred 
& unstarred) of sites when G is bipartite (or altemant). Also let cA+ denote the 
subset of c consisting of edges with an end in A also in G+, and let cg+ denote the 
subset of edges of c with an end in B in G§ Let the edge set of a Kekule structure 
K be denoted E(K). Then we have: 

Ordering Theorem ~ Let c be a cutset in a bipartite graph G with a Kekule 
structure K. The difference A(G,c) between the orders of ~(K)~cA+ & E(K)ncB+ 

is independent of the particular Kekule structure ~:. 
That is, for each cutset e as defined above, the quantity A(G,c) is a type of 

(c-dependent) characteristic for each Kekule structure of G such that the value is 
independent of the Kekule structure. Proofs are given in Refs. [85,175]. An 
example may be of interest, such as for ovalene, for which we might consider a cut 
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set c of edges as intersected by the dashed line: 

C 

Then for a selection of 4 of the 50 Kekule structures 

we evidently have A(G,c)=2 double bonds in the cut. This evidently places 
constraints on Pauling bond orders, with consequences for bond lengths. But of 
special interest is that sometimes the value for such A(G,c) influence those for 
other A(G,c') with c & c 'very  distant and independent of some features of G, as 
is soon to be evidenced. 

Of special interest is the case where the graph G is quasi-1-dimensional (i.e., 
a polymer chain, strip, or tube). The dividing sets e of edges can be conveniently 
composed from the sets of edges intersected by unit-cell boundaries. The 
invariance theorem as considered involves the assumption that the graph be finite, 
so that to apply it one also needs polymer ends, or if considerations independent 
of ends are desired, then cyclic boundary conditions might be invoked. With ends 
the polymer can be divided in two by a set of edges intersected by a single "unit- 
cell" boundary, whereas with cyclic boundary conditions the polymer is divided 
in two by a set of edges intersected by a pair of unit-cell boundaries. A regular 
polymer graph is defined as one which is translationally symmetric when cyclic 
boundary conditions are chosen (or possibly in place of the primitive translation 
one may use a glide translation, to admit an even smaller unit cell), and in a regular 
polymer one speaks of different sites (or bonds) as being equivalent if when there 
are cyclic boundary conditions they are transformed into one another by a 
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translation (or perhaps by a glide translation). A set e of edges intersected by a 
single "unit-cell" boundary is called a boundary set. Each boundary has two sides, 
one called the + side and the other the - side, and when two boundaries are 
translationally equivalent the + sides of each are also presumed to be chosen so as 
to be translationally equivalent (whence the - sides are also translationally 
equivalent). Let e~ denote the subset of e with edges have starred sites at the end 
on one side (the + side) of the boundary, and let e~+ denote the similar set of edges 
with unstarred sites at the end on that same side of the boundary. Then we have 
[851: 

Theorem ~ Let G be a bipartite regular polymer graph G with cyclic 
boundary conditions and with a Kekule structure K, which has edge set E(K). 

Then the difference 8(G,e,K) between the orders of era hE(K) and of e~+nE(K ) for 

translationally equivalent boundary sets e varies with a period of no more than 2. 
The period can only be 2 if the primitive translation interchanges starred & 
unstarred sites. 

As an example we may note: 

| e ! II 

, I I ! I . I i I , I 

! t 
I e . I ; 

! I I i 

The difference 6(G,e,K) evidently describes a type of long-range order for the 
Kekule structure. Thence for cyclic boundary conditions the different Kekule 
structures fall into a finite number of different classes depending on their long- 
range-order parameters. As such a polymer becomes ever longer, Kekule 
structures in such different classes exponentially rapidly approach non-interaction 
via any "local" interaction operator, because such Kekule structures in different 
classes differ from one another in every unit cell. Thence in approaching the high- 
polymer limit each different such class of Kekule structures gives rise to its own 
separate and independent ground state. The value for the lowest ground-state 
energy level is of special interest, and also whether or not there is degeneracy is of 
special interest. Degeneracy can arise via a symmetry argument, most simply 
recognized if the period of oscillation of the relevant long-range-order parameter 
6(G,e,K) is 2, for then there is a second class of Kekule structures with the same 
oscillation pattern but off-set by one unit cell (i.e., by one step of the primitive 
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translation). There are a few discussions [72,162,169,176] of the relevance of this 
long-range ordering in the theory of conjugated polymers. Also long-range 
ordering in resonating VB states has also often been suggested [85,152,177] to be 
of relevance for the perovskite high-temperature-superconducting structures. 

The long-range-ordering theorems can be broadened to allow (in place of the 
Kekule structures) any VB structure with spin-pairings always between starred and 
unstarred sites. The utility in the identification of a long-range-order parameter 
needs however a limitation to (or at least a strong preference for) shorter range spin 
pairings contributing to a wave-function. Some discussion is found in the chapter 
by Garcia-Bach in the present book. The theorems can also be broadened to allow 
G non-bipartite, so long as one of the two parts arising from a dividing set is 
bipartite. 

Anderson & Fazekas [ 178] also early mentioned the possibility of some sort 
of long-range order for resonating VB wave-functions. And even earlier Thorson, 
& co-workers [49] suggest a long-range order in such wave-functions. Quite 
convincing demonstration of a long-range ordering for the linear-chain nearest- 
neighbor Heisenberg model have been achieved [ 179], though this really seems to 
be of the type discussed in the preceding paragraphs. 

Finally a different category of theorematic result concern spin-space Kekule 
structures occurring as exact ground states to spin Hamiltonians with short-range 
interactions. Indeed around 1970 Majumdar & Ghosh noted [ 180] that for even 
cycles with a next-nearest exchange coupling of 1/2 the strength of the nearest 
neighbor coupling, the two available Kekule structures turn out to be ground states 
for even cycles up to 12, while for larger even cycles these two states where 
demonstrated to be eigenstates, which they conjectured to be the ground state. 
Subsequently a proof of their conjecture was obtained [181] with the proof 
technique [ 182,183,184] applying for additional special (still short-range) models, 
even in 2 or 3 dimensions. As such one may imagine such models as of utility in 
a perturbative approach, where the Keloale-structure space is split in first order. 
Even for higher site spins than s=l/2 some analogues to Kekule structures have 
been suggested [71], and found [ 185] to sometimes be ground states to suitable 
special Heisenberg Hamiltonians for higher spins. Indeed such resonance-theoretic 
wave-functions solve [186] some special Hubbard-like models. These results 
might also be viewed as categorizable under the next section. 

6.3. Theorematic results for the Heisenberg model 
As it turns out for general bipartite (or alternant) molecular graphs, there are 

some rigorous theorems using a fairly general model, the nearest neighbor simple 
covalent VB model. There is an initial fundamental "working" theorem [187] 
which characterizes what might be termed the "nodal structure" of the ground-state 
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wave-function on the spin-product basis. But of more directly manifest 
experimental relevance is the theorem [63,64] for which the ground-state spin is 
given in terms of the orders of the starred & unstarred sets of sites, as 

SuB- I IAI- I BI I/2 (29) 

In fact this applies even if the nearest-neighbor exchange interactions are of 
different sizes (as one might imagine ifa degree of bond localization is considered 
to lead to slight variations in bond lengths). Moreover this theorem extends for the 
half-filled nearest neighbor Hubbard model for which all the sites have the same 
on-site electron-repulsion parameter U. Yet further for a more general PPP model 
this result is found (via brute force complete configuration-interaction computation 
[67,68]) to persist for all (92) chemically plausible altemants of 10 or fewer sites. 
This and further (even experimental) comparisons are discussed elsewhere 
[67,188]. 

There are some further theorems concerning the signs of various ground- 
state expectation values (still for bipartite graphs). First [64] for expectations over 
an exchange operator for an arbitrary pair of sites 

<0 

<Vls,.sjlv> >o 
, i & j on unlike sites (A & B, or B & ,4) 

, i & j  on like sites (A & A,  or B & g) 
(3o) 

where s k is a spin operator for site k. Next for spin densities (maximal expectations 
over the z-component of site spin operators), there is [65] the theorem 

f <0 , j inA 
< lsffl > 

>0 ,j  in B 
(31) 

where s~ is the z-component ofsj and there are imagined to be at least as many type 
A sites as type B sites. Further there are two theorems given in [64] concerning 
point-group-like symmetries of the ground state. All these have simple extensions 
to nearest neighbor antifermomagnetically signed Heisenberg models for arbitrary 
site spins (other than site spin 1/2). All these theorems are quite simply applied, 
though the overall-spin result requires a finite molecular graph. 

For infinite systems there is another type of result concerning long-range 
magnetic order, which is implicated in making a material "magnetic" in the sense 
that there be a phase transition at the onset, as well as hysteresis. This Neel-state 
type of ordering concerns the spin correlation function 
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m ( i , j )  -- (+)  (s  z s j )  -" m= as d ( i , j )  -" oo (32) 

where the + sign applies as the sites are (+) or ~e  not (-)  of the same type (starred 
or unstarred), where d ( i , j )  is the distance between the sites i &j ,  and where the 
expectations are for the (temperature-dependent) thermodynamic average, for the 
nearest-neighbor Heisenberg model (in the limit of 0 external magnetic field). 
Then for infinite translationally symmetric bipartite lattices in 1- or 2-dimensions 
Mermin & Wagner have shown [ 189] that at all positive temperatures m. =0, and 
this result has been extended [67] to apply also to all possible subgraphs of such 
lattices. That is, for these species classical antimagnetic behavior is precluded. 
But it is to be emphasized that with-a relaxation of the assumptions of the theorem, 
especially at the borderline case of 2 dimensions, this conclusion may be voided. 
E . g . ,  if there are secondary weaker interactions amongst a whole set of such 
molecular networks, then magnetic ordering would not be in violation of this 
theorem. 

Finally it may be mentioned that there have been efforts to extend these 
theorems to higher order models than the nearest-neighbor Heisenberg model (on 
bipartite graphs). Most notable in this regard is Lieb's [190] spin result in 
agreement with Eq. (23) for the ground state of the half-filled Hubbard model. For 
yet higher order models, the results [190] are quite meagre, for linear chains or 
simple cycles. 

6.4. Mean-field resonance theory 
Some aspects of the resonance-theoretic approach may be distilled to a form 

useable without reference to individual Kekule structures, especially for the case 
ofalternant systems. For these alternant or bipartite systems there are two subsets 
of sites A & B such that sites in one set are bonded solely to sites in the other set, 
and the (antiferromagnetically signed) exchange interactions of the simple 
Heisenberg model occur solely between sites of these different sets.. Further it is 
important to realize that the spin-pairing of the various VB clusters may be 
stipulated in the ground state to occur solely between sites in the A & B subsets. 
For our bipartite benzenoid graphs the pairing-stabilizing interactions occur solely 
between these subsets, so that spin pairing may be expected to be maximized to the 
extent consistent with this stipulation. Further [7] a double spin-pairing one within 
A and one within B may be reexpressed as a linear combination of two inter-set 
double spin-pairings, so that there is a basis of VB functions with any intra-set 
spin-pairings canceled out between the two sets. Moreover spin pairing beyond 
the extent dictated by our stipulation (say with spin pairings within the more 
numerous set, say A, while there are none within B) would introduce constraints 
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on the wave-function, so that it is more energetically favorable to allow the 
freedom foregone by such constraints. Yet further it may be viewed to be the 
content of the finite-molecule Lieb-Mattis analysis [63,64] as explicated to some 
degree in [91 ] that the ground state may be stipulated to be comprised from VB 
structures solely with spin pairings between the two sets functions, and of those 
only those with the maximum number of such intra-set spin pairings. As a further 
consideration, the greater the number of low-energy such VB patterns the greater 
the stabilization (because of mutual "configuration interaction" amongst these 
patterns), this phenomenon [ 12,17] being termed resonance. But even patterns 
with non-neighbor pairing can contribute to this resonance especially if they are 
not too different from a maximally neighbor-spin-paired pattern and there are a 
greater number of such resonance structures. Thus to achieve overall energetic 
stability we might make [91 ] three considerations: 

(Alt) the spin pairing occurs to the maximum extent between sites from different 
sets ,4 & ~, 

(Loc) the spin-pairing is preferably between nearer sites; and 
(Res) the number of resonance (or VB) structures should be a maximum. 

The first rule provides a framework in which the next two points may in general 
be in conflict, so that the contribution from non-neighbor spin-pairing may be 
somewhat enhanced in order to allow more resonance. It is understood that 
beyond neighbor pairing there is a weakened preference to a slightly more distant 
local "vicinity" pairing. If a pairing between very distant sites makes a 
contribution, then this spin pairing provides little stabilization so that at a very 
slight energy above the spin-paired wave-functions there should be a state with the 
electron pair truly unpaired - i.e., triplet coupled, thereby leading to an excited 
state with additional unpaired spin density and an overall spin greater by 1 than in 
the ground state. 

The question of the competition between maximization of neighbor pairing 
and resonance may be rephrased [91,192] in terms of "mean resonance fields" 
arising from whole sets of resonance structures. This approach is conveniently 
managed in terms of resonance-theoretic "bond orders" and "free valences". The 
resonance bond order for a neighbor pair {i,j} of orbitals is putatively identified 
as the fraction po. of ground-state contributing structures which have the electrons 
of these two orbitals spin-paired; and the f r ee  valence for a site i is the fraction v i 
of ground-state contributing structures which have no spin-pairing to another 
electron in the vicinity of site i. What is meant by "vicinity" here may be given 
different interpretations. If the vicinity is taken as the limit of nearest neighbors 
with all spin-pairing between such neighbors (and each of the maximally spin- 
paired bonding pattems is taken to contribute equally to the ground state), then 
these "lst-order" Pu are called [157,159,160] Pauling bond orders, and the 
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associated "lst-order" vi might be called Paulingfree valences. For instance, for 
benzene, naphthalene, and trimethylene-methyl, Pauling bond-orders and free 
valences for three different species are as in figure 4 (as obtained directly from 
examination of all the nearest-neighbor spin-pairing patterns). It has been 
demonstrated [160] that for a variety of non-radicaloid benzenoids the Pauling 
bond-orders correlate closely with experimental bond lengths. Too any remnant 
free valence may be indicative of unpaired spin density, as in the third 
trimethylene-methyl case of figure 4, for which it is known both experimentally 
[ 193] and theoretically [ 194] to be a triplet ground state with spin density primarily 
on the terminal atoms. For these Pauling bond orders and Pauling free valences 
one often imagines examining the full set of Kekule structures (or maximally 
paired spin-pairing VB diagrams). 

The maximization of the number of neighbor-paired sites clearly minimizes 
the fi'ee valences. The maximization of resonance is also somewhat intuitively 
clear: resonance is greatest when the bonding patterns are as delocalized as 
possible. That is, for maximal resonance one might anticipate that the probability 
(or bond-order) of a double bond along any one of the directions away from a site 
to its nearest neighbors is equally likely. For benzenoids (and many of the other 
organic species we consider) the maximum number of neighbors is 3 so that 
resonance would seem greatest the more nearly the ~-bond orders are to 1/3. Then 
even without explicit consideration of the Kekule structures of a species, the 
maximization of resonance might lead one to (tentatively) assign O-order bond 
orders of 1/3 and corresponding O-order free valences as deficits from 1 of the 

0 0 0 

0 0 0 0 

0 0 0 

0 0 0 

l/3 

.L. 
2/3 ~t3 

Figure 4 - Pauling bond orders and flee valences for benzene, naphthalene, 
and trimethylene-methyl. 
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sums of these 0-order bond orders incident at a site. That is, this 0-order free 
valence for a site i turns out to be just 1 minus one third of the n-network degree 
of site i. In many cases additional pairing between neighbor sites may further 
reduce the free valences, yielding 1st-order bond orders and 1st-order free 
valences. For instance for naphthalene, we may take each 0-order bond order to 
be 1/3 whence one obtains remnant 0-order free valences, as 

1/3" t/a I/3 
" "  ~ , ,  ~ 

where also we indicate the possibility for additional lst-order spin pairing to the 
extent of 1/3 of a pairing for each of the curved dashed lines. Thence one is 
immediately led to (1 st-order) bond orders coincident with the Pauling bond orders 
noted in figure 4. The avoidance of direct reference to individual Kekule 
structures is of little relevance for naphthalene, but proves quite valuable for 
extremely large conjugated networks. 

Generally one may further introduce spin-pairings betweenA& Bsites even 
if not neighbors (though preferably as close as possible). That is, the free valences 
on one type of sites are (at least partly) satiated by other free valences located on 
the other type of sites ( i .e . ,Avs.  Bsites). As a consequence it is just the difference 
between the net free valence on the two sets which results in unpaired spins (in the 
ground state). And this difference is the same for the full free valences as well as 
for the 0-order ones. But the i ~ A & j ~ B  site sums for the 0-order free valences can 
be neatly expressed in terms of the numbers a._ & b z of degree-z sites on the A- & 
B-sets of sites (for z = 1,2,3 being the only possibilities). That is, the overall number 
of unpaired spins is [91,192] predicted to be 

A B 
URT = I { ~  Vi - 2 Vj }1 = 1{2a~ + az - 2 b ,  - b2} I/3 

i j 
(33) 

Notice too that in the present argument the (unpaired-electron) spin density should 
appear primarily on the sites with an excess free-valence sum, especially for those 
such sites more well separated from opposite-type sites with non-zero free valence. 
Yet further too if distant sites need to be spin-paired, then there should be a low- 
!ying higher-spin excited state where the spin-pairing is violated. For finite 
conjugated molecules this further leads to agreement with the spin result of Eq. 
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(25), of section 6.3. But in the present formulation a wider range of predictions 
even for extended infinite systems, and also there are some indications of the 
location of the unpaired electrons. Such additional predictions would seem to be 
a major value of the present resonance-theoretic framework, so that such matters 
we now consider. 

6.5. Application of Mean-Field Resonance Theory to Defected Graphites 
One application where the resonance-theoretic formulation turns out to be 

significantly more transparently useful than the fundamental theorems for ground- 
state spin involves infinite (or large) networks where the count of A & B sites is 
either balanced though not locally, or perhaps even the difference between the A 
& B counts may be indctcrminant. These examples then include graphitic 
networks with a local defect or a semi-infinite edge (which maybe viewed as a line 
of defects). For the case of translationally symmetric edges, our resonance- 
theoretic approach also quite easily makes predictions, about the number of 
unpaired spins per unit cell Of edge. For instance, for the two types of edges in 
figure 5 one may apply the resonance-theoretic arguments to reveal 1/3 of an 
unpaired electron per unit cell in the first (zig-zag) case, or 0 in the second 
(corrugated) case. The application of the resonance-theoretic argument, showing 
the first-order bond orders & unpaired spin densities for a single unit cell are given 
in figure 6, where also the analysis is repeated for a third type of edge, with 2/3 of 

Figure 5 - Portions of zig-zag & arm-chair edges of graphite. 
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Figure 6 - Unit cells for three graphitic edges showing 0-order free valences, 

and additional higher-order spin pairings indicated by dashed lines. 

an unpaired electron per unit cell of edge. Interestingly again, predictions [91,195] 
for these cases (as well as several others) end up in agreement [91,194,196] with 
unrestricted-Hartree-Fock (UHF) band-theoretic results for the Hubbard or PPP 
models for such edges. That is, when one looks at UHF band structures for rather 
wide strips with these various types of edges it seems to turn out (in case after case 
that there are edge-localized non-bonding band orbitals with unpaired electrons of 
the same spin all along each edge, such as to match that predicted by our resonance 
theory. But the band-theoretic argument is somewhat more involved and typically 
is of a numerical nature. The simple mean-field result for edges also seems to be 
in agreement with slightly more elaborated resonating VB-theoretic arguments 
[197]. 

The case of vacancy defects in graphite is also of interest. Most simply one 
may consider a graphite lattice with a single n-center deleted, whence our 
resonance-theoretic approach predicts 1 unpaired electron, localized near the hole 
with density primarily on the three sites adjacent to the deleted n-center, as in 
figure 7(a). Indeed this prediction is confirmed [45] from solutions to the 
conventional Htickel model for such a single hole in graphite. If a Y-shaped 
(trimethylene-methane) unit is deleted, then our resonance-theoretic argument 
predicts 2 unpaired electrons, with density on the 6 sites adjacent to the Y-shaped 
hole, as in figure 7(b). If a single pair of adjacent sites is deleted, then one has the 
situation in 7(c), then the resonance-theoretic argument yields to first-order 
unpaired electrons on the 4 sites adjacent to the deleted pair, but it is seen that this 
unpaired spin density may in second order be paired up (between next-next-nearest 
neighbors sites, in different A & B sets). Notably with cases 7(a) or (c) it is seen 
that such local spin-pairing cannot be accommodated (in finite order) without 
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Figure 7 - Vacancy defects of 1, 2, & 4 sites in graphite. Again 0-order free 
valences are shown with higher-order spin pairing indicated by dashed lines. 

compromising the resonance pattern of uniform bond orders in the bulk of the 
graphite. Overall it turns out that for molecule R with a(R) & b(R) sites of A & B 
sets, the corresponding vacancy denoted by 1t has a number of unpaired spins 
localized in the general area of the defect as given by 

u(It) = [a(R)- b(R) l (34) 

This corresponds to the number of unpaired electrons in R also, and we term 5I the 
graphitic anti-molecule corresponding to R. 

Beyond these two example applications a number of others have been 
described. These concern not only ordinary radicaloid (finite) molecules, but also 
polymer ends, graphitic comers, carbene containing systems (with ferromagnetic 
couplings between the singly-occupied o-orbitals and the n-network), and even 
some systems with transition metal centers involved in the exchange network. See 
Refs. [195,198]. 
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7. PROGNOSIS & OUTLOOK 

Overall it seems that there is utility for both resonance-theoretic and MO- 
theoretic approaches. To some at one time (say around the 1960s) it may have 
been thought that resonance theory and VB theory would fade away, though this 
has not occurred, and the trend may have even been reversed, now with a variety 
of dramatic successes for resonating VB theory, both in semi-empirical & ab-initio 
modes. Most of the preceding book [3], much of the present chapter, and most of 
the present book document this modest resurgence of VB theory. There are a 
variety ofVB- & resonance-theoretic models which are seen to fit into an overall 
hierarchy. And for each model there may be a variety of solution or computational 
techniques. Particularly in the semi-empirical mode there seem to be some novel 
conceptual results (e.g., as concerns long-range ordering and theorems governing 
numbers & partial locations of unpaired spins in the ground state) - and there are 
some quite powerful methods for making numerous quantitative computations 
(e.g., for Kekule-structure & conjugated-circuit counts). 

Despite the VB-theoretic successes of recent decades there still seems a 
domination by MO theory. Ab-initio VB theory seems weak in comparison to ab- 
initio MO-based theory in consideration of general availability of canned 
programs. Semi-empirical VB theory (the simplest versions of which are the focus 
of the present chapter) seems weak in comparison to semi-empirical MO-based 
theory when consideration is made of a comprehensive semiempirical model to 
make quantitative estimates for heats of formation, geometries, or excitation 
spectra, all for a diversity of chemical species. 

Semiempirical VB theory seems to have reached its greatest success where 
it has treated systems for which the classical chemical-bonding ideas are most 
useful - in particular it has been especially successful in application to conjugated 
n-networks. But there is much promise for other systems including: additional 
organic molecules; magnetic systems (especially when low-dimensional or 
frustrated); and some perovskite systems which are of relevance in high- 
temperature superconductivity. Especially this last area has received an incredible 
amount of theoretical attention beyond even what we have briefly indicated in this 
section, some of this being indicated in the reviews [77], and other chapters in the 
current book. Another area in which Pauling was [ 161,199] enthusiastic for the 
relevance of resonance theory was that of metals, but rather little has been done by 
others in this area - perhaps his ideas would be especially relevant for the special 
(but difficult & interesting) case of"narrow-band" conductors. In this regard we 
may mention the seeming close correspondence [ 176] between resonance- & band- 
theoretic predictions for solitonic conduction in conjugated polymers. But even 
in application to conjugated n-networks there is much more work than we have 
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covered in this chapter, with Cyvin & Gutman'  s book [82] identifying many more 
papers concemed with Kekule-structure enumerations. And other chapters of the 
current book are more concerned with methods of  solution of  the Heisenberg spin 
Hamiltonian (or equivalently the Pauling-Wheland VB model) for such conjugated 
n-networks, and thence cover many references not indicated here. The current 
chapter emphasizing the simplest semiempirical approaches indicates especially 
strongly the connections of  classical chemical-bonding ideas to the underlying 
quantum-mechanical framework. A few of these semiempirical approaches are 
seen to have been independently developed from classical or quantum-theoretic 
researches. 

Surely the continuing VB-theoretic successes which have been achieved in 
_ .  

the last few decades indicate much promise for future extensions. Resonating VB 
theory & MO theory may be seen as complementary descriptions, each with 
greater utility in different circumstances. 

Acknowledgment is made to numerous collaborators and colleagues, as well 
as to the Welch Foundation of Houston, Texas. 
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Chapter 16 

Clar ' s   -aromatic sex te t  rev i s i t ed  * 

Milan Randi~ 

Department  of Mathematics  and Compute r  Science, Drake University, 
Des Moines,  IA 50311, USA 

We consider the recently proposed mathematical definition of Clar's n-sextet 
structures based on the concept of the innate degree of freedom and in particular extend this 
approach to generalized Clar structures in which the number of the n-sextets need not be 
the maximal. It is conjectured that the mathematical definition of Clar structure and the 
geometrical definition which has been hitherto used are equivalent. The novel definition of 
Clar's structure, which allows only superposition of those Kekul6 valence structures 
which have the same innate degree of freedom, leads to generalized Clar's structures 
which differ from the earlier considered generalized Clar's structures of Herndon and 
Hosoya. Construction of generalized Clar structures is outlined based on re-examination 
of Herndon-Hosoya type Clar's structures. It is believed, having finally arrived at a 
mathematical definition of the Clar structures for the first time after over forty years since 
the pioneering work of Clar in advocating ~-sextets was initiated in late 1950's, that this 
particular characterization of benzenoid hydrocarbons will attract due attention not only of 
experimental chemists but also theoretical chemists. Given a Clar structure of a benzenoid 
hydrocarbons having k n-sextets it is not difficult to decompose it into a set of 2k Kekul6 
valence structures. The proposed mathematical characterization of Clar structures 
represents the solution to the inverse problem concerning Clar's structures: How to 
determine in advance which Kekul6 valence structures contribute to Clar structure of a 
benzenoid hydrocarbon. 

1. I N T R O D U C T I O N  

The idea of n-aromat ic  sextet was introduced in 1925 by Armit t  and 
Robinson [1] but really came to life in 1958 with the pioneering work  of  
Clar and Zander  [2] on benzenoid hydrocarbons  which displayed unusual 
stability having 6n ~-electrons (n= 1, 2, . . .). Clar continued to develop 
the n-aromat ic  sextet model  and convincingly argued in favor  of  
characterizat ion of benzenoid hydrocarbons  by structural properties of its 
n-sextets [3]. Prior to this benzenoid hydrocarbons  were represented by 
sets of  Kekul6 valence structures,  but according to Clar  only a subset of  

* This paper is honoring Professor  Ivan Gutman,  a dedicated warr ior  fo r  
a better recognition of Clar ' s  insights into the nature of  benzenoids 
dominate properties of benzenoid systems. 
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Fig. 1 Benzenoid hydrocarbons that have a single Clar structure consisting of only 
inscribed circles 

Fig. 2 Cata- and peri-condensed benzenoid hydrocarbons with Clar structure 
needing both the inscribed circles and CC double bonds 



505 

Kekul6 valence structures, which contribute to so called Clar structures, 
Clar valence structures are depicted with inscribed circles in some benzene 
rings obeying the following rule. Inscribe as many circles as possible 
subject to two restrictions: (i) No adjacent rings should have inscribed 
circles; and (ii) CC bonds not involved in rings with inscribed circles 
should allow completion of valence structure by assignment of CC double 
bonds wherever possible. 

In Fig. 1 we illustrate Clar structures for several smaller benzenoids 
in which only inscribed circles appear. These are the unusually stable 6n 
~-electron benzenoids which Clar called "fully benzenoid." In Fig. 2 we 
illustrate Clar structures for smaller benzenoids in which besides inscribed 
circles representing aromatic sextets also appear one or more CC double 
bonds. Finally in Fig. 3 we illustrate benzenoid hydrocarbons for which 
one can draw several Clar valence structures. In such cases the overall 
Clar structure is obtained as a superposition of the "component" valence 
structures in an analogous way as one represents molecules by 
superposition of several Kekul6 valence structures. Clar represented the 
final superposition of component structures by drawing a single structure 
to which one or more arrows are added to suggest delocalized ~-sextets. 

The above descriptive definition of Clar structures has been 
satisfactory and does not cause ambiguities in applications. Nevertheless, 
it seems desirable to have in addition to such descriptive characterization of 
Clar structures also a mathematical characterization that can reveal 
relationships between Clar structures and the underlying Kekul6 valence 
structures. That there is such ~in apparently subtle relationship has only 
very recently been recognized [4]. As is well known, not all Kekul6 
valence structures are involved in the construction of the Clar structure of 
a benzenoid hydrocarbon, but until recently a mathematical 
characterization of Clar structures, that is the characterization of Kekul6 
valence structures involved and those not involved in formation of Clar 
structures, was not known. It turns out that the superposition of all 
Kekul6 valence structures having "the largest degree of freedom," a 
concept that has been around for a while [5], constitutes Clar structures. 
In view of this finding in this contribution we will revisit Clar structures 
and will consider how is this recognition of Kekul6 valence structures 
important for construction of Clar structures and how is it reflected in the 
characterization of benzenoid hydrocarbons. 

Q INNATE DEGREE OF FREEDOM OF KEKULI~ 
S T R U C T U R E S  

The novel definition of Clar structures to be outlined in the next 
section, is based on the concept of the "degree of freedom" (df) of a 
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Kekul6 valence structure. The degree of freedom has been defined as the 
smallest number of choices to be made in the assignment of CC double 
bonds which determine a Kekul6 valence structure completely. For 
example, all three Kekul6 valence structures of naphthalene have df = 1, 
because if one assigns CC double bond character to any of the three vertical 
CC bonds in the naphthalene diagram (Fig. 4) the location of the remaining 
four CC bonds is completely determined. The same is true for anthracene, 
tetracene, and other linearly fused benzenoids. 

In phenanthrene (Fig. 5), however, four out of five Kekul6 
structures have df = 2, and one structure has df = 1. Clearly by selecting 
a bond in one of the peripheral benzene rings of phenanthrene as a CC 

Fig. 3 Cata-condensed benzenoid hydrocarbons with more than one Clar structure 

Fig. 4 The Kekul6 valence structures of naphthalene and their innate degrees of 
freedom 

('" '}0 CO df=  1 d f=  1 df= 1 
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Fig. 5 The Kekul6 valence structures of phenanthrene and their innate degrees of 
freedom 

d f = 2  d f = 2  d f = 2  d f = 2  d f = l  

double bond, the CC bond type of none of CC bonds in the other peripheral 
benzene rings has been determined. The situation is different for the last 
Kekul6 structure of phenanthrene for which df = 1. By assigning to CC 
double bond character to the central CC bond that connects two peripheral 
rings the CC double and CC single bond character for all the remaining CC 
bonds of phenanthrene is determined, which completely determines Kekul6 
valence structure. Additional illustration of df values for Kekul6 
structures of several smaller benzenoids are shown in Fig. 6. 

Observe that in cata-condensed benzenoid hydrocarbons Kekul6 
valence structures that have the maximal degree of freedom also have the 
largest possible number of disjoint conjugated circuits. On the other hand 
Kekul6 valence structures that have the smallest degree of freedom also 
have the smallest number of disjoint conjugated circuits. That the degree 
of freedom in cata-condensed benzenoid hydrocarbons is determined by the 
number of disjoint Kekul6 benzerie rings has been recently recognized by 
Hansen and Zheng [6] who were able to prove a theorem that gives the 
degree of freedom in cata-condensed benzenoid hydrocarbons as the 
number of disjoint benzene rings in which one can independently assign 
three CC double bonds. We should also mentioned that the so called Fries 
Kekul6 valence structure [7], which is defined as the Kekul6 valence 
structui, e having the largest number of rings with three CC double bonds 
(i.e., Kekul6 benzene rings), is always one of the Kekul6 valence 
structures having the maximal innate degree of freedom. On the other 
hand most chemists would easily recognized Kekul6 structures with the 
smallest innate degree of freedom as valence structures of limited interest 
for characterization of benzenoids systems. 

In Fig. 7 we show all Kekul6 valence structures of 
benzo[ghi]perylene and their degrees of freedom. The first eight 
structures have df = 3, the next five Kekul6 valence structures have df -- 2, 
and the last Kekul6 valence structure has d f =  1. The individual Kekul6 
valence structures have quite different count of conjugated circuits R~, 
which can be as high as five (in the first Kekul6 valence structure) and as 
low as one (in the last Kekul6 valence structures). A close look at these 
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Fig. 6 A selection of  Kekul6 valence structures of  smaller benzenoid hydrocarbons 
and their innate degrees of  freedom 
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Fig. 7 The Kekul6 valence structures of benzo[ghi]perylene and their innate 
degrees of freedom 
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structures shows that the number of disjoint R~ conjugated circuits is three 
for the first eight structures ~ill of which have innate degree equal three, 
and that the number of disjoint R~ conjugated circuits in the following five 
Kekul6 structures is two and all of these structures have innate degree equal 
two, and finally the last valence structure has only one disjoint conjugated 
circuit and has df = 1. This observation suggest the following Conjecture: 

Conjecture: The degree of freedom of a Kekul6 valence structure is 
given by the maximal number of disjoint conjugated circuits. 

This is certainly true for cam-condensed benzenoids, as it follows 
from the work of Hansen and Zheng. In all cases that we considered we 
found the conjecture true, which of course, proofs nothing, but 
strengthen our belief that the conjecture may be true. That one should 
focus attention to conjugated circuits rather than to "benzene rings having 
three CC double bonds" (which are the smallest conjugated circuits R~) can 
be seen from Fig. 6 in which we have included three symmetry non 
equivalent Kekul6 valence structures of coronene. By inspection on can 
see that the degree of freedom of the last of Kekul6 valence structure of 
coronene is two, and the structure has two disjoint conjugated circuits: R~ 
in the central ring and R3 along the molecular periphery. 

0 ON SUPERPOSITION OF KEKULI~ STRUCTURES 

Simple VB method is based on superposition of all Kekul6 valence 
structures. Similarly Pauling bond orders are obtained by the count of CC 
double bond character for individual CC bonds assuming superposition of 
all Kekul6 valence structures. Both these approaches assume that all 
Kekul6 valence structures have the same weight, but already the empirical 
Fries rule suggested that this may not be the case. Moreover, Clar's 
valence structures, like those shown in Fig. 1 - Fig. 3 imply importance of 
some Kekul6 valence structure only. Thus Clar's structure of 
phenanthrene decomposes into four Kekul6 valence structures which 
implies that the fifth Kekul6 valence structure of phenanthrene is ignored. 
Formally in this case we can say that four Kekul6 structures have weight 
equal one, and one has weight equal zero. In the case of Clar's structures 
of Fig. 3 for benzenoids having more than one Clar structure the situation 
is even more complicated because besides the weights zero and one also 
other non-zero weights may arise. 

Because Clar structures can be viewed as a superpositions of selected 
Kekul6 valence structures we will briefly examine pair-wise superpo'sition 
of the five Kekul6 valence structures of phenanthrene (shown in Fig. 5). 
In all we can construct ten combinations illustrated in Fig. 8. First, 
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Fig. 8 All pair-wise combinations of the five Kekul6 valence structures of 
phenanthrene. 

a + b  a + c  

! 

b + c  b + d  

c + e  

a + d  a + e  

b + e  c + d  

C 
d + e  

observe that in five cases we have a single ~t-sextet, in two cases we have 
conjugated circuits of size n=10 and in one case conjugated circuit n - 14. 
Finally in two cases we have two disjoint conjugated circuits n - 6 which 
both represent the same valence structure obtained either as combination 
(a, b) or (c, d). The valence structures (a, b) and (c, d) appear identical to 
Clar structure of phenanthrene but with an important distinction. Clar 
structure is obtained by superposition of four Kekul6 valence structures, 
while the combinations (a, b) and (c, d) are obtained as a superposition of 
two Kekul6 valence structures. Because of this distinction the 
combinations (a, b) and (c, d) have been drawn by crossing sextet circles in 
order to avoid confusion with Clar structure built from disjoint circles 
using two Kekul6 structures for each sextet. In addition to excluding the 
combinations (a, b) and (c, d) we will also exclude combinations which 
result in 10-member and 14-member conjugated circuits. This leaves for 
close examination the following five combinations of Kekul6 valence 
structures" (a, c), (a, d), (a, e), (b, c) and (b, d) in which appears only a 
single ~t-sextet. The combination (a, e), however, shows ~t-sextet "in the 
"wrong" ring and has to be excluded. Observe that Kekul6 structures a 
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and e have different df values, which suggests that we restrict 
superposition of Kekul6 valencestructures to those having the same degree 
of freedom. With this restriction we are left with four combinations (a, 
c), (a, d), (b, c) and (b, d) which we may call 1-sextet structures which 
can be characterized by the following definition: 

Definit ion:  1-Sextet structure is valence structure obtained by 
superposition of two Kekul6 valence structures having the same degree of 
freedom and having CC double bonds in the same locations except for one 
benzene ring. 

After arriving at 1-sextet structures we continue to consider 
superpositions of 1-sextet structures. All such structures already have the 
same df thus according to our approach can be superimposed. However, 
we will continue to restrict superpositions by demanding that all CC double 
bonds have the same locations except for one benzene ring. This 
restriction, preclude us to consider superpositions of (a, c) and (a, d), and 
in general any pair of 1-sextet structures unless they also have n-sextet in 
the same benzene ring. Therefore in the case of phenanthrene we can only 
superimpose the pair (a, c) and (b, d) or the pairs (a, d) and (b, c). In 
both case we obtain the same Clar structure of phenanthrene which is 
combination of Kekul6 valence structures (a, b, c, d) already depicted in 
Fig. 2. Clearly the order in which we superimpose the four Kekul6 
valence structures is immaterial. Moreover, if we consider the "rejected" 
superpositions (a, b) and (c, d), Which have "half-bread" ~t-sextets in the 
same positions, we see that their superposition leads to the same Clar 
structure (a, b, c, d), and hence, can be viewed as legitimate. 

Superposition of 1-sextet structures results in 2-sextet structures, 
which in the case of phenanthrene represents the Clar's structure of 
phenanthrene. For benzenoids having larger number of benzene rings this 
process is continued till one arrives at k-sextet structures which have the 
maximal number of disjoint n-sextets. We can define k-sextet structure a 
follows: 

Definit ion:  k-Sextet structure is valence structure obtained by 
superposition of two (k- 1) Kekul~ valence structures having (k-1)-sextets 
in the same benzene rings and having CC double bonds in the same 
locations except for one benzene ring. 

In Fig. 9 we illustrate all 1-sextets for benzo[ghi]perylene. Under 
each structure are the labels indicated the Kekul6 valence structures 
involved. In all there are twelve 1-sextet structures to be used in the next 
step for construction of 2-sextet structures shown in Fig. 10. The first 
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Fig. 9 All 1-sextet structures of benzo[ghi]perylene obtained by pair-wise 
superposition of Kekul.6 valence structures of the maximal degrees of 
freedom 

A + B  A + C  A + H  B + E  

C + E  B + G  C + F  D + E  

D + F  D + G  ~F+H G + H  

structure (A, B, C, E) is obtained by superposition of (A, B) and (C, E), 
which as we can see from Fig. 9 have n-sextet and all CC double bonds in 
the same location except for the last benzene ring of perylene fragment. 
The same 2-sextet structure can be obtained by superposition of (A, C) and 
(B, E). By continuing the process we continue to superimpose pair of 2- 
sextet structures to obtain 3-sextet structure (A, B, C, D, E, F, G, H) by 
combining (A, B, C, D) and (D, F, G, H) which have both n-sextets in the 
same location and differ in distribution of CC bonds only within a single 
ring. The same structure can be obtained alternatively by combining (A, 
B, G, H)and (C, E, D, F) or (A, C, F, H)and (B, E, D, G). The 3-sextet 
structure (A, B, C, D, E, F, G, H) of Fig. 11 has the maximal number of 
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Fig. 10 All distinct 2-sextet structures of benzo[ghi]perylene obtained by pair-wise 
superposition of 1-sextet structures 

3 
A+ B+C+ E D+ F+G + H A+ H+ B+G C+ F+ D+ E 

A + H + C + F  B + G + D + E  

Fig. 11 The 3-sextet structure of benzo[ghi]perylene obtained by superposition of 
any of the three pairs of 2_sextet structures of Fig. 10 

A + B + C + D + E + F + G + H  

disjoint Jr-sextets and therefore represents Clar structure of 
benzo[ghi]perylene. 

4. N O V E L  D E F I N I T I O N  O F  C L A R  S T R U C T U R E S  

With use of the concept of the innate degree of freedom, or shortly 
degree of freedom, we can characterize Clar 's  structures as follows: Clar 
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structure is valence structure obtained as a linear combination of all Kekul6 
valence structures having the h~ghest degree of freedom. 

This characterization suffice to determine Clar structure if there is 
but one such structure (the cases illustrated in Fig. 1 and Fig. 2). In 
order to define Clar structure in a general case we have to find which 
Kekul6 valence structure are used more than once in a superposition. The 
concept of k-sextet structure considered in the previous section allow us to 
arrive at the mathematical definition of Clar's structure shown below 
which we are comparing with the geometrical definition of C|ar 's 
structure: 

Defini t ion (mathematical): Clar valence structure is obtained 
superposition of k-sextet structures having the maximal k possible. 

by 

Definition (geometrical): Clar valence structure is constructed by 
placing the maximal number of disjoint circles inside benzene rings of 
benzenoid system subject to completion of valence structure by assigning 
CC double bonds if necessary. 

The two definition leads to a following conjecture: 

Conjecture: The mathematical definition of Clar 
geometrical (constructive) definition are equivalent. 

structure and the 

We believe, or we should say, we conjecture, that the novel 
definition of Clar structure, which can be referred to as axiomatic and the 
original definition, which can be referred to as constructive are 
equivalent. In all the cases that we examined this has been the case, but 
that, of course, proofs nothing. The above is certainly true for the class 
of cata-condensed benzenoid hydrocarbons for which Hansen and Zheng [6] 
proved that df is given by the maximal number of disjoined benzene rings 
having three CC double bonds. Such rings are equivalent to the smallest 
conjugated circuits R~ of the Conjugated Circuits Model [8]. The smallest 
conjugated circuits R1 is trivially related to the inscribed circles of Clar. 

We will leave the proof of the conjecture to mathematically inclined 
readers interested in this problem and will focus attention on consequences 
of the novel definition of Clar structures. If the two definitions of Clar 
structure are equivalent (as we conjecture) there should be identical 
consequences and the new definition is not to make a difference. 
However, the new definition does offer a mathematical characterization of 
Kekul6 valence structures involved in construction of Clar structure, 
something that has been hitherto missing. 
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One area in which the novel definition of Clar structures may have 
an advantage over the "geometrical" counterpart is in computer 
manipulations with Kekul6 and Clar structures. There are several 
algorithms and computer programs that enumerate, and even construct, all 
Kekul6 valence structures for benzenoid hydrocarbons [9]. These 
programs can now be combined with evaluation of the degree of freedom 
of Kekul6 structure, and such information can be combined into a scheme 
to produce list of Clar valence structures. 

0 ON G E N E R A L I Z E D  C L A R  S T R U C T U R E S  

We will now investigate the role of the new definition of Clar 
structures for Clar-type structures that do not posses the maximal number 
of inscribed n-aromatic sextets. Already Clar, in discussing properties of 
benzo[a]coronene, evoked a structure that has less than the maximal 
number of n-sextets [10]. While the proper Clar structure of 
benzo[a]coronene has four n-sextets, which is the maximal number for 
benzo[a]coronene, Clar considered also a structure having three sextets 
(Fig. 12). Such "imperfect" Clar structures were introduced into "Clar 
Sextet Theory" systematically by Hosoyaand Yamaguchi [11]. 

Generalized-Clar's Structures of Hosoya and Yamaguchi 

Hosoyaand Yamaguchi generalized Clar structures by removing the 
restriction that Clar structures have to have the maximal number of n- 
aromatic sextets. We will refer to these as HY-Clar structures, or briefly 
HY-structures (HY for Hosoya-Yamaguchi) in order to differentiate them 
from other generalizations of Clar structures that will be discussed later. 
In Fig. 13 we show the set of generalized HY-Clar formulas for 

Fig. 12" Clar structure of benzo[a]coronene and a Clar-type structure that has less 
than the maximal number of n-sextets considered by Clar 
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benzo[ghi]perylene, which are constructed by inserting one or more 
circles in different benzene rings such that no adjacent rings have inscribed 
circles. The last structure in Fig. 13 which does not include any inscribed 
circles completes the set of generalized Clar formulas of Hosoya and 
Yamaguchi. Observe that only the first formula represents proper Clar 
structure. Of the 14 HY-Clar structures of Fig. 13 only five (which are 
shown in Fig. 14) allow one to complete CC double bond assignments while 

Fig. 13 Generalized Clar structures introduced by Hosoya-Yamaguchi illustrated on 
benzo[ghi]perylene. 
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Fig. 14 Generalized Clar structures introduced by Herndon and Hosoya illustrated 
on benzo[ghi]perylene, 

for the remaining nine HY-Clar formulas there is more than one way of 
assigning CC double bond type. For this reason no CC double bond are 
shown in Fig. 13. A one-to-one correspondence between Kekul6 and 
sextet patterns has been recognized and is reflected in the sextet 
polynomial, which is the counting polynomial for generalized HY-Clar 
structures [12]. 

Generalized Clar's Structures of Herndon and Hosoya 

A more restrictive definition of generalized Clar structures was 
proposed by Hemdon and Hosoyaabout ten years later [13]. We will refer 
to these generalized Clar structures as HH-Clar structures, or briefly HH- 
structures (HHfor Herndon-Hosoya). Herndon and Hosoya have restricted 
the set of Clar-type structures by requiring that upon insertion of inscribed 
circles all the remaining CC double bonds should have a uniquely 
determined location. Of the nine Clar patterns shown in Fig. 13 only the 
first four satisfy the new requirements. This can be readily verified by 
completing the assignment of CC double bonds which for these fours 
structures result in a single possibility. Herndon and Hosoya have defined 
the novel generalized Clar structures as follows: 
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Definit ion:  Clar structures are defined to be structural diagrams in 
which all the carbon atoms of  an aromatic hydrocarbon are spanned 
uniquely either by an aromatic sextet (designated by a circle) or by a zr 
electron pair (designated as a double bond). 

We have inserted in their definition the word "uniquely" for added 
precision. In other words, once the positions of inscribed circles have 
been selected the rest of the molecule should have the residual degree of 
freedom equal one, that is, positions of all CC double bonds are unique. 
In Fig. 14 we illustrate the five HH-Clar structures of benzo[ghi]perylene. 
In the case of benzo[ghi]perylene the first structure is the proper Clar 
structure that has the maximal number of n-sextets. Of the four 
generalized HH-Clar structures three have two n-sextet and one has but a 
single z~-sextet. 

Generalized Clar's Structures of the same Degree of Freedom 

Even more restrictive definition of generalized Clar structures, than 
that of Herndon and Hosoya is possible by considering only superpositions 
of Kekul6 valence structures of the same innate degree of freedom. This 
latest generalization of Clar structure naturally follows from the novel 
mathematical definition of Clar structures [4]. We will refer to these most 
recent generalization as the k-Clar structures, where k indicates the 
number of n-sextets in a structure. The restriction requires that only 
Kekul6 valence structures having the same degree of freedom are combined 
in formation of Clar structures. In Fig. 15 we show k-Clar structures of 
benzo[ghi]-perylene. As we see the last k-Clar structure is one of the 
Kekul6 valence structures. This particular Kekul6 valence structure has no 
other structure having the same innate degree of freedom for superposition 
and therefore qualifies as 0-Clar structure. This is a consequence of the 
condition that k-Clar structures can only be obtained by superimposition of 
structures having the same value of the degree of freedom. Therefore 
Kekul6 valence structures which have no structure to be combined with 
have to be included in the set of k-Clar structures, being structures having 
k = 0 value. The reason why several HH-Clar structures do not qualify as 
k-Clar structure is because they are obtained by superposition of Kekul6 
structures having different degree of freedom. 

As we can see by comparing the HH-Clar structures and k-Clar 
structures they offer a distinctive basis for representation of benzenoid 
hydrocarbons. Each of the two approaches have their own merits, and as 
we will see in the next section, although the structures arising in the two 
models are quite different, the two approaches can be related in some 
respect. Both approaches use the same basis Kekul6 structures and differ 
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Fig. 15 Generalized k-Clar structures of benzolghilperylene 

ABCDEFGH IJ JL IK 

KM N 

in selecting the subset of Kekul6 structures used. Thus the five HH 
structures of benzo[ghi]perylene shown in Fig. 14 involve superposition of 
(A, B ,C,  D, E, F, G, H); ( A , I , J , K ) ,  ( A , C , K , M ) ,  ( A , B , J , L )  and 
(D, N), total of 22 Kekul6 structures: 4A + 2B + 2C + 2D + E + F + G + 
H + I + 2J + 2K + L + M + N. In contrast the six generalized k-Clar 
structures of benzo[ghi]perylene obtained by superposition of Kekul6 
valence structures of the same degree of freedom (shown in Fig. 15) 
involve superposition of (A, B, C, D, E, F, G, H); ( I, J), (J, L), (I, K), 
and (K, M), while Kekul6 structure n remains isolated, total of 17 Kekul6 
structures: (A + B + C + D + E + F + G + H)+ (2I + 2J + 2K + L + M) + 
N. We have grouped Kekul6 structures of the same df to emphasize that 
only superposition of Kekul6 structures within the same group is allowed. 
As a consequence we do not have in case of benzo[ghi]perylene 2-Clar 
structures, but only one 3-Clar structure, four 1-Clar structures and a 
single 0-Clar structure. 

6. ON C O N S T R U C T I O N  OF k -CLAR S T R U C T U R E S  

Already in the case of smaller benzenoids, such as benzo[ghi]- 
perylene, it may be somewhat tedious to find by inspection of all the 
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Kekul6 valence structures all the combination of Kekul6 valence 
structures of interest. The sa.me is also true for finding combinations of 
Kekul6 valence structures involved in HH-Clar structures. A better way to 
obtain the correct combinations of Kekul6 valence structures instead of 
construction of various superpositions is to first write down k-Clar 
structures (or HH-Clar structures) and then decompose them into 
underlying Kekul6 valence structures. The apparent difficulty that 
remains in such an approach, that cannot be avoided, is the case of 
benzenoids having a large number of Kekul6 valence structures which 
results in large number of decomposition. 

A straightforward procedure for construction of k-Clar valence 
structures is similar to previously described construction of k-sextet 
structures. In the first step one considers pair-wise superposition of all 
Kekul6 valence structures having the same degree of freedom but excluding 
combinations that lead to conjugated circuits having more than six Jr- 
electrons. Such superposition was illustrated in Fig. 9 and Fig. 10 for 
construction of 1-sextet and 2-sextet structures of benzo[ghi]perylene, 
respectively. We apply the same process now by considering Kekul6 
valence structures of a lesser degree of freedom. Superposition of a pair 
of Kekul6 structures will produce 1-Clar structure for all combinations for  
which the process can not be continued. The structures with 1-sextet for  
which the process continues will lead to 2-Clar structures if no 
combinations between such structures can yield, by continuation, 3-Clar 
structures, and so on. 

A direct construction of k-Clar structures by repeated superposition 
of a smaller number of Kekul6 valence structures, while straightforward is 
not very efficient, because it offers duplicate combinations of k-Clar 
structures to obtain fewer number of (k+l)-Clar  structures. For 
benzenoids having dozen or more Kekul6 valence structures we need a 
more efficient approach. Hence it would be nice to have a more practical 
algorithm for construction of k-Clar structures. It turns out that a more 
efficient algorithm in which one takes advantage of HH-Clar structures is 
possible. Construction of Hemdon-Hosoya Clar structures appears not to 
be so tedious as is the case with k-Clar structures. In fact, for not too 
large benzenoid construction of HH Clar structures is relatively simple. 
Hence, we will view HH-Clar structures to be readily available, at least for 
benzenoids of moderate size. We are going to take advantage of this 
situation and will base construction of k-Clar structures on HH-Clar 
structures. As we will see the HH-Clar structures contain indirectly also 
k-Clar structures, not necessarily all as the members of the same set, but 
as derivatives of some of the members of HH-Clar structures. 

Let us clarify what we mean as the "derivative" structure by 
returning to F i g .  15 in which we listed the six k-Clar structure of 



522 

benzo[ghi]perylene. The four 1-Clar structures, the combinations IJ, JL, 
IK, and KM, are clearly not inembers of the set of HH-Clar structures of 
benzo[ghi]perylene (Fig. 14). Let us consider the structure (A, B, J, L), 
illustrated in Fig. 16, which is one of the three HH-Clar structures having 
two n-sextets. We can decompose this structure in two structure by 
selecting the encircled rings for which we write the two underlying Kekul6 
valence structures of benzene. This is illustrated in the lower part of Fig. 
16 for the HH-Clar structure having two n-sextets. Observe that 
combinations (A, J) and (B, L) "mix" Kekul6 valence structures of 
different df. The combination AB is obtained by mixing structures of the 
same df, but is not completed because it has no maximal possible number 
of sextets. The structure JL is a legitimate 1-Clar structures, however 
having one n-sextet less, hence, of a "lower" hierarchical level. Because 
the labels that indicate structure as ABJL can be permuted we can have 
three different decomposition: AB + JL, AJ + BL and AL + BJ. All 
three possibilities are depicted in Fig. 16. The combination AL + BJ 
shows two identical components having two sextets but obtained from 
superposition of only two Kekul6 structures, rather than four. To 
emphasize the distinction we have drawn these "improper" sextets by 
crossed the circles with short line. 

Fig. 16 Decomposition of one of the Hemdon-Hosoya generalized Clar structures 

having two n-sextets 

ABJL AL BJ 

+ or '( 
AJ BL AB 

-I- 

JL 
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The above illustration suggests an algorithm for construction of k- 
Clar structures that can be outlined as follows: 
(i) Construct all HH-Clar structures. This step is here assumed as 
reasonably straightforward, although for large benzenoids even this step 
can be quite difficult [14]; 
(ii) Decompose individual HH-Clar structures by representing one of 
inscribed circles by the two underlying Kekul6 valence structures, to be 
referred as derivative structures; 
(iii) If both derivative structures have the same degree of freedom (df) 
keep the parent structure as k-Clar structure; 
(iv) If one of the derivative structure has the same df value as the original 
structure and the other has increased df value, retain the structure with the 
same df value as k-Clar structure and discard the other structure. 

This algorithm as stated can be readily implemented in a computer 
program, even though it may be somewhat demanding when applied to 
systems having a larger number of Kekul6 structures. 

0 I L L U S T R A T I O N  OF k - C L A R  S T R U C T U R E S  FOR 
SMALLER BENZENOID HYDROCARBONS 

In Fig. 17 we illustrate k-Clar structures for a selection of smaller 
benzenoid hydrocarbons. For molecules having symmetry only symmetry 
non equivalent Clar structures are shown. In cases when all Kekul6 
valence structures have the same degree of freedom, clearly there is no 
difference between HH-Clar structures and k-Clar structures, because all 
the Kekul6 structures are allowed to be superimposed. This is the case 
not only of linear acenes, like naphthalene, anthracene, tetracene, etc., 
but also of chrysene, benzo[b]chrysene, dibenzo[bk]chrysene, and related 
cata-condensed systems having two adjacent "kink" rings. "Kink" rings, 
introduced by Gordon and Davison [15], are those rings in unbranched 
cata-condensed benzenoid for which adjacent rings have phenanthrene 
geometry. 

There are number of smaller benzenoids in which the set of HH-Clar 
structures and the set of k-Clar structures almost coincide. For example, 
this is the case with dibenzo[bc,kl]coronene, one of smaller benzenoid with 
large number of CC double bond "fixation" in its leading (i.e., the proper) 
Clar structure. Its Clar structure has three ~t-sextets but six CC double 
bonds. In Fig. 18 we illustrated seven out of nine HH-Clar structures of 
dibenzo[bc,kl]-coronene. Of the nine HH structures one has three ~t- 
sextets, six have two ~t-sextets (see Fig. 18) and two have a single ~t-sextet 
(shown in Fig. 19). Interestingly, there are also nine k-Clar structures, 
seven of which coincide with the first seven HH-Clar structures of Fig. 18. 
However, instead of the last two HH-Clar structures having a single Jr- 
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Fig. 17 Generalized k-Clar Structures for several smaller benzenoid hydrocarbons 
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sextet shown in Fig. 19 we have two (symmetry equivalent) Kekul6 valence 
structures showing "long range" order [16] referred to also as anti-Fries 
[17] structures which qualify as 0-Clar structures. Is the coincidence 
between the number of HH-Clar structures and k-Clar structures 
accidental? As we will see later there is a one-to-one correspondence 
between the HH-Clar structures and k-Clar structures. 

Fig. 18 The seven of the nine HH Clar structures of dibenzo[bc,kl]coronene which 
coincide with seven generalized k-Clar structures 

The algorithm for construction of k-Clar structures when applied to 
benzenoids having several inscribed sextets in each Clar structures may 
become time consuming. Can we speed up the procedure for 
decomposition of zt-sextet somehow? In Fig. 20 and 21 we illustrate the 
HH-Clar structures of dibenzo[bc,efl-coronene. There are 11 such 
structures: five having three n-sextets, five having two ~-sextets, and one 
having a single zt-sextet. There are also 11 k-Clar structures, six of 
which coincide with the six HH Clar structures of Fig. 20. Of the 
remaining five k-Clar structures four are 1-Clar structures (with a single 
zt-sextet) and one is 0-Clar structure (i.e., a Kekul6 valence structure). 
They are shown in Fig. 22. 



Fig. 20 

Fig. 19 The remaining two HH Clar structures of dibenzo[bc,kl]coronene (at the 
left) which differ from the remaining two generalized k-Clar structures 
(shown at the fight) 
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() 

Clar structures of dibenzo[bc,ef]coronene identical to k-Clar model and the 
Herndon-Hosoya model 
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A coincidence between the number of HH-Clar structures and k-Clar 
structures is again evident. To each of the five HH-Clar structures of Fig. 
21 corresponds a k-Clar structure having one ~-sextet less (shown in Fig. 
22). We have indicated by asterisk sextets of HH Clar structures that have 
not "survived" more restrictive definition of k-Clar structures which 
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restricts a superposition of Kekul6 valence structures only to those having 
the same degree of freedom. W e  will refer to n-sextets with an asterisk as 
"vulnerable," for reasons that will become soon clarified. Observe that 
the immediate environment of the four "vulnerable" rings in HH-Clar 
structures having two n-sextets rings is identical to the CC double bond 
distribution in the HH-Clar structures of phenanthrene in which the n- 
sextet is assigned to the central benzene rings. The immediate 
environment of the "vulnerable" ring in the last HH-Clar structures having 
a single n-sextets rings is identical to the CC double bond distribution in 
the HH-Clar structures and triphenylene in which the n-sextet is assigned to 
the central benzene rings. The HH-Clar structures indicated by asterisk do 
not qualify as k-Clar structures, for the same reason that the 
corresponding HH-Clar structures of phenanthrene and triphenylene do not 
qualify. When the ~-sextet with asterisk is decomposed into the 
underlying Kekul6 valence structures one of the component structure will 
have a higher df value and the other structure will have a lower df value. 
The structure with the lower df qualifies as k-Clar structure having one 
less ~-sextet than the parent HH-Clar structure. The other component 
having higher df is discarded because it should not be "mixed" with Kekul6 
valence structure of lower degree of freedom. 

Fig. 21 The Herndon-Hosoya Clar structures of dibenzo[bc,efl-coronene obtained 
by superposition of Kekul6 valence structures of different degree of 
freedom 
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Fig. 22 Generalized k-Clar stnlctures of dibenzo[bc,ef]-coronene corresponding to 
Herndon-Hosoya structures of Fig. 21 
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As we see one can quickly identify vulnerable n-sextet of HH-Clar 
structures by inspecting adjacent rings to see if they correspond to HH-Clar 
structures of phenanthrene and triphenylene which have inscribed circle in 
the central rings. By replacing in those Clar structures the inscribed circle 
by the Kekul6 component having smaller df one immediately transform 
HH-Clar structures into k-Clar structure. If HH-Clar structure has no 
vulnerable ~t-sextets it qualifies as k-Clar structure. On the other hand, if 
HH-Clar structure has a vulnerable n-sextet each such structure by 
decomposition will produce one k-Clar structure having one n-sextet 
fewer. This establishes a one-to-one correspondence between HH-Clar 
structure and k-Clar structures. Hence, to write down quickly k-Clar 
structures for larger benzenoid one should first find all HH-Clar structure. 
Then one should look for distribution of CC double bonds in adjacent rings 
in order to identify the vulnerable benzene rings within such structures. 
Finally these HH-Clar structures are transformed into k-Clar structures. 

In Fig. 23 we have illustrated several HH-Clar structures of smaller 
benzenoids and have indicated their vulnerable rings. Each of the Kekul6 
valence structure having a single vulnerable ring will produce the 
corresponding 0-Clar structure (i.e., a Kekul6 valence structure that 
qualifies as Clar structure). In Fig. 24 are shown additional HH-Clar 
structures having besides vulnerable ring additional ~-sextets. These 
structures will reduce to k-Clar structures when ~t-sextet of the vulnerable 
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,( 

Several Herndon-Hosoya Clar structures in which the vulnerable rings have 
been indicated by asterisk which reduce to 0-Clar structures 
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rings are replaces by one of Kekul6 valence structures of benzene. For 
compounds considered only symmetry non equivalent k-Clar structures are 
shown. The compounds shown include benzo[a]-coronene, which is the 
benzenoid for which Clar speculated possible role of valence structure 
having less than the maximum number of ~-aromatic sextets. Vulnerable 
rings have been recognized as critical in enumeration of Kekul6 valence 
structures as outlined by Polansky and Gutman [18]. 

In fact, Polansky and Gutman [18] in their article on the number of 
Kekul6 structures in fully benzenoid hydrocarbons, refer to such rings as 
"starred" rings and designated them by asterisk, the symbol that we have 
also adopted here. Vulnerable rings have been recognized also as critical 
for enumeration conjugated circuits as reported by Balaban and Tomescu 
[19]. They are the rings which participate in the so called "linearly 
dependent" conjugated circuits obtained by considering alternation of CC 
double and CC single bonds along periphery of phenanthrene, triphenylene 
and larger fragments (involving phenanthrene or triphenylene sub units) 
[20]. The same "vulnerable" rings apparently are associated with the 
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Fig. 24 Additional Herndon-Hosoya Clar structures in which the vulnerable rings 
have been indicated by asterisk which reduce to k-Clar structures (k ~ O) 
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smallest Clar's index values. Clar index has been introduced by Randic, 
Plavsic and T rinajstic [21] as a measure of local benzenoid character for 
polycyclic benzenoid hydrocarbons. The index measures the relative 
contribution to the molecular resonance energy attributed to individual 
benzene rings. 

6. CONCLUDING REMARKS 

Probably the major hindrance to a wider acceptance of Clar's notions 
on characterization of benzenoid hydrocarbons by n-aromatic sextets in 
some circles is the apparent lack of the mathematical rigor behind the 
intuitive approach of Clar. One expect that "sound" theoretical model 
should be accompanied by some "sound" mathematical description. 
Hosoya and Yamaguchi, who introduced the sextet polynomial, were the 
first to cast some aspects accompanying Clar's model based on n-aromatic 
sextets, into appropriate mathematical formalism, but their approach was 
concerned with properties of generalized Clar structures, not the proper 
Clar structures. Among others who contributed to study of Clar's 
structures and generalized Clar's structures Gutman in particular devoted 
much of his talent to explore in greater fullness the mathematics behind this 
model. Because most of these mathematical explorations were concerned 
with generalized Clar-type structures, rather than "proper" Clar 
structures, this has left Clar n-electron sextets theory in very embryonic 
form. The basic concept and the foundations were based on argumentation 
derived from experimental observations, that is, being empirical. A 
theoretical approach to chemical structure using Clar's n-sextet was 
missing. With the novel mathematical definition of Clar structures, 
however, in our opinion the situation has been dramatically changed, for 
better, of course. At last, we can say, Clar's n-aromatic sextet has 
become a mathematical model. Hence the potential objection that critics 
may have considered in the past, that the model is a qualitative at best no 
longer holds as Clar's n-aromatic sextet emerges as legitimate variant of 
VB model. The task that remains is to see how this particular VB variants 
compares with other VB descriptions of benzenoid systems. We have to 
await for the answer, meanwhile, precisely because Clar's model evolved 
from considerations a selection of experimental data on UV and NMR 
spectral of benzenoid hydrocarbons we may expect that it may be 
supported by such experimental findings. 

While in this contribution we focused attention to k-Clar structures, 
and to their relation to the Herndon-Hosoya type Clar structures, one can 
anticipate a number of interesting problems to emerge from the proposed 
innovation for Jr-aromatic sextets. It would be of interest to see, for 
instance, how k-Clar structures as a basis for semi-empirical VB 
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calculations of molecular RE compare with the calculations reported by 
Herndon and Hosoya when, what we call now HH-Clar structures, were 
used as a basis. Another area of exploration is to consider how the Model 
of Conjugated Circuits relates the contributions to RE of Kekul6 valence 
structures of different degree Of freedom. Apparently the novel definition 
of Clar structures highlights the concept of the innate degree of freedom, 
which thus comes to play a significant role in considerations of benzenoid 
hydrocarbons. 

We may say that we have passed a long way from the early 
qualitative descriptions of aromatic compounds by a single, dominant, 
Kekul6 structure, such as the Fries structures. We have also passed a 
long way from accepting a more "democratic" descriptions of benzenoids, 
in which all Kekul6 valence structures play equal role. It appears that 
final solution is given by an obvious compromise that implies that "the 
truth is probably somewhere in between." But where "in between" has 
remained somewhat disputable. Different models, different quantum 
chemical calculations, different parametrizations of semi-empirical 
approaches, all suggest somewhat different answers. Among such 
alternative the notions of Clar ~-aromatic sextet, which points to Kekul6 
valence structures of maximal degree of freedom as the most relevant, has 
a unique position. It offers a non-parametric characterization of 
benzenoid hydrocarbons, that may represent the ultimate characterization 
of benzenoids, and that may yield novel insights into chemistry of 
benzenoid hydrocarbons. 

The successful accomplishments of Mtillen and coworkers [22-25] 
who synthesized several giant benzenoid hydrocarbons will undoubtedly 
stimulate further theoretical interest in benzenoid hydrocarbons. It is not 
surprising that all the giant benzenoids that have been synthesized have 6n 
~-electrons, which Clar predicted to be unusually stable. Now that the 
"inverse" problem of Clar structures has been solved we may expect novel 
theoretical developments in this area that may continue to expand 
experimentally beyond expectations. For example, the Conjugated Circuit 
Model, that has already been applied to giant benzenoids [26-28], may 
have to be modified so to take into account the prominent role of the Clar 
structures of benzenoids rather then considering all Kekul6 valence 
structures as equally important. Construction and enumeration of giant 
benzenoids and their Kekul6 valence structures has also received some 
attention [29, 30]. 

Acknowledgment: The author thanks Professor A. T. Balaban and 
Professor D. J. Klein, both from Texas A & M University at Galveston, 
Texas, for useful comments and suggestions concerning the material 
exposed here. 
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Chapter 17 

A valence bond view of fullerenes 

T. G. Schmalz 

Texas A&M University at Galveston, 
Galveston, Texas 77553-1675, USA 

1. INTRODUCTION 

Since their discovery in 1985 [1] and subsequent isolation in macroscopic 
quantities [2], fullerenes and related forms of carbon such as nanotubes have 
been the subject of enormous numbers of both theoretical and experimental 
studies. This chapter describes a series of theoretical studies of fullerenes, 
concentrated on C60 buckminsterfullerene, the original and still the most 
common form, which are tied together by an underlying valence bo.nd picture of 
chemical structure. This work has attempted to identify characteristics of 
fullerenes which are more easily discerned in a valence bond than in a molecular 
orbital picture, and to see how far these valence bond ideas can be pushed before 
they break down. 

A number of fullerenes have been the subject of fully ab initio theoretical 
studies, and no attempt will be made here to review this work. However, for any 
but the smallest fullerenes these remain tremendously challenging computations 
due to the shear size of the molecules. Were it not for the extremely high 
icosahedral symmetry of buckminsterfullerene, most of the ab initio calculations 
which have been performed on it would still be impossibly time consuming even 
with modem computational resources. Even the largest of these, such as the 
TZP-MP2 (triple zeta plus polarization basis with electron correlation at the 
Moeller-Plesset 2 nd order level) calculation on buckminsterfullerene of Haser, 
Alml0f, and Scuseria [3], are still short of the basis set and correlation levels 
normally desired to be confident that the calculation is converged to chemical 
accuracy. As a result, semiempirical theoretical methods have played, and likely 
will continue to play, a major role in theoretical work on fullerenes. 

One semiempirical method which has been a workhorse in studies of 
fullerenes is the MNDO (Modified Neglect of Differential Overlap) method [4], 
which treats all valence electrons explicitly but within an essentially molecular 
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orbital framework. The MNDO method has proven quite good at predicting the 
energy ordering of closely related fullerene structures, but has been much less 
successful when used to compare rather diverse structures. In particular, it gives 
heats of formation for fullerenes relative to graphite in substantial quantitative 
disagreement with experiment [5]. This behavior is most likely related to the 
fact that the method does not include electron correlation in an explicit fashion. 
Thus in comparing atoms in similar chemical bonding environments, where 
correlation is likely to be of roughly the same importance, correlation effects can 
be modeled by suitable choices of parameter values, but when comparing atoms 
in rather different environments, with different degrees of correlation, 
discrepancies appear. 

One of the goals of the studies described in this chapter has been to assess the 
importance of electron correlation in fullerenes, and so we have looked for 
theoretical methods in which electron correlation plays an explicit role. This has 
led us to focus on another widely applied class of semiempirieal methods, those 
which attempt a sigma-pi separation of the electrons in a fullerene. While the 
advantages of such an approach are obvious -- buckminsterfullerene is 
immediately reduced from a 360 to a 60 electron problem- the possibility of 
this kind of separation at first glance is not so obvious. Fullerenes clearly lack 
the usual requirement for such a separation, a planar, conjugated pi-electron 
system. However, they share many of the characteristics of molecules which are 
usually thought of in sigma-pi terms. Each carbon atom is bonded to three 
neighbors by an essentially localized bond which can be considered to result 
from overlap of nearly sp 2 hybridized orbitals between neighbors. Each atom 
has in addition one electron accommodated in a p-like orbital oriented normal to 
the fullerene surface. Although not perfectly aligned, these orbitals overlap 
significantly with the corresponding orbital on all three nearest neighbor atoms, 
so that these orbitals with their associated electrons form a rather delocalized 
bonding system, which will be termed the pi system. 

There is substantial experimental evidence that many of the physical and 
chemical properties of fullerenes are strongly determined by these pi-like 
electrons. For example, all of the observed low-lying electronic excitations in 
buckminsterfullerene can be related to one electron excitations of pi electrons 
[5]. Much of the pattern of chemical reactivity of buckminsterfullerene has also 
been related to the greater pi electron density on the bonds lying on the edge of 
two hexagonal faces relative to that on an edge bounding a hexagon and a 
pentagon [6]. It thus seems useful to attempt theoretical studies within the 
framework of an assumed sigma-pi separation, and this is the approach which 
will be followed in this chapter. Of course, this approach has been very widely 
used in studies of fullerenes, but almost always in one particular guise, that of 
Htiekel molecular orbital theory. But a pi electron view of fullerenes does not in 
any way limit one to Htickel theory, and if the goal is to include electron 
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correlation it is essential not to be limited to HOckel theory. Instead, it is 
important to investigate the valence bond treatment of the pi electrons. 

2. HUCKEL VERSUS VALENCE BOND PI ELECTRON MODELS 

2.1 The Hiickel Model 
The HOckel molecular orbital (HMO) model of pi electrons goes back to the 

early days of quantum mechanics [7], and is a standard tool of the organic 
chemist for predicting orbital symmetries and degeneracies, chemical reactivity, 
and rough energetics. It represents the ultimate uncorrelated picture of electrons 
in that electron-electron repulsion is not explicitly included at all, not even in an 
average way as in the Hartree Foek self consistent field method. As a result, 
each electron moves independently in a fully delocalized molecular orbital, 
subject only to the Pauli Exclusion Principle limitation to one electron of each 
spin in each molecular orbital. 

Quantitatively, HMO theory has proven to be of limited utility for fullerenes. 
HMO calculations have been performed for thousands of fullerenes, and one 
important correlation has emerged: fullerenes with zero or small HOMO- 
LUMO (Highest Occupied Molecular Orbital-Lowest Unoccupied Molecular 
Orbital) gaps at the HOckel level are almost never found experimentally, 
presumably became of high reactivity. Unfortunately the reverse correlation 
does not hold. For fullerenes with reasonably large HOMO-LUMO gaps there 
does not seem to be a correlation between the size of the gap and the likelihood 
that the fullerene will be formed. Additionally, the total pi electron energies of 
all fullerene isomers with a given carbon number are usually close, and there 
does not seem to be a strong correlation between the computed total energy and 
the stability of the isomer. 

2.2 The Valence Bond Model 
There is, however, another pi-eleetron model with an historical pedigree 

comparable to that of Htickel theory. In the valence bond (VB) view [8, 9], the 
electrons are viewed to interact so strongly that there is negligible probability of 
finding two electrons in the same atomic orbital. The wave fimetion is thus 
considered to be dominated by purely covalent contributions in which each 
electron is spin paired to one other electron. The most important of these are the 
spin pairings limited to nearest neighbor (bonded) atom pairs, namely the 
Kekul6 structures. The delocalized nature of the wave fimction then results 
from resonance among these different localized spin-paired structures. This 
picture represents the ultimately correlated picture of pi electrons, in that motion 
of any one electron requires concerted reorganization of the entire, or at least a 
substantial portion oL the pi electron system. 
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In practice, the valence bond picture has probably exerted more influence on 
how chemists actually think than the HMO picture. However most early 
applications were primarily qualitative in nature. This qualitative VB picture 
can be summarized under the name of resonance theory [10]. The basic concept 
is that in general the more ways one has of arranging the spin pairing in the VB 
wave function, the more stable the molecule is likely to be. Thus, VB theory 
predicts that phenanthrene with 14 carbon atoms and 5 Kekul6 structures should 
be more stable than anthracene with 14 carbon atoms but just 4 Kekul6 
structures, in complete accord with the experimental evidence. It also predicts 
that benzenoid hydrocarbons with no Kekul6 structures should be unstable and 
highly reactive, and in fact no such compounds are known. Extensions of this 
qualitative picture appear, for example, in Clar's ideas of resonant sextets [11 ], 
which seem to be very powerful in rationalizing much of the chemistry of 
benzenoid aromatic hydrocarbons. The early ascendancy of HMO theory was 
thus largely based on the ease with which it could be used for quantitative 
computations rather than on any inherent superiority of its fundamental 
assumptions. 

2.3 Resonance Models 
An important step forward was introduced by Hemdon [12] who, building on 

the work of Simpson [13], showed how to express the resonance stabilization 
due to conjugated rings in terms of a few simple empirical parameters, an 
approach which he called Quantitative Resonance Theory. This approach was 
subsequently recast in a computationally more useful form by Randic" [ 14] and 
is widely used under the name of Conjugated Circuit Theory [15]. This model 
expresses the resonance energy of a molecule in terms of contributions from 
each conjugated circuit, where a conjugated circuit refers to a closed path of 
alternating single and double bonds within any of the Kekul6 structures of the 
molecule. Each size of circuit is given an empirical energy weighting in 
accordance with the Hfickel 4n/4n+2 rule: circuits of size 4,8,12... are 
destabilizing while those of size 6,10,14... are stabilizing, with diminishing 
contributions as the size of the circuit grows. Finally, Klein [16] showed how 
all of the needed structural information about the molecule can easily be 
extracted from a few minors of the adjacency matrix. Thus Conjugated Circuit 
computations require as input only the pattern of connectivity of the conjugated 
atoms in the molecule, the same input information needed for H~ickel theory, 
and can be carried out in a comparable amount of computer time. They are 
therefore an attractive complement to Htickel calculations since, though also 
highly approximate, they approach the solution from the opposite, highly 
correlated, valence bond limit. 
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2.4 The Heisenberg Model 
An even more quantitative application of VB theory can be developed from 

the realization that the nearest-neighbor VB model as developed, for example, 
by Pauling [10], can be mapped exactly onto a Heisenberg spin Hamiltonian 
[17]. The Heisenberg spin Hamiltonian has long been used to study the 
interaction between magnetic atoms in transition metal compounds and other 
paramagnetic substances [18], and can be written most simply as 

H'Heis = Xi<j Jij Si'Sj (1) 

where each atom is assumed to have only one active orbital contributing one 
electron to the spin system, Jij is a (positive for antiferromagnetic) spin-spin 
coupling constant, and Si is the ordinary spin operator for an electron in the 
orbital on atom i. However to represent the valence bond model of 
hydrocarbons it is useful to shift the spectrum and to restrict the interaction to 
nearest neighbor carbon atoms (ie., those directly connected by a sigma bond). 
Therefore we take the Heisenberg Hamiltonian in the form 

HHeis = J Ei...j (2SfSj-1/2) (2) 

where the notation i-~j denotes summation over bonds. The choice of the value 
for the coupling constant J will be discussed in the next section. 

Solution of the SchrSdinger equation with the Hamiltonian of Eq. (2) can be 
carried out in a variety of ways, but the most compact representation of the wave 
function is achieved by using a basis which is symmetry adapted to either the 
symmetric group (Young-Yamanouchi basis) or the unitary group (Gelfand 
basis). Programs are available which utilize the same graphical lookup 
techniques which have been developed for ab initio molecular orbital 
calculations to efficiently organize the evaluation of integrals [19,20]. These 
programs make possible the exact (to within a predef'med adjustable error limit) 
solution for the ground state energy and wave function of molecules with up to 
about 30 pi centers. 

2.5 The Pariser-Parr-Pople/Hubbard Model 
Finally, for purposes of comparison, it is useful to have a pi electron model 

which makes neither the Hiickel nor the VB assumptions about the strength of 
the electron-electron interaction. Such a model can provide a smooth bridge 
between the Hiickel and Heisenberg models as the relative strength of the 
chemical bonding and electron repulsion interactions between electrons are 
changed. Such a role is played by the Pariser-Parr-Pople (PPP) model [21,22], 
and its close relative, the Hubbard model [23]. The PPP model can be 
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considered to result from a systematic application of the zero differential overlap 
(ZDO) approximation to the pi electron Hamiltonian expressed in a basis of 
orthogonalized atomic orbitals. 

The one electron part of the Hamiltonian is treated as in Hfiekel theory. Only 
one center and two center one electron integrals are given nonzero values, and 
the latter are restricted to nearest neighbor (bonded) pairs of atoms. These 
integrals represent the kinetic energy and effective attraction of an electron 
moving in the potential of the nuclei and sigma bonds. For molecules with only 
one kind of atom such as fullerenes, the one center integrals (the a ' s  of Htiekel 
theory) just introduce a uniform shift in the spectrum and can be taken as zero. 
The two center integrals, usually denoted t, are responsible for chemical bonding 
and are identical to the 13's of Htiekel theory. 

The two electron part of the Hamiltonian (which is missing completely in 
Htiekel theory) introduces the effects of electron-electron repulsion, and hence 
electron correlation. Within the ZDO approximation all two electron integrals 
which contain a two center overlap distribution are set to zero, on the grounds 
that such integrals are small for orthogonal orbitals. The remaining integrals are 
all of the coulomb form, but are usually taken as a simple function of the value 
of the one center coulomb integral and the distance between the atoms. The two 
most common expressions used in the literature (in atomic units) are those of 
Ohno [24]: 

yij = 1/(t,0 "2 + rij 2)1/2 (3) 

and of Mataga and Nishomoto [25]: 

Tij = 1/(~'o "*+ r~j) (4) 

where V~j is the coulomb repulsion integral for two orbitals separated by a 
distance rij and 1'0 is the one center coulomb integral which is taken as an 
empirical parameter. 

The PPP Hamiltonian can then be written in second quantized form as 

Hppp "- ~<ij>tijEij q- ~i ~/oatiaatil3ail3aia q- ~i~j<i Tij(Eii-1)(Ejj-1) (5) 

where the notation <ij> means the first double sum is nonzero only when atom i 
and atom j are nearest neighbors, o'=cx,13, and Eij = Eoati,~aj,~, in terms of usual 
creation and annihilation operators. The PPP model Hamiltonian is believed to 
be the simplest model which includes all of the most important physical effects 
in conjugated pi electron systems, and has been widely and successfully used to 
the study the electronic properties of aromatic hydrocarbons. 
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Formally, the Hubbard model can be derived from the PPP Hamiltonian by 
setting all two center coulomb integrals yij equal to zero. However, a more 
informative derivation recognizes that the remaining coulombic term is in 
essence a measure of the energy cost of moving an electron from a covalent state 
with one electron per atom to an ionic state in which one atomic orbital is empty 
and that on a nearby site is doubly occupied. The energy cost for doing this is 
approximately )'0-)q where 3'~ is a typical nearest neighbor coulomb integral, 
because the electron which moves now feels a repulsion from the other electron 
in its new orbital but none from the orbital which it has vacated. The Hubbard 
Hamiltonian thus involves only the first two terms of Eq. (5), and for equivalent 
atoms can be written as 

HHubb = E<ij>t~jEij + U Xiat'ictai'i[~ai[~ai~ (6) 

with U--W0-~/~ representing the effective strength of the electron repulsion. 
The exact FCI (full configuration interaction) solution of the PPP or Hubbard 

model is possible for molecules with up to about 16 atoms in the pi system. Any 
of the standard methods for performing approximate ab initio calculations, such 
as limited configuration interaction, Moeller-Plesset perturbation theory, or 
coupled cluster theory, may be applied to these models as well. All are expected 
to be very accurate at low order when U is small, but all will have to be pushed 
to higher order as U increases. 

2.6 Relations among the models 
The Hubbard model is essentially a one parameter model in the ratio U/It[ 

where t is an average t~j, since the magnitude of t just sets the energy scale, and 
is the simplest many body Hamiltonian to include electron correlation explicitly. 
When U is equal to zero it reduces exactly to the Hfickel model, while for large 
U many body perturbation theory or cluster expansion methods can be used to 
map its spectrum exactly onto the Heisenberg model. If the tij are taken the 
same for all bonds, perturbation theory gives J=2t'/U for the Heisenberg model 
[26], while the cluster expansion derivation gives J=( (U 2 + 16t2) v 2 -  U )/4 
[27,28]. The latter expression has the advantage of accurately tracking the 
Hubbard model to much smaller values of U than the perturbation theory 
expression. The Hubbard model thus spans the entire range from independent 
particle to highly correlated electron behavior as a function of the ratio U/It1, and 
has been of great value in studying the role of correlation effects. 

An instructive view of the relation between the spectra of the Htickel model 
(U=0), the Heisenberg model (U large) and the Hubbard model is provided in 
Fig. 1. Those states described by the Heisenberg model are all of covalent 
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Fig. 1. A schematic representation of the spectntm of the Hubbard model as the effective 
electron repulsion U varies from very large (Valence Bond limit) to zero (Htickel limit). 

parentage, since for large U the energy cost of doubly occupying a site is too 
large. For small U all low-lying states can be clearly identified as one electron 
excitatiom from the Htickel orbitals. But in the physically realistic regime in 
which U is approximately of the same magnitude as t, neither of these limits is 
easily discemable. In fact, it has been shown that the Hubbard model itself does 
not accurately describe excited states with significant ionic parentage [29], the 
long range coulomb interactiom dropped in going from the PPP model to the 
Hubbard model being much more important for ionic than for covalent states. 
However, for the ground state, and usually for several of the lowest-lying 
excited states, it is ot~en possible to draw a correlation diagram which goes 
smoothly from the lowest manifold in the MO limit to the lowest manifold in the 
VB limit, without avoided crossings, and for these states the Hubbard model is 
quite useful. 

In the following sections results will be reported of conjugated circuit 
calculations on a variety of fullerenes, of Heisenberg calculations on 
buckminsterfullerene, some of its isomers and derivatives, and a few smaller 
fullerenes, and of Hubbard/PPP calculations primarily on buckminsterfullerene, 
while attempting to emphasize both the strengths and the limitations of the VB 
picture of these molecules. 
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3. CONJUGATED CIRCUIT RESULTS 

Conjugated circuit calculations have been performed for all 1812 isomers of 
C60 fullerene [30,31 ]. As expected, the largest (most negative) resonance energy 
value occurs for buckminsterfullerene, the only experimentally stable isomer. 
These results provide strong evidence in support of one of the most important 
structural rules concerning fullerene stability, the "isolated pentagon rule". So 
far, all fullerenes which have been prepared in significant quantity with the 
exception of the recently produced C36 [32] have only pentagonal rings 
surrounded completely by hexagonal rings. Buckminsterfullerene itself is the 
smallest fullerene for which this is possible, and this observation was part of the 
original rationale for believing in the fullerene structure of the prominent C60 
mass spectral peak prior to the isolation and structural characterization of C60. 
We originally proposed this rule in light of the conjugated circuit analysis of 
resonance energy, which shows that destabilizing conjugated eight circuits 
develop around the periphery of any two pentagons which share an edge [33]. 
Kroto has shown that abutting pentagons also lead to greater strain in the sigma 
bond system [34], so taken together these two factors strongly mitigate against 
fullerene isomers containing fused pentagons. 
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Fig. 2. The resonance energy per site, relative to graphite, computed from conjugated circuit 
theory as a function of p, the number of bonds contained in two pentagonal rings. 
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Fig. 2 shows the resonance stabilization per atom of C60 isomers relative to 
graphite as computed from conjugated circuit theory using the parameters of 
Hemdon (uncorrected for curvature), plotted versus p, the number of carbon- 
carbon bonds shared between two pentagonal faces. At least for small p, the 
general decrease in resonance stabilization with p is quite obvious. A similar 
comparison at the all electron level using MNDO theory [35] shows the same 
decreasing trend of stability with increasing p for p less than or equal to 4, and 
there now seems to be agreement based on ab initio calculations that each 
pentagon-pentagon contact involves an energy cost in the vicinity of 1.5 ev [5]. 

On the other hand, the trend of decreasing pi electron stability with p is not at 
all evident from HMO total pi electron energies. While buckminsterfullerene 
does have the largest total energy, the HMO pi electron energies per site (also 
without correction for curvature) of almost all C60 isomers lie between 97% and 
99% of that of graphite, and it is difficult to detect the dependence on p. Thus 
the isolated pentagon rule is one case where a valence bond based analysis 
reveals an important trend which is much more difficult to discern in the MO 
picture. (To be fair, it is possible to elucidate the dependence on p from HMO 
energies by defining more sophisticated measures of resonance energy, but these 
methods involve resonance concepts based on Kekul~ structures, and essentially 
try to restore the missing VB concepts to Htiekel theory.) 

A second structural trend in pi electron stability emerges from an analysis of 
conjugated circuit calculations for isolated pentagon isomers of fullerenes in the 
size range of 6 0 -  100 carbon atoms which can also be given a valence bond 
interpretation. Although there is considerable scatter in the resonance energy 
values for different isomers, and no clear trend with size, certain structures 
clearly stand out as possessing tmusual pi electron stability. We have called 
these isomers "Clar sextet" fullerenes [36], but they are elsewhere referred to as 
"leapfrog" isomers [37, 38]. In resonance theoretic terms these isomers possess 
special Kekul6 structures in which every double bond participates in two 
conjugated six circuits [36]. Stated in another way, these fullerenes possess the 
property that if all atoms contained in five-membered rings were removed, the 
remaining portions of the carbon skeleton (if any) would be "fully aromatic" in 
Clar's sense [11], and thus presumably especially stable. Buckminsterfullerene 
is the smallest fullerene which possesses one of these special Kekul6 structures, 
and can be viewed as the first member of a family with v=60 + 6n carbon atoms, 
with n any integer except one. 

The special stability of the pi system for the Clar sextet isomers stands out 
clearly in the conjugated circuit computations [36], and in this case is also 
evident from HMO calculations, particularly from the HOMO-LUMO gaps 
which are uniformly large for these isomers. Unfortunately, the relevance of the 
Clar sextet criterion to experimental stability is not yet proven. While 
buckminsterfullerene is certainly especially stable, C72 has not been prepared in 
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macroscopic quantities, and the Clar sextet isomer of C78 is not one of the 
experimentally observed isomers [39]. Examination of models of these latter 
two structures reveals them to be rather "squashed" and thus probably relatively 
highly strained. Unlike the isolated pentagon rule where increased pi stability 
and decreased sigma strain apparently go together, there does not seem to be any 
such correlation for Clar sextet cages. It is thus quite possible that sigma strain 
energy, rather than pi stability, will turn out to be the dominant factor in 
determining the relative stability of larger isolated pentagon cages. Including a 
reasonable measure of sigma strain in pi electron calculations of fullerenes- by 
any pi electron theory- remains an unsolved problem which warrants further 
research. 

4. HEISENBERG CALCUlaTIONS 

4.1. The Kekul6 basis 
Quantitative implementation of the valence bond model for pi electron 

systems is most conveniently achieved by solving a Heisenberg spin 
Hamiltonian. In the simplest valence bond model the Hamiltonian is limited to 
products of spin operators for two atoms linked by a sigma bond in the molecule 
under study. The exact ground state energy and wave function for such a 
Hamiltonian can most easily be found using a complete spin basis symmetry 
adapted to orthogonal irreducible representations of the unitary or symmetric 
group. Calculations are feasible for molecules with up to about 30 atoms in the 
pi system [19,20]. Although much easier to solve than a Hamiltonian not 
limited to the covalent space, the Heisenberg model cannot be solved exactly for 
a molecule as large as buckminsterfiallerene, so some approximate method is 
needed for fullerene studies. Even for small molecules, the wave function 
expressed in unitary or symmetric group form is not easily interpreted in 
chemical terms, so an attractive approach is to investigate the model in truncated 
basis sets motivated from valence bond theory. The most important such 
functions are the Kekul6 functions, which are found by partitioning the set of N 
(even) atoms in the molecule into N/2 disjoint nearest-neighbor pairs and 
forming a singlet spin pairing for each pair of sites. A Kekul6 function, up to 
sign, is just the product of the singlet functions for each such pair of sites. 

For molecules of more than a few atoms the number of Kekul6 functions is 
orders of magnitude smaller than the size of the complete spin basis, and f'mding 
the variational ground state of the Heisenberg model within the space of Kekul6 
functions is quite feasible for molecules the size of buckminsterfullerene which 
has 12,500 Kekul~ functions [40]. Yet this type of simple resonating valence 
bond (RVB) approximation often yields a surprising good variational estimate of 
the ground state energy. Table 1 presents a comparison of the exact FCI ground 
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Table 1 
F~ICI ground state energy ofthe Heisenberg model (Eq. 1)"m units of J . . . . . . . . . . . .  

Molecule Complete basis Kekul6 basis percent 
benzene -2.8028 -2.7000 96.33 
pentalene -3.5483 -3.2500 91.59 
azulene -4.4440 -3.9265 88.35 
naphthalene -4.7700 -4.4352 92.98 
anthracene -6.7252 -6.0750 90.33 
phenenthrene -6.7613 -6.2624 92.62 
naphthacene -8.6791 -7.6650 88.32 
benz[a]anthracene -8.7222 -7.9489 91.13 
benzophenanthrene -8.7466 -8.0470 92.00 
chrysene -8.7475 -8.0470 91.99 
triphenylene -8.7697 -8.1534 92.97 
coronene - 11.9755 - 10.8218 90.37 
benz[a]coronene -13.9764 -12.6688 90.64 
C2o (Ih) -9.7222 -8.9658 92.22 
C24 (Dba) -11.7194 -10.4781 89.41 
C26 (O3h) - 12.6090 - 10.9596 86.92 
C2s (Ta) -13.5749 -11.7230 86.36 
CES (D2) - 13.8602 - 12.3118 88.83 
C3o (Dsh) - 14.8873 - 13.2328 88.89 

state energy to the energy calculated from the Kekul6 basis, using the unshifled 
Heisenberg Hamiltonian Eq. 1, for a series of small molecules on which the 
exact calculation is feasible [41,42]. Included are several small fullerenes and 
some other nonaltemant molecules as well as several classical benzenoids. 
Although the Kekul6 basis seems to do slightly better for the benzenoid 
aromatics, the difference is not great, and for all molecules except the very small 
benzene where the Kekul6 basis is nearly complete, the limited basis recovers 
between 88% and 93% of the exact energy. Yet for C30 the Kekul6 basis has just 
151 functions compared to 9,694,845 in the complete basis! 

Accordingly, the solution of the Heisenberg model for buckminsterfullerene 
in the Kekul6 basis is expected to yield a reasonable first approximation to the 
exact solution. This calculation has been carried out [43], yielding a ground 
state energy of-27.899051J for the Hamiltonian of Eq. 1. If it is assumed that 
this represents approximately 90% of the exact energy for the unshifted 
Hamiltonian, then the VB energy corresponding to Eq. 2 should be something in 
the vicinity of -107J. If we assume a typical value of J for hydrocarbons of 
about 1.75 ev, this gives an estimate of the total VB pi electron energy for 
buckminsterfullerene of about-187 ev. This can be compared with the value of 
-93.16213 from simple Htickel theory, which with a standard value of 13 of-2.5 
ev would translate to about -233 ev, a considerable difference. The spin-spin 
correlation functions (proportional to the negative of the spin bond order) are 
also readily computed from the Kekul6 wave function, giving <SfSj> = -0.5328 
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for the 6-6 bonds separating two hexagons and <Si'Sj> = -0.1960 for the 6-5 
bonds separating a pentagon and a hexagon [43]. This indicates a substantial 
tendency'for the pi bonds to localize on the 6-6 positions, in agreement with the 
chemical evidence. The difference in bond order is significantly larger than that 
computed from Htickel theory, which is consistent with the smaller resonance 
stabilization (less negative pi energy) predicted by the Heisenberg model. 

The Kekul6 wave function also yields considerable insight into the structure 
of buckminsterfullerene. Since buckmimterfullerene is a Clar sextet molecule, 
it has the special Kekul6 structure which places double bonds on all 30 of the 6- 
6 edges. Since the pi electrom tend to localize to these positions, this Kekul6 
function should be the most important single contributor to the ground state 
wave function, while Kekul6 functiom with many double bonds in 6-5 positions 
should be less important. Fig. 3 shows the absolute value of the wave function 
~oeffieient for each Kekul6 structure as a function of the number of double 
bonds in 6-5 positions. The expected decreasing trend is clearly observed, but 
something else stands out as well. The Kekul6 functions divide into two classes, 
separated by the solid line in the figure. This separation is a reflection of the 
nonaltemant character of a fullerene. 

A hydrocarbon is said to be altemant if the carbon atoms can be separated 
into two groups, usually designated starred and umtarP,,d, such that starred 
atoms are bonded only to unstarred atoms and vice versa. All benzenoid 
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Fig. 3. Wave function coet~cients as a function of the number of 6-5 bonds in a Kekuld 
structure. Numerical values show the number of Kekule functiom in each group. 
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hydrocarbons have this property but any molecule containing a ring with an odd 
number of atoms does not. Since fuUerenes contain 5-membered rings to 
produce the curvature needed to close them into a spherical structure, all 
fullerenes are nonaltemant. The definition of a Kekul6 function given at the 
beginning of this section defines a Kekul6 structure only up to its sign. For 
altemant molecules there is a natural way to assign the signs so that all Kekul6 
functions have a positive overlap with each other, and it is found [44] that all 
functions contribute to the ground state wave function with the same sign. It is 
just necessary to build each spin function in the Kekul6 function in the form 
<xil3j-[3itxj with i always a starred atom and j always an unstarred atom. 

On the other hand, for nonalternant molecules it is generally not possible to 
choose signs for the Kekul6 functions so that all pairs of functions have a 
positive overlap. Indeed, for buckminsterfullerene the Kekul6 functions divide 
into two classes. One group, containing 5,828 of the 12,500 Kekul6 structures 
including the special structure with no double bonds on 5-5 edges, can be given 
signs so that they have positive overlap with all other members of the group. All 
of the other Kekul~ functions, no matter how chosen, have negative overlap with 
some members of the first group. This first group of "aromatic" functions, 
which behave like those in traditional aromatic benzenoids, can be given a 
simple graphical interpretation. They are all of the Kekul~ functions which can 
be derived from the special starting ftmction by interchange of single and double 
bonds in disjoint 6-membered rings, ie., by moving bonds only in rings which 
share no edges. Interestingly, in the ground state wave function, the weights of 
all of the aromatic Kekul~ functions lie above the solid line in Fig. 3, while the 
weights of all of the remaining functions lie below the line. If the Heisenberg 
energy is computed using just the 5,828 aromatic functions, the value found is 
99.82% of the energy computed with the full Kekul6 basis [43]. Thus the 
ground state wave function is effectively totally dominated by these classically 
aromatic functions. The perturbation introduced into the resonance pattern by 
the 5-membered rings is essentially negligible. 

The Heisenberg model in the Kekul6 basis has also been used to study 
isomers and derivatives of buckminsterfullerene. It agrees with other theoretical 
methods [5] in showing the isomer derived from buckminsterfullerene via one 
Stone-Wales rotation to be the next most stable C60 fullerene [43]. Addition 
products are modeled [41] simply by removing all bonds to the saturated sites 
from the Hamiltonian, and the Heisenberg model also agrees with other methods 
in showing addition to the ends of a bond along the edge of two hexagons to be 
most favored. It differs from some other methods in predicting further addition 
to atoms in the same hexagonal ring to be favored over additions to 6-6 bonds in 
other parts of the molecule. This is consistent with the resonance theoretic 
interpretation of the wave function, because once conjugation around one ring is 
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destroyed ft~her additions to that hexagon do the least damage to resonance 
structures in the remainder of the molecule. On the other hand, strain in the 
sigma system, which is not included in the Heisenberg model, is probably 
minimized when the addition sites are far apart, so we may have here another 
situation where the experimental addition pattern is determined by a subtle 
balance between resonance and strain. This emphasizes again the need for 
semiempirical methods which treat both pi energy and sigma strain accurately. 

4.2. Larger basis sets 
Though chemically informative, the Kekul6 basis is clearly not a complete 

description of the ground state of fullerenes, since the energy derived from it for 
buckminsterfullerene is well short of variational bounds for the Heisenberg 
energy available from Monte Carlo calculations using the Gutzwiller wave 
function anzatz [45,46]. In the Gutzwiller approach the wave function is 
optimized with respect to a single variational parameter, which however 
introduces a weight for every function in the complete basis, rather than 
allowing independent variations for each of a restricted subset of basis functions. 
To approach the complete basis limit using unconstrained variation, it is 
necessary to include functions with longer bonds, that is with spin pairings 
between atoms which are not connected by sigma bonds. The importance of 
functions with one long bond has been investigated [42], and as expected, there 
is a general decrease in importance as the length of the long bond increases. 
However, there is a strong even-odd modulation. Functions with odd-length 
bonds, which of course include the Kekul6 fimctions, are much more important 
than ftmctiom with even-length long bonds. This is additional evidence of the 
minor role played by the nonaltemant character of buckminsterfullerene. In an 
alternant molecule the wave function can be expressed completely in terms of 
structures with odd-length bonds only, and the fact that even-length f~dnctions 
are not very important in buckmimterfullerene is additional evidence of the 
similarity of buckminsterfullerene to traditional benzenoid aromatics. 

Even inclusion of all functions with one long bond in the basis does not reach 
the full CI complete basis limit of the Heisenberg model, so additional functions 
with two or more long bonds would have to be added in a quantitatively accurate 
treatment of the model. Just as the importance of functions decreases with the 
length of the long bond, it should also decrease with the number of long bonds. 
Numerical results for small molecules [42] indicate that addition of functions 
with just two length three long bonds, in addition to the single long bond and 
Kekul6 functions, might be adequate, but this results in a basis more than a 
thousand times bigger than the Kekul~ basis, and is beyond present 
computational capabilities for buckminsterfi~lerene. However expansion of the 
basis seems unlikely to alter the basic picture of the ground state wave function, 



550 

which can usefully be viewed as dominated by the RVB resonance combination 
of Kekul~ structures. 

5. HUBBARD CALCULATIONS 

5.1. Correlation methods 
The last section addressed efforts to approach the exact wave function and 

energy of the Heisenberg model Hamiltonian, but this Hamiltonian itself is, of 
course, only an approximate model, most valid when the effective repulsion 
between electrons is large compared to the bonding interaction between them. 
Unfortunately, reasonable parameter values for carbon atoms indicate that while 
the effective repulsion energy is probably larger than the bonding energy, it is 
not much larger. Buekminsterfullerene, as well as other fullerenes and 
hydrocarbons, are likely to fall near the middle of Fig. 1, perhaps at a U/it[ ratio 
of 1.5-2.0. In this region the electronic spectrum is at its most complicated, it is 
difficult to recognize either the Htiekel or Heisenberg limit parentage of most 
states, and the computational demands of even approximate quantum chemical 
calculations are most extreme. One possible approach to a better description of 
molecules under these conditions is to extend the perturbation theory or cluster 
expansion derivatiom of the Heisenberg model to higher order to include more 
than two particle interaction terms in an effective Hamiltonian. Presumably 
Kekul6 based RVB methods and resonance theory ideas from valence bond 
theory can be extended to provide approximate solutions for these more accurate 
model Hamiltonians. Unfortunately, such methods are not yet well developed 
computation tools, so we have elected to approach the solution of more accurate 
Hamiltonians from the opposite independent particle limit. 

The advantage of approaching the solution of semiempirical pi electron 
model Hamiltonians from the IPM (independent particle model) limit is that 
many highly developed computational methods from ab initio quantum 
chemistry can be taken over bodily. In ab initio calculations on most stable 
closed shell molecules, using ab initio rather than empirically adjusted values for 
all electronic integrals, it is usually found that the independent particle Hartree- 
Fock description of the wave function is an excellent starting approximation. 
Several standard methods with different strengths and weaknesses are available 
for adding electron correlation, including configuration interaction (CI), 
Moeller-Plesset perturbation theory, and coupled cluster (CC) theory. While 
these methods are frequently accurate at low order in ab initio computations, all 
will break down if the strength of the electron correlation becomes too large, so 
an important first question is to investigate their adequacy for pi electron model 
Hamiltonians. The Hubbard model is well suited for this task, since it includes 
electron correlation with a strength which can be varied via a single parameter, 
the U/It[ ratio. 
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Table 2 
Hubbard model e nert~ ~ of, fluor~ thene at,different leyels 0fcgrrelation (in ur~i'ts 9flti) 
,u/Itl, 0.5, , , 1.0 1.5 2.0 4.0 8.0 
Enr -20.4982 -18.5962 .... 16A9Ji3 . . . . . .  '14'4923 -6.z~845 . . . .  9.53i0 
Eso -20.5598 -18.7357 -17.0103 -15.3624 -9.2234 2.2755 
+DD -20.5605 -18.7461 -17.0585 -15.5006 -10.6557 -9.1756 
MP2 -18.7456 -15.4902 
ESOTQ -20.5605 -18.7459 -17.0566 -15.4898 -10.2155 -1.7868 
EFO -20.5605 -18.7461 -17.0589 -15.5015 -10.6192 -5.9423 
'CE' ' -22.03'50 ..... -19.4889 -1712979 ....... -i'5.4267 -10.3391 . . . . .  -5.8925 
PT -99.8436 -49.9218 -33.2812 -24.9609 -12.4804 -6.2402 

. i i i i i ii i i i i i  i i i i i i i i  i i .  i i i i  i i i i i i  , . i i i i i  i i i  

Table 2 shows results [47, 48] for the total ground state energy of the 
Hubbard model of fluoranthene, with electron correlation treated by several 
approximate methods, as a function of the ratio U/ltl. Fluoranthene is near the 
size limit for which the FCI energy can be computed, and its carbon skeleton 
can be considered to be a fragment of the surface of buckminsterfullerene, but 
the results are quite typical of other small molecules. One of the simplest 
correlation methods is to mix, variationally, the Hartree-Fock SCF (Self 
Consistent Field) determinant with all of those which differ from it by 
replacement of just a small number of atomic orbitals. By the Brillouin 
theorem, single replacemems (singly excited determinants) do not mix directly 
with the SCF function, denoted ~0, but doubly excited determinants mix both 
with ~0 and with single excitations, so the lowest-order nontrivial configuration 
interaction treatment can be denoted SDCI. For fluoranthene this treatment is 
seen to be essentially exact when U/Et[ is equal to 0.5, since ~0 itself is the exact 
ground state wave function when U=0, and it is still very accurate when 
U/ltl=l.0. But in the important range of U/Jtl between 1.5 and 2.0 significant 
errors begin to appear and for larger ratios this treatment is clearly inadequate. 

Additional correlation can be included in the wave function by adding triple 
and quadruple excitations (SDTQCI), but such computations are much more 
time consuming. Table 2 shows two much cheaper methods to estimate the 
effects of higher excitations, a generalization of the Davidson correction [49] 
due to Duch and Diercksen [50] (denoted DD), and Moeller-Plesset 2 nd order 
perturbation theory [51]. Both are in excellent agreement with the SDTQCI 
result, as well as the FCI limit, through U/ltl=2.0 and may still be quite useful at 
U/It[=4.0, but of course all of these limited methods break down when U 
becomes very large. Nevertheless, it seems that IPM methods based on either 
generalized Davidson or perturbation corrections to the SDCI wave function 
may be sufficient in the experimentally relevant range of U/It] values, at least for 
small molecules. Of course, the SDCI method is not size extensive, meaning 
that it recovers an increasingly small fraction of the correlation energy relative 
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to the SCF wave function, as the size of the molecule increases. Thus either the 
DD or MP2 methods must "work harder" for larger molecules, and we cannot 
guarantee that they will be as successful for a molecule as large as 
buckminsterfullerene. 

Before considering the Hubbard model for fullerenes, it is of some interest to 
compare the Hubbard model results to those of the Heisenberg model for 
fluoranthene, which are shown in the bottom half of Table 2. The Hubbard 
model maps exactly onto the Heisenberg model for very large U, but for smaller 
U we can still approximate the Hubbard model by a nearest-neighbor 
Heisenberg Hamiltonian using either the perturbation theory or cluster 
expansion expressions for J as a function of t and U given in section 2.6. As can 
be seen, U/Itl > 8.0 is needed to make these approximations fully quantitative, 
but both are much better than the IPM approaches at large U. The perturbation 
based treatment (PT) becomes wildly inaccurate at smaller U, but the 
Heisenberg model with the cluster expansion (CE) value for J is a good 
approximation- certainly much better than the Hartree-Fock approximation- 
down to U/It[=l.5, and it is not completely unreasonable all the way down to 
zero correlation! This provides strong evidence that the VB model itself is 
physically reasonable and is not just a mathematical artifact of the empirical 
integral rescalings used to generate the pi electron Hamiltonian. It also 
emphasizes again the importance of considering correlated methods such as VB 
theory in the experimentally relevant region around U/Itl=l.5, rather than relying 
exclusively on SCF theory. 

5.2. The Hubbard model of buckminsterfuilerene 
Results for the ground state energy of the Hubbard model of 

buckminsterfullerene [48] are summarized in Table 3. Values are shown at U/Itl 
ratios of 1.0, 2.0, and 3.0 both for uniform and alternating bond lengths. While 
all atoms in buckminsterfullerene are equivalent under Ih symmetry, those bonds 
separating two hexagons need not be the same length as those separating a 
hexagon and a pentagon, and experimentally the 6-6 bonds are found to be 
noticeably shorter than the 6-5 bonds. A shorter bond should in turn correspond 
to a stronger bonding interaction. The results labeled "alternating" were 
generated by setting thh=l.2t and thp=0.9t to model this difference. It is highly 
encouraging that the generalized Davidson corrected and MP2 energies are in 
excellent agreement. These values are also below variational bounds [52,53] 
available from Monte Carlo calculations using the Gutzwiller wave function 
anzatz at U/ltl equal to 1.0 and 2.0, and are probably very close to the FCI limit 
at these ratios. The effect of electron correlation at U/ltl=2.0 is by no means 
small. For a standard t value o f - 2 . 5  ev it contributes almost 8 ev of 
stabilization. 
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Table 3 
Ground state energy of the Hubbard model of buekminsterfullerene in units of iti 

, _  i .  , , , i , , , , , , , ,  , , , , .  , , .  , , , , , ,  ,1 . . . . . . .  , , , ,  ~ , ,  . . . . .  ~ . . . . .  , , ,  ~ , . ,  , , , , , ,  . . . . . . . . .  , 

Uniform Alternating 
U/It[ 1.0 2.0 3.0 1.0 2.0 3.0 
Em .... -78.1616 '63.1616 .......... -48.'1616 ....... -'80.6942 ~' -65.6942 . . . . .  -5016942' 
Es~I -78.8603 -65.4137 -52.2857 -81 .4144 -68.0225 -54.9608 
+DD -78.9474 -66.2908 -55.1779 -81.5018 -68.9222 -57.9545 
MP2 -78.9489 -66.3106 -55.2468 -81 .5017 -68.9245 -57.9624 

While calculations were not done for U/]t[=l.5, the ratio most appropriate for 
direct comparison to the Heisenberg and H~ckel results of the last section, the 
energy at that ratio for uniform bond lengths can be interpolated to about-72.6t, 
which with t=-2.5 ev gives a total energy around- 182 ev. This is in much better 
agreement with the Heisenberg energy o f -187  ev than with the Hiiekel limit of 
-233 ev, and indicates that the VB model has got the energetics of the ground 
state essentially right. Bond alternation is seen to stabilize the molecule at all 
values of U, but increasingly so as the electron correlation increases. At 
U/it]=2.0 it adds an additional stabilization of nearly 7 ev, not counting, of 
course, any changes in the sigma strain energy which unequal bond lengths may 
induce. 

Bond orders and spin-spin correlation functions may also be extracted from 
the ground state wave function. The bond order on the 6-6 bonds is found to be 
about 25% larger than on the 6-5 bonds, with only a very slow increase with U. 
Bond alternation has a much more dramatic effect, making the 6-6 bond order 
almost 75% larger than the 6-5 bond order. The spin-spin correlation, as 
expected, is negative for both types of bonds, with a substantially larger 
magnitude for 6-6 bonds. The only other significant correlation is between 
atoms on opposite comers of a hexagon, and it is negative as it would be in a 
purely antiferromagnetic system. The other correlations are small and of 
random sign, and there is no clear long range spin order. 

The Hubbard model also opens up the study of the low-lying electronic 
spectrum of buckmimterfullerene, which is not accessible through the purely 
VB Heisenberg model. The lowest singlet and triplet excitatiom are found to lie 
at 0.7691t] and 0.694]t0 for uniform bonds and at 0.9161t] and 0.8361t] for 
alternating bonds. With the standard t value of-2 .5  ev these translate to 1.9 ev 
(uniform) and 2.3 ev (alternating) for the singlet and 1.7 ev (uniform) and 2.1 ev 
(alternating) for the triplet. Experimentally, the sing!et is found between 1.92 ev 
[54] and 2.00 ev [55] while values of 1.63_+0.20 ev [55], 1.7 ev [56], and 1.57 ev 
[57] have been reported for the triplet. The uniform bond length Hubbard values 
are fortuitously in almost perfect agreement with experiment, but the agreement 
of the presumably more realistic alternating bond length excitation energies 
must be accounted as quite satisfactory. The Hubbard model can be expected to 
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describe excited states less well than ground states because excited states are 
typically much more seriously admixed with ionic character, necessitating the 
retention of the long range coulomb integrals of the PPP model if they are to be 
treated accurately. The PPP model ofbuckminsterfullerene will be treated in the 
next section. 

6. PPP CALCULATIONS 

6.1. PPP model parameters for fullerenes 
While the Hubbard model successfully models several aspects of 

buckminsterfullerene, it does not have the capability to describe the full range of 
chemical and physical properties which one would like to be able to extract from 
a semiempirical model. To begin with, it makes no predictions of geometry. 
Instead, the experimental bond lengths must be used to estimate the differences 
in t values for different bonds. As mentioned above, the model also fails to 
describe states with significant ionic character, and thus often gives poor 
electronic spectra. The same limitation applies to ionization potentials and 
electron aff'mities, which of necessity introduce ionic character into the wave 
function. These latter limitations can be largely removed by returning to the full 
PPP model which allows electrons to interact via effective coulomb repulsions 
at all distances. To make the model predictive of geometry, the pi electronic 
energy must be coupled in some way to the energy of the sigma system. For a 
general three dimensional molecule this is a difficult task, but for planar 
conjugated hydrocarbons such as polyenes and benzenoid aromatics this can be 
done in a rather simple way. It turns out that because of the rather special 
symmetry of buckminsterfullerene this simple approach can be applied with 
only minimal modification to it as well. 

For planar polyenes and aromatics it is reasonable to assume that bond angles 
remain very close to the ideal 120 ~ angles generated by sp 2 hybridization. Given 
the quite localized nature of sigma electron pair bonding, it is then reasonable to 
assume that the energy of a sigma bond couples to the geometric structure of the 
molecule only through a stretching force constant. Accordingly, we treat each 
sigma bond as a spring, and write the total energy of the molecule as 

E = :Ei-j{Ee 0 + 1/2kij(rij-reij) 2} + E ~ (7) 

where Eeij is the energy of a bond at its equilibrium bond length re 0 in the 
absence of the pi electrons, rij is its bond length in the presence of the pi 
electrons, kij is a force constant, and E ~ is the energy computed from the pi 
electron Hamiltonian. The notation i~j again denotes summation over atom 
pairs connected by a sigma bond. For molecules such as those discussed here 
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with only bonds between  sp 2 hybridized carbon atoms, all of the Eeij's, reij's and 
kij's can be replaced with common values Ee, re, and k. 

If values are known for Ee, re, and k, and if the dependence of the parameters 
in the PPP Hamiltonian on distance is also known, then the total energy may be 
minimized with respect to all of the bond lengths to f'md the most stable 
molecular structure. In fact, the value of Ee need never be elucidated since it 
contributes equally to the energy of all states at all geometries, so just two 
additional parameters, re and k, need to be added to the PPP model to carry out 
this program. The distance dependence of the electron repulsion integrals in the 
PPP model is already prescribed by the choice of the Ohno or Mataga- 
Nishomoto forms given in Eq. 3 and Eq. 4, so we need only consider the 
distance dependence of the resonance integrals t which account for the strength 
of bonding. 

It is otten assumed that resonance integrals are proportional to the overlap 
between the atomic orbitals which formally underlie the pi Hamiltonian [58]. If 
these are assumed to be ordinary 2p~ atomic orbitals for carbon, the distance 
dependence of the overlap can be calculated analytically, and the distance 
dependence of the t parameters is often taken to be of this form, as for example 
in Extended Hiackel Theory [59]. But there is no need to make this assumption 
since the parameters in the pi Hamiltonian should more properly be thought of 
as rescaled effective integrals, and there is evidence that the model performs 
better if the t values are allowed to vary more rapidly with distance. 
Accordingly, we have adopted the form 

t~j = toil - 5(rij - ro)] (8) 

with to the value of the resonance integral at the reference length ro, usually 
taken to be the bond length of benzene, and ~5 a third new parameter. Values of 
k, re, and 8 can be found by fitting to the bond lengths of any convenient test set 
of molecules. In all of the work described here the accurately known gas phase 
carbon-carbon bond lengths of ethylene (1.339A~ benzene (1.399A~ and 
butadiene (1.349A ~ 1.467A ~ [60] were used for this purpose. 

To apply the PPP model to a fullerene, it is then necessary to consider how 
the parameters which appear in the model might be modified by the curvature of 
the fullerene surface. For most fullerenes it is to be expected that strain 
introduced into the sigma system will alleviate itself both through changes in 
bond lengths and in bond angles. But buckminsterfullerene is rather special in 
this regard. It can be shown that except for the unavoidable Gaussian curvature 
required to form a closed sphere, other forms of strah'a are minimized by the 
icosahedral symmetry of the molecule [61, 62]. There is thus no tendency to 
distort bond angles as the molecule relaxes to its minimum energy geometry. 
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On the other hand the Ih synmletry imposes no constraint on the lengths of the 6- 
6 and 6-5 bonds, other than that all 6-6 bonds must be identical and all 6-5 
bonds must be identical. There are thus just two geometric degrees of freedom, 
and both can be represented by stretching force constants just as in planar 
hydrocarbons. 

The curvature is also unlikely to seriously effect the electron repulsion 
integrals which are rather isotropic. Indeed in CNDO theory all electron 
repulsion integrals are modeled by those computed for s orbitals to maintain 
local coordinate invariance [63]. However the resonance integrals are quite 
likely to be sensitive to curvature. In the simplest picture of the origin of the 
resonance interaction the t integrals are viewed as being proportional to the 
overlap between atomic 2p orbitals. While the work described here did not 
make that assumption for the distance dependence of the t's, it does suggest that 
less than perfect alignment of atomic orbitals on adjacent atoms should result in 
a reduced pi bonding capacity. Eq. 8 was therefore modified to 

tij = to[1 - 8(rij - ro)]f(Oii) (9) 

To estimate the angular dependence of the t integrals it was assumed that 
each carbon atom has a p~-like atomic orbital oriented along the line from the 
center of the molecule to the atomic nucleus. But since the three neighboring 
carbon atoms are not in the same plane as the nucleus due to the curvature of the 
surface, the carbon orbitals forming the sigma bonds are not purely sp 2 and must 
be rehybridized slightly [64]. Then in addition to being out of alignment with 
their neighbors by an angle 0ij which is determined by the distance of the atoms 
from the molecular center and the bond length between them, the n-like orbitals 
are also not purely Pz in character. Nevertheless, the overlap s(0ij) between two 
such orbitals can be worked out analytically and f(00) was taken simply as 
s(00)/s(0 ). For the angles encountered in medium to large fullerenes, it turns out 
that this ratio is very accurately approximated by the two leading terms in its 
expansion in powers of 00 , leading to the very simple f'mal result 

f(O0) = 1 - 30ij2/4 (1 O) 

and the PPP model was applied to buckminsterfullerene with no additional 
modification. 

Correlated calculations using SDCI plus generalized Davidson or MP2 
corrections as described for the Hubbard model were first performed for 
buckminsterfullerene using a standard literature set of PPP parameters [65], 
namely to = -2.6 ev at the benzene reference bond length ro, % - 11.13 ev, and 
the Ohno form for the two center ),'s. While to is more commonly chosen as 
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-2.5 ev or even lower, Tavan and Sehulten [65] have found better success at 
fitting spectra with the larger value, and our experience confirms this 
observation." The fit to the bond lengths of ethylene, benzene, and butadiene, 
using the FCI solution to the PPP model for these molecules yielded re = 1.5190 
A ~ k = 55.841 ev/(A~ 2, and 15 = 1.8 (A~ "~. The value of re is in excellent 
agreement with other estimates of the length of a pure sigma bond between sp 2 
hybridized carbon atoms, though the value of 15 is somewhat larger than that 
employed ha most other studies. All four bond lengths in the fired set were 
reproduced to within 0.001 A ~ of their experimental values. No experimental 
information about buckminsterfullerene itself was used in deriving any of the 
parameter values. 

6.2. Ground state structure of buckminsterfuilerene 
Geometry optimization was performed for the ground state of 

buckminsterfullerene at the Hartree-Fock/SCF, SDCI and MP2 levels [66], 
giving equilibrium bond lengths which are shown in Table 4 along with the 
results from some other theoretical treatments. The bond lengths computed 
from the PPP model at the MP2 level with the parameterization described here 
are in outstanding agreement with experiment, being within the experimental 
errors for both bonds as measured by gas phase electron diffraction [67]. They 
are also in excellent agreement with those calculated with ab initio methods 
when electron correlation is included [3]. While electron correlation does not 
produce as large changes for the PPP model, the trends are the same as for the 
ab initio results [68], with correlation serving primarily to lengthen the 6-6 
bonds. This is an important observation since most SCF based methods 
underestimate the length 

Table 4 
Bond lengths in buckminsterfuUerene in A ~ ' 
Method 1"66 

i i i _ _ i i ,  Irl II I I I I'l - -  I I I I I 

Experiment 1.401~0.010 

. . . ,  , , ,L  , , ,  , , .  , , , , , , ,  

1"65 reference 
i i  i i i iii i i  i i i  . . . . .  

1.458__+0.006 67 

Ab initio 
HF/TZP 1.370 
MP2/TZP 1.406 

1.448 68 
1.446 3 

PPP model 
SCF 1.398 
SDCI 1.403 
MP2 1.407 

1.454 
1.453 
1.452 

this work 

PPP model 1.398 1.439 69,70 
1.396 1.443 71 
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of the 6-6 bond [5]. Also shown in Table 4 are the results from earlier PPP 
studies [69-71] which used somewhat different parameterizations and estimated 
bond lengths from empirical bond order-bond length relatiom, but without 
correlation. The agreement with the SCF level bond lengths found here is 
reasonable, indicating that the geometry is probably not overly semitive to the 
choice of PPP parameters. 

Bond orders are not much different than those found from the Hubbard 
model and are not very sensitive to electron correlation. At the MP2 level they 
are 0.424 for the 6-5 bonds and 0.692 for the 6-6 bonds, favoring pi electron 
density on the 6-6 bonds as expected. The spin-spin correlation functions, 
though, show interesting behavior. Any SCF calculation of necessity gives all 
negative spin-spin correlations, so a VB or correlated electron approach is 
necessary to observe the true spin behavior. The correlated PPP wave functions 
for buckminsterfullerene show the strong negative spin correlation for nearest- 
neighbors found with the Hubbard model, with a larger magnitude for the 6-6 
bonds. But they also show clear evidence of longer-range antiferromagnetic 
correlation. The average correlation with all atoms located d bonds away from a 
given site is negative for all odd d and positive for all even d out through d-5. 
Only for the very small correlations with d greater than 5 are some sign reversals 
observed, and these may be below the accuracy of the calculation. It thus 
appears that at least locally buckminsterfullerene preserves an antiferromagnetic 
spin ordering. Additionally, the positive correlations for even d are much 
smaller in magnitude than the negative correlations. For an altemant 
antiferromagnetic system they would be zero, so this result provides additional 
evidence that buckminsterfullerene is "almost" altemant and that the 5- 
membered rings introduce quite minor perturbations into the pi electron wave 
function. 

6.3. Electronic spectrum of buckminsterfuilerene 
It thus seems that the PPP model provides a very satisfactory description of 

the structure of buckminsterfullerene. Unfortunately when we turn to the 
excitation specman the results are not yet so encouraging. Due to the high 
degeneracy of the HOMO and LUMO under Ih symmetry, there are four states, 
with symmetries T~g, T2g, Gg, and Hg, which trace their parentage to the HOMO- 
LUMO excitation, and all are apparently very close in energy. Tramitions to 
any of them from the ground state are dipole forbidden, but both the lowest 
singlet and triplet have been observed experimentally. Table 5 presents the 
transition energies calculated from the present version of the PPP model at 
various levels of correlation, again with some other theoretical calculations for 
comparison purposes. 
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The simplest approach to obtaining excitation energies theoretically is to 
introduce configuration interaction with singly excited determinants. This 
Table 5 
Lowest singlet and triplet excitation enert~ies of.buckmin~erfullerene in ev . . . . . . . .  
Method singlet trip let reference 

- " II _ I I I . I I I I I  I I I  [ I I I .  I I I I I I  I I_ I I I I  II I I I 

Experiment 1.92 -- 54 
2.00 1.63-&-0.20 55 
-- 1.7 56 
-- 1.57 57 

6-31G+s/SCI 2.97 T2g 1.69 T2g 72 
MNDO/SCI 3.17 T2g 3.03 T2g 73 
PPP/SCI 2.87 T18 2.46 T2g 69 
PPP/SCI 2.61 Tlg 2.23 T2g 70 
PPP/SCI 2.69 Tlg -- 71 

PPP 
SCI 2.80 T2g 2.24 T2g 
SDCI 3.08 T2g 2.83 T2g 
MP2 1.65 T2g 1.31 T2g 
MP3 2.66 Gg 2.35 T2g 

this work 

produces no change in the SCF energy of the ground state but gives a first order 
estimate of excited state energies. Transition energies calculated at this level 
from the PPP model with the parameter set described here and the complete set 
of single excitations give values at least 0.5 ev too high for the triplet and as 
much as 0.9 ev too high for the singlet compared to experiment. However they 
are in good agreement with SCI excitation energies found from other 
parameterizations of  the PPP model with more limited CI [69-71]. An ab initio 
computation [72], which is limited to a small basis set, does better for the triplet 
but is even higher for the singlet, while MNDO gives higher values for both 
states [73]. It should be noted that the various methods identify different 
symmetries for the lowest excited singlet state, but the separation between Tlg, 
T2g, and Gg is very small. 

Given that single and double CI introduces fairly substantial energy 
corrections for the ground state, it may well be that doubly excited CI 
corrections for the excited states are necessary to produce accurate excitation 
energies. Accordingly, the excitation energies have been recalculated at both 
the SDCI and MP2 levels [66], but the results are disappointing. The SDCI 
corrections actually raise both transition energies, making the agreement with 
experiment even worse, while the MP2 corrections drop both values below 
experiment. The downward shifts of 1.5 ev from the 1 ~ 2  corrections are 
disconcerting, as is the fact that the Duch-Diercksen corrected ground state 
energy differs noticeably from the MP2 energy. This strongly suggests that the 
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CI treatment is not converged, and we have confirmed this by computing the 
MP3 corrections, which shift the transition energies back up by 1.0 ev! The 
failure of the SDCI/MP2 method to deliver well converged results for the PPP 
model is rather surprising given that it was apparently quite well converged for a 
Hubbard model designed to contain the same strength of electron correlation. 

6.4. Ionization potential and electron affinity of buckminsterfullerene 
Two other properties of buckminsterfullerene, the ionization potential (IP) 

and electron affinity (EA), are also of interest. Since each involves a change in 
the number of electrons, they can be found from the PPP model only if the site 
energy terms (the o~ integrals of Hfiekel theory), which have been dropped from 
Eq. 5, are restored. However the difference between them, IP-EA, is 
independent of a, and can readily be computed at the SDCI level, giving a value 
of 6.60 ev. Experimentally, the ionization potential is accurately measured to be 
very close to 7.6 ev [74-77], while the electron aff'mity is found to be 2.65+0.05 
ev [78]. Thus the experimental difference IP-EA = 4.95_+0.05 ev, is quite far 
from the PPP value. We can try to identify the source of the discrepancy by 
estimating a value for a from PPP calculations on small hydrocarbons for which 
the ionization potential is known experimentally and assuming that a is 
unchanged in a fullerene. For buckminsterfullerene this gives IP = 7.3 ev in 
reasonable agreement with experiment, but EA = 0.7 ev which is much too 
small. These results are consistent with the observation that the SDCI is not 
well converged, since convergence problems are expected to be much more 
serious for the anion than for the cation. 

6.5. Improved treatment of long range electron-electron interaction 
It is impossible to say with certainty why the second order correlation methods 
perform as poorly as they do for the PPP model of buckminsterfullerene, given 
their success with the Hubbard model, but it appears that the problem may be 
related to the use of the Ohno formula for the two center electron repulsion 
integrals. The Ohno formula was introduced to model the relative repulsions 
between atoms which are not too far apart, and it seems to be quite successful at 
that. On the other hand it may will give overly large values for the effective 
repulsion between electrons located on widely separated atoms. In small 
molecules where few if any atoms are far apart inadequacies in the long range 
form of the repulsion are unlikely to be important, but in a molecule as large as 
buckminsterfullerene the cumulative effect of many overly large repulsions from 
distantly separated atom pairs may significantly overestimate the strength of the 
electron-electron interaction, thus contributing to the poor convergence of low- 
order correlation treatments. In the physics literature this problem is often 
addressed by introducing an effective dielectric constant to represent the extra 
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screening produced by other charge centers, but this is really only appropriate 
for condensed phases. Instead, for fullerenes it might be more appropriate to use 
the Mataga-Nishomoto form for the electron repulsion integrals given in Eq. 4. 
This functional form dies off with distance more sharply than the Ohno function. 

While examples of the use of the Mataga-Nishomoto function in PPP studies 
can be found in the literature, it seems not to be generally recognized that 
replacement of the Ohno with the Mataga-Nishomoto function with no other 
change in parameters cannot be expected to give reasonable results. The steeper 
fall off with distance reduces the nearest neighbor y's with respect to the one 
center y, thus sharply increasing the short range correlation strength as measured 
by the Hubbard model effective U parameter. The result is to make the model 
much more strongly correlated, rather than to weaken the correlation as is 
desired. Thus use of the Mataga-Nishomoto form requires a reduction in the 
value of the one center coulomb integral to restore the balance between on-site 
and nearest-neighbor repulsions, and this is likely to require a reoptimization of 
all parameters in the PPP Hamiltonian to maintain good agreement with 
experiment for small molecules. 

A systematic reoptimization of the PPP Hamiltonian for fullerenes using the 
Mataga-Nishomoto function for the electron repulsion integrals has not yet been 
carried out. But some test calculations have been performed, using an arbitrarily 
chosen value of yo = 9.5 ev, and the results are encouraging. The ground state 
geometry is little changed, and the agreement with experiment remains 
excellent. On the other hand, the excitation energies at the SCI level are 
somewhat reduced and both the MP2 and MP3 corrections are substantially 
smaller, though the MP3 correction is still larger than would be desired. The 
calculated electron affinity is also increased to a value much nearer experiment. 
There is thus reason for optimism that when properly reparameterized the PPP 
model will prove capable of giving a quantitatively useful description of the 
electronic properties of buckminsterfullerene. 

7. CONCLUSION 

The valence bond picture of fullerenes has certainly proven to be valuable. 
The basic mental model of a fullerene, consisting of a cage of sigma bonds 
supporting a delocalized resonance superposition of many Kekul6 functions 
formed from mobile pi-like electrons, is supported at many levels. At its most 
qualitative level it rationalizes an important component of the isolated pentagon 
rule for fi~lerene structures. In more quantitative forms it explains the 
preference for pi electron density to lie on 6-6 bonds, which underlies much of 
the chemical reactivity of fullerenes, and at least for buckminsterfullerene shows 
a strong tendency towards antiferromagnetic spin ordering. This latter fact, 
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along with the observation of a special families of Kekul6 structures, argues 
strongly that the 5-membered rings in fullerenes, though essential to the 
spherical physical structure, are rather minor perturbations to the electronic 
structure. 

In addition, comparison to solutions of the Hubbard and PPP models 
including electron correlation shows the VB wave function to be a more 
accurate initial approximation than the Hartree Foek solution at the correlation 
strengths likely to be encountered in realistic semiempirieal models. In spite of 
the qualitative superiority of the VB wave function, systematic computational 
approaches to more accurate treatment of correlation are still most readily 
achieved when starting from the independent particle limit, but the correlated 
wave functions thus built up are likely to be interpretable in valence bond terms. 

Finally, the outlook for semiempirical pi electron models as useful tools for 
studying fullerenes is good. They are apparently capable of  quite accurate 
predictions of molecular geometry, and there is reason for optimism that when 
properly parameterized they will be useful predictors of electronic properties as 
well. 

The support of this research by the Robert A. Welch Foundation is gratefully 
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1. INTRODUCTION 

The valence bond (VB) theory is a general theory of chemical bonding 
parallel with the molecular orbital (MO) theory. It origins from the Heitler- 
London treatment of the hydrogen molecule and regards the chemical bond to 
the spin pairing of the shared electrons localized around the linking atoms (or 
atomic cores) [1,2]. During the 1930s and 1940s, Pauling and his collaborators 
generalized the ideas introduced by Heitler and London in their hydrogen 
molecule calculation to general many-electron molecules and laid the 
foundations of VB theory [3,4]. In VB theory, the exchange of atomic spins and 
the resonance mixture of covalent VB structures result in energy lowering and 
the formation of molecule. In contrast, the MO theory accounts for bonding in 
terms of a delocalized picture in which electrons move around all nuclei of the 
molecule. In comparison, one sees that the VB model is closer to the concept of 
valence traditionally adopted by chemists that molecules are ensembles of atoms 
held together by localized two-center and three-center bonds [3-5]. 

Over the past decades, MO theory has been predominantly developing due 
to the computational advantage that the basis sets are orthogonal. Various semi- 
empirical and ab initio SCF schemes as well as some MO-based correlation 
methods are available to explore the physical and chemical behaviors of 
molecules [6-8]. In contrast, the development of the VB theory has been 
seriously hindered by the non-orthogonal atomic wave functions and the 
exponentially increased configuration space for many-electron molecules. In the 
early days of VB theory, in order to make energy calculations possible, Pauling 
and his contemporaries assumed that the orbitals could be considered orthogonal 
to each other [3,4]. This assumption resulted in a dramatic simplification for VB 
calculations and the resultant form of VB theory is now termed the classical VB 
theory. Even though, since the number of covalent VB structures rapidly 
increases with the number of valence electrons, the exact solution of the 
classical VB model for many-electron molecules except a few small systems 
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was prohibited before powerful computers appeared. Hence, the simple versions 
of VB theory [9,10] such as the enumeration of Kekul6 structures or the 
conjugated-circuit model [9], have been used instead to give qualitative 
discussions on some properties of chemical systems, especially for the 
benzenoid hydrocarbons (BHs). On the other hand, due to the early success of 
VB theory [1,3,4,11], chemists have never lost their confidence in developing 
new forms of VB theory and solving various VB models via a strict approach for 
larger molecules and thus elaborating the applications of VB theory to these 
systems. 

The difficulties with the VB theory went on until the last thirty years. 
There have been several threads of development in semi-empirical [12-22] and 
ab initio [23-28] VB frameworks with much widening interest in applying VB 
theories. New forms of VB theory, under the name of modem VB theory, have 
emerged, in all of which overlap integrals are explicitly considered and all 
required one- and two-electron integrals are precisely evaluated. While for the 
VB theory in its classical semi-empirical form, its applications to general 
molecules have been overshadowed by its new forms. Nevertheless, for 
conjugated systems in which n-electrons are mainly responsible for their special 
properties [29,30], the classical VB model could be considered to approximately 
represent the many-electron Hubbard model [31], a simplified PPP model for 
describing n-electrons, in the strongly correlated limit. On the other side, the 
simple Htickel MO (HMO) theory is an approximation of the Hubbard 
Hamiltonian in the weakly correlated limit. As the structure-property 
relationships for conjugated systems have been well established using simple 
and sophisticated MO theories [29,30], it would be still valuable to investigate 
some properties of conjugated molecules from exact solutions of the classical 
VB model so that the effects of electron correlation on ~-conjugation 
interactions could be assessed. Unless otherwise stated, hereafter the VB model 
refers to the classical VB model throughout this chapter. With the advent of 
powerful computers, use of the graphical unitary-group technique has led to 
exact VB ground-state energies for BHs up to N=24 sites [16]. To extend VB 
calculations to larger species, an efficient strategy is to reduce the size of the VB 
matrix by using the molecular point group and spin symmetry, and then applying 
the powerful methods developed for treating large sparse matrices for 
diagonalization. In addition, if the VB model is solved in various spin subspaces 
with conserved z-component of total spin S, efficiently coding the Slater 
determinants also aids in saving computational time and required memory. 
Recently, by employing a combination of these techniques we have obtained the 
VB energies and wave functions of the ground and lowest excited states for a 
large number of conjugated systems with up to 28 re-electrons [22]. 

The exact VB solutions offer the possibility for the reinterpretation of 
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various molecular behaviors and the validation of approximate VB versions 
[9,10]. Both the energies and wave functions of the lower-lying states are 
instrumental in property-structure investigations. In this chapter, we firstly 
describe the VB model in detail and then introduce the computational techniques 
to enable VB calculations feasible for conjugated systems having 28 n-electrons. 
Then for closed-shell BHs we demonstrate that their bond lengths, reactivity, 
low-lying electronic spectra, and aromaticity could be interpreted in a systematic 
way. And for open-shell conjugated radicals, their spin coupling strength could 
be easily calculated within the VB model, which is difficult to obtain in 
conventional MO approaches. 

2. METHODOLOGY 

2.1. VB m o d e l  

2.1.1. The origin of the VB model: the Heitler-London treatment of the hydrogen 
molecule 

For the hydrogen molecule, the Hamiltonian operator is as follows 

/-) =/~(1) +/~(2) + ~(1,2) (1) 

where 

1 /~(i) = - ~  V~ z + r~.' + r~ l (2) 

~(1,2) = r~ t (3) 

Here /~(i), i=1 or 2, stands for the core Hamiltonian for electron i moving in the 
field of nuclei a and b separated by distance R, and ~(1,2) is the repulsion 
potential between two electrons away from each other by distance r~2. 

According to Heitler and London [ 1 ], the electronic states of the hydrogen 
molecule can be formed by distributing the two electrons between the atomic 
orbitals (AOs), 1so and 1 s~ (abbreviated by a and b), on the two hydrogen atoms. 

The singlet wave function characterized by quantum numbers S=0 and M=0 (M 
denotes the z-component of total spin S) can be described using the form 

: (laB)-I b))/4g (4) 

where the symbol I ) denotes a normalized Slater determinant in which the spin 
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orbitals are used, for example, (a,K)= (aa, afl). For simplicity electronic variables 
(space and spin) are implicitly taken to be in natural order r~ and r2 or, for spins, 
s~ and s2 in all determinants. In the same way, one can write out the three 
components of the triplet wave function, for example, the one with S=land M=0 
being 

<o (5) 

The variational energy of either the singlet or the triplet can be computed by 

E = (~,l/~[~)/@1~') (6) 

On substituting functions (4) and (5) into Eq. (6), we get the singlet and triplet 
energies Es and ET as follows 

Es = Q + K Er = ~ Q - K  (7) 
1+ S a2b 1-Sa2b 

In Eq. (7), Sab is the overlap integral between two atomic orbitals a and b, 
defined by Eq. (8), Q and K are coulomb and exchange integrals defined by Eqs. 
(9) and (10), respectively. 

gab --(alb) (8) 

Q= 2<ali, la>+<abl lab > (9) 

K = 2  s  (al lb)+ (ab[~[ba) (10) 

Here, for instance, ab means the simple product of atomic orbitals a and b 
occupied by electrons 1 and 2 respectively, i.e., a(1)b(2). Besides, (a[hla)= (blhlb) 
valid for the hydrogen molecule has been used to simplify Q. 

The energy gap between singlet and triplet states is obtained directly from 
Eq. (7) 

Es-Er=2K (11) 

if the square of the atomic overlap, Sa 2 , is negligible in Eq. (7). For the real 
hydrogen molecule, the exchange integral K is negative, thus the singlet state is 
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the ground state of the hydrogen molecule. But for other two-electron model 
systems, K may be positive, and as a consequence the triplet state will be the 
ground state. 

2.1.2. Equivalent spin-Hamiltonian 
The Hamiltonian (1) is spin flee, commutative with the spin operator ~2 

and its z-component ~ for one-electron and many-electron systems. The total 
spin operator of the hydrogen molecule relates to the constituent one-electron 
spin operators as 

(12) 

Suppose ~, denotes the common eigenfunction with quantum number S of four 
operators, ~r Sz, S~ and ~ ,  being commutative with each other, then we 
have 

(IFlgIN } = 2-'(2-1 + 1)= 3/4, i = 1 , 2  (13) 

(q/l~2lg) = S(S + 1) (14) 

Thus, combining Eqs. (12), (13) and (14) leads to 

(gls," S2[g) = 2-' S(S + 1) - 3/4 (15) 

Evidently, if one defines a Hamiltonian operator containing only spin operators 
and numerical parameters as follows 

t l  s = Q - K / 2 - 2 K  S, '$2 (16) 

then this spin-only Hamiltonian can reproduce the energies of the singlet and 
triplet states of the hydrogen molecules obtained above provided that S a~ in Eq. 

(7) can be neglected, i.e., (~/oo[l~sl~/oo)=Q+K, ( ,019sl 10)=Q-  In this sense, 

we say that the Hamiltonian defined by Eq. (16) is an equivalent Hamiltonian to 
the true Hamiltonian (1) in the Heitler-London treatment, or in other words, the 
Hamiltonian (16) defines the VB model for the hydrogen molecule. 

It was Pauling and his collaborators who generalized the Heitler-London 
treatment of the hydrogen molecule to general polyelectronic systems and gave 
the rules for evaluating the Hamiltonian matrix elements [3,4], which could also 
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be derived using the following artificial equivalent spin-only Hamiltonian 
[8,11]. 

/-)s =/~vB = (-1)y'~Ko.(2L "Sj -1/2) (17) 
i~j  

Here i~j denotes a specified nearest-neighbor pair of AOs and K o. is the 
corresponding exchange integral, and (Q-.Z.Ku) is taken as the zero of energy. 

t~J 

The VB model (17) is the basis of nearly all semi-empirical applications of VB 
theory to polyatomic molecules. 

2.1.3. The VB model for  conjugated molecules 
It is well known that the properties of conjugated molecules are principally 

determined by their n-electrons. Furthermore, planar conjugated molecules are 
prototypical in that their n-electrons could be separately treated from the 
remaining o-electrons. Hence, semiempirical theoretical models developed 
mainly for conjugated molecules treated only the n-electrons explicitly but 
incorporated the effects of the o-electrons and the nuclei into some adjustable 
parameters featuring these models. The VB model (17) could be such a model, 
which may be further simplified as 

Hvn = J~--'(2S; .Sj -1/2) (18) 
i~j  

where the exchange integral K o. in Eq. (17) is now replaced with minus J (thus J 
is a positive exchange parameter), implicitly assuming that the exchange integral 
has the same value for the two 2p, orbitals of any two carbon atoms bonded to 
each other. 

We would like to point out that the VB model (18) has also proven to be the 
second-order effective Hamiltonian of the many-electron Hubbard model in the 
strongly correlated limit via degenerate perturbation theory [31] and other 
methods [32,33]. These methods can lead to systematic procedures for 
improving the VB model (18) by introducing higher order corrections [13]. On 
the other side, a geometry-dependent VB model [14], analogous to the model 
Hamiltonian (18), has also been proposed, in which the o and n energy 
dependence to the bond length and bond twisting are incorporated into the 
parameters. Despite that these variants of the VB model (18) can usually provide 
slightly better descriptions for a certain conjugated molecule [ 13,14,19,21 ], the 
VB model (18) is appropriate for studying a group of conjugated molecules to 
probe structure-property relationships, and consequently will be employed as 
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our working VB model in subsequent sections. 
Now we are concerned with how the VB model (18) can be solved for a 

given conjugated system. In fact, the model Hamiltonian (18) actually acts on 
the space of pure spin functions, either of the Weyl-Rumer (WR) form [34] or 
the simple product of one-electron spin functions. The matrix element between 
any two WR functions can be obtained by using Pauling's graphical rules [4], 
while the matrix element between two simple spin products is easily available 
using the following expression 

(19) 

Expanding the "wave function" in a linear combination of pure spin functions 
could yield the correct secular equations and thus correct eigenvalues. However, 
such spin-only "wave functions" could not be considered complete since 
complete wave functions must describe both the spatial and spin motions of 
electrons and must be antisymmetric under exchange of any two electrons. It 
would be better to rewrite the VB model (18) in the second quantization form as 
given in Eq. (20), in which its eigenstates can be taken as a linear combination 
of Slater determinants or neutral VB structures. Then 

= + (2o) 

where 

151o - J ~)-' + a + + + = (a 7 ja ja~  + a i a 3 a 3 a i )  (21) 
i - j  

t l ,  = J~ - '  (a;a~.aya t + aTa}a ,  ar) (22) 
i - j  

Here a-+and a, are the creation operator of the spin-down electron and the i 

annihilation operator of the spin-up at site i, respectively. In the derivation, we 
have employed the relationships such as Sj§ = a~.a 3 S j  = a +- _ j a j ~  

Sj, = 1/2(a~.aj-a~a3) , and so on, which are easily confirmed by testing the effect 

of each side of these expressions on the two spin orbitals #~(rj)a(sj) and 

#j(rj)fl(sj),  #j(rj) being the 2p, orbital of the jth carbon atom. 

The model Hamiltonian (20) can be solved in various spin spaces in which 
S or its z-component M is conserved. For a given conjugated molecule with N n- 
electrons, the number of linearly independent covalent VB structures in a certain 
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S subspace is known to be fs N = (2S + 1)N!/(N/2 + S + 1)!(N/2- S)! [34], while the 
number of neutral Slater determinants with quantum number M, n(M), equals 
the binomial coefficient n(M)=C~/2_M. It is clear that in either case the 
dimension of the Hamiltonian matrix is exponentially proportional to the size of 
the system. In this chapter, the Slater determinants are chosen to be the N- 
electron basis functions, in which the VB model (20) is solved for various Sz 
spaces respectively. 

To illustrate the VB method, we consider several small conjugated 
molecules in the following. For larger conjugated molecules, the solution of the 
VB model (20) needs efficient computational techniques, which will be 
described in the next subsection. 

Ethylene. The n-electron network of ethylene has electronic states 
completely analogous to those of the hydrogen molecule. For convenience, we 
simply use 1, 2, ..., instead of2p,~,2p,~,..., to specify atomic orbitals on various 

carbon sites in the following. Clearly, ethylene has four Slater determinants built 
from two AOs, which can be designated byll~ ), IT2), 112), ITS). According to the 

above discussions, the wave function can be written as a linear combination of 
Slater determinants limited to the subspace of conserved z-component of total 
spin, namely, 

~br = ~ ci~o i (23) 
i=1 

In this subsection, for simplicity we take the energy in units of J so that the 
elements of the Hamiltonian matrix are all integers. Thus, in the subspace M=0, 
the VB secular equation is 

I - 1 - E  1 I= 0 (24) 
1 - 1 - E  

The expansion of this equation yields (-I-E)2-1=0, giving two eigenvalues, E 12"- 

-2, 0, with their corresponding eigenstates ~,,=~l~)-[T2))/~ and 

~,= -~1~)+1T2))/4~, respectively. While in subspaces of M=+I, -1, the wave 

functions are simply 112), ITS), with both eigenvalues equal to zero. In 

summary, ethylene has two electronic states in the VB model, one is the singlet 
state ~'l with the energy-2, the other is the triplet state (~2, or 112), orlT~)) 

with the energy 0. 
Butadiene. There are a total of 16 Slater determinants in the neutral VB 
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space which split into five groups consisting of 1, 4, 6, 4, 1, associated with M =- 
1,-2, 0, 1, 2, respectively, in which those having equal but opposite M values 
have identical numbers. Because of the spin-inversion symmetry, the VB model 
only needs to be solved in M=0, 1, 2 subspaces. 

The energy matrix entries can be evaluated by simple rules. For a given 
determinant, the diagonal entry equals the negative value of the number of spin- 
alternations for nearest-neighbor pairs of carbon atoms in the determinant, i.e., 

(cPkl/)[fOk) =-(number of spin-altemations for all carbon-carbon bonds in cpk ) (25) 

The off-diagonal entry between two Slater determinants always takes the value 1 
or0 

= l o r 0  ( 2 6 )  

in which 1 results only if the two Slater determinants differ by just one spin- 
exchange on a specified carbon-carbon bond and otherwise 0 results. Suppose 
the carbon atoms of butadiene are numbered as 1, 2, 3, 4, from left to right, then 
applying the above rules easily leads to all matrix entries of the VB Hamiltonian. 

For example, (1~3~]~r11~3~)=-3, (1234[/-)11234)=-2, (12341/-)11234) = 1, 

(12341/-)11234) = 0. 

Because the Hamiltonian matrix is sparse and its elements are simply 
integers, one can specifically map it to a "configuration interaction" graph. The 
graph is a collection of points and lines. Each Slater determinant maps to a point 
with its degree, the number of lines incident to the point, equal to the negative 
value of the diagonal entry. Each line defines a non-zero off-diagonal entry, 1, 
between two points. In this way, two graphs representing the Hamiltonian 
matrices of butadiene in spin spaces M=0 and 1 respectively are shown below, 
along with their corresponding secular equations aside each graph. 
(1) M=O 

1i234) 

[~34) ] i2.~4~~~3~) i 12~) 1 2 ~  1 ~ - , ,  5 6 

4 

- 1 - E  1 0 0 0 0 
1 - 3 - E  1 1 0 0 

0 1 - 2 - E  0 1 0 
0 1 0 - 2 - E  1 0 
0 0 1 1 - 3 - E  1 
0 0 0 0 1 - 1 - E  

=0 



574 

(2) M=I 

- 1 - E  1 0 0 

1 2 3 4 1 - 2 - E  1 0 
O O =0 
1i234) 114) 112~4) 11203]) 0 1 - 2 -  E 1 

0 0 1 - 1 - E  

The expansion of the secular equations shown above results in two polynomials, 
E 6 + 12E 5 + 52E  4 + 100E 3 + 8 4 E  2 + 2 4 E  = 0 for M=0 and E 4 + 6E  3 + 10E 2 + 4E  = 0 fo r  

M=I. While for M=2, the eigenstate is just 11234), with the energy E=0. 

Classifying the roots obtained from these polynomials by spin multiplicity and 
point group Cs, we have eigenvalues of butadiene in the increased energy order, 
~A' (-3-3'/2), 3A,,(_2_2,/2), 3 A, (-2), ~A' (-3+3'/2), 3h-(..2q_ 2,/2), and 5A' (0). For 
these eigenvalues, one can also derive corresponding wave functions without 
difficulty. 

Trimethylene-cyclopropane. By the same procedure outlined above, we 
have obtained the eigenvalues of trimethylene-cyclopropane classified by spin 
multiplicity and the irreducible representations of its point group D3h as  follows: 
~A'~ (-8.000), 3E' (-6.529), 3A'~, 3A'2, ~E' (-5.000), 5E ' (-4.303), 3E ' (-3.833), ~A'~, 
~A' 2 (-3.000), 5A' l, 3A'  l (-2.000), 3E' (-1 .639), 5E' (-0.697), 7A'  1 (0.000). 

2.2 Computational methods 

2.2.1. Lanczos method 
It is instructive to solve the VB model in the space of conserved z- 

component of total spin because Slater determinants are orthogonal to each other. 
The central idea of the Lanczos method [35] is to transform a general quantum 
model to a chain model or, in matrix language, to convert a general symmetric 
matrix into a tridiagonal matrix via an orthogonal transformation. By recursion, 
the eigenvalue can be effectively computed from a well-behaved initial state, 0%. 
If g0 (normalized to 1) has a nonzero projection over the true ground state, 0~, 
the recursion can give a good approximation to the ground state as accurate as 
possible. Otherwise, it will converge to an excited state. Since the larger the 
number of spin-alternations in a determinant, the lower its energy will be (see 
Eq. (25)), the classical N6el state is usually chosen as an initial state to 
determine the ground state. For low-lying excited states, the same procedure can 
proceed in other subspaces of different M. Comparing the energies of these 
states, the first excited and other low-lying excited states can be picked out [20]. 

Let's describe this recursion process. By operating with /-)on ~0, we 
define a state ~,~ as follows 
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[D'I "=  (1-21111'0 -- ao ~t O ) / bl (27) 

where 

a 0 = ( 01 1 0) <28> 

/)2 = ( ( H ~ o -  a o ~ o ) l ( / t ~ o -  ao~o)) (29) 

It is obvious that ~ffl is normalized and orthogonal to ~0. 
Once we have obtained ~0 and ~'l, we can construct a set of orthonormal 

states {~'2,~'3 .... ,g, } in succession defined by the following relation 

g~ = (H~t  _~ - a._~g._~ - b~_lg._2) / b~ ( 3 o )  

where 

a~_ 1 ,) <31> 

b 2 =  ( (Hg~_l  - a~_lg~_l -- - - ( 3 2 )  

Obviously, all g , ( i  < n) span a tridiagonal symmetric matrix of H with diagonal 

entries {a0, al . . . .  , a,_t} and their nearest-neighbor off-diagonal entries 

{b~, b 2 ..... b,} represented by a chain graph. Then the secular equation for the 

chain model is solved for the eigenvalues instead of the original Hamiltonian 
matrix. 

For a tridiagonal matrix, less entries, 3n, rather than n x n, have to be stored. 
If we limit ourselves to the ground state and a few excited states, the recursive 
calculation can terminate at some early stage under recursions much less than n, 
giving the eigenvalues steadily converging toward exact results. In other words, 
the calculated eigenvalues within a given precision are no longer changed on 
increasing the number of recursions. The tridiagonal Hamiltonian matrix 
facilitates the computation for the corresponding eigenvectors in terms of the 
transformed basis set expressed by Eqs. (27) and (30). In order to obtain the 
eigenvectors in the original Hilbert space, we must repeat the recursion 
procedure accumulating the basis vectors with their corresponding weights. 
Then the resultant wave functions can be employed for evaluating various 
quantities of interest, with the purpose of gaining the structure-property 
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relationships for conjugated molecules. 

2.2.2. Coding o f  the Slater determinants 
For a conjugated molecule with N :r-electrons (or carbon atoms), the 

wave function (Eq. (23)) spans the subspace characterized by quantum number 
M with dimension n(M) equal to a binomial coefficient n(M)=CuU/2_M. This 

implies that the dimension for the subspace of M increases exponentially with 
the size of the system. For examples, we have n(0)=184,765, n(1)=167,960 for 
N=20, which increase to n(0)=40,116,600, n(1)=37,442,160 when N=28. 
Obviously, the storage of such an enormous number of determinants is first of 
importance for the efficient implementation of VB calculations. For this purpose, 
we introduce an algorithm of coding the Slater determinants for minimizing the 
searching time and saving the storing space in the central memory of the 
computer [22]. 

As we have mentioned, each Slater determinant is defined by a unique 
array of site numbers 1, 2, ..., N with specific spin distribution. Apparently, one 
can extract the sequence of spin-up (or spin-down) sites to specify a determinant. 
For example, when N being even and M=0, this spin-up site sequence consists 
of N/2 numbers, {a~,a2 .... ,a~,2} where a~ (i=1, 2, ..., N/2) satisfies 

a, <a2 <... <aN~2 and i<_a, _<N/2+i. For illustration, we list the twenty Slater 

determinants and their spin-up sequences, {a,,a2,a3} for N=6 and M=0 in Table 

1. 
Let us demonstrate the coding of 20 Slater determinants in Table 1. We have 

arranged them one by one sequential entries: we put {fl,, P2, P3} ahead of 

{Y,, r2, r3 }, if fl, < r, or fl, = r,, but f12 < y2, or if fl, = r,, f12 = r2, but f13 < r3. 
Thus, for the whole set of determinants we can define ordinal numbers from 1 to 
20 shown in the third column of Table 1. There is a one-to-one correspondence 
between the spin-up site sequence and the ordinal number, and in fact we can 
derive an analytical formula to connect them. In the following, we exemplify 
one of the determinants, [T23456), with the spin-up sequence {246} and the 

ordinal number 15. 
At first, we notice when a, =1, a2 and a3can be either 2 or 3 up to 6 in 

constraint to a2 <a3, thus the total number of combinations with a ,=l  is equal 

to the binomial coefficient 

C6-( = C2 = 10 (33) 

Such ten determinants are labeled in Table 1 with ordinal numbers 1 to 10. 
Similarly, if a~=2, a2anda 3 are to be integers satisfying 3<a2<a3<6 which 
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result in six determinants numbering from 11 to 16 in Table 1. Obviously, {246} 
is located between 10 and 16. Then {246} has an ordinal number greater than 13 
rather than 10, because the sequences with a~ =2, a2 =4 follow those with a~ =2, 
a2=3 while the latter cover three determinants due to the fact that a3 can be 4, 5, 

or 6. Thus, 13 is a sum of two binomial coefficients 

(n6-2-1 5 
C~6-I 1 +-- '3-2  = C 2  +C? =10+3=13 (34) 

Meanwhile, if al=2, a2=4, then a3 can be either 5 or 6. Since {246} is 

preceded by {245}, {246} corresponds to the ordinal number 15. 
The evaluation of the ordinal number of {246} suggests that 15 can be 

summed stepwise as 10+3+ 1+ 1, in which "10" denotes the number of sequences 
with a l= l  (<2), "3" signifies the number of sequences with a~ =2, a2=3 (<4), 
"1" represents the sequence with a~=2, a2=4, a3=5 (<6), and the last "1" 

comes from {246} itself. In general, the ordinal number, 8,  of  the sequence 
{CtlOt2a 3 } can be analytically written as 

a 1-1 a 2 - a  n -1 a 3 - a  2 -1 
~ { a l a 2 a 3  } = Z C 6 _ - / +  E (  ~6-~ + ~)-~ g"v6-Ot1-1 ---3-2 z.~ v3-3 +1 (35) 

j=l j=l j=l 

Table 1 
The codin~ of Slater determinants for M=0 and N=6 

Slater Ordinal Slater 
determinant a ] a 2 a 3 Coset number determinant a a a 

1 2 

ord'inal 
Coset number 

1123~3~[ 123 E 1 1T2345~[ 

112"~4NN I 124 c e ITE3ZS I 

112~5NI 125 C 3 IT23~N61 

1125~g61 126 A 4 IT2545g I 

11234Ng1 134 c 5 [T254961 

11 3 5NI 135 A 6 ITEg 561 
11~3~g61 136 C 7 []-~345g I 

II~45NI 145 D 8 IT~34N61 

[lg54N61 146 D 9 1T~3~56 [ 

1195~56 [ 156 B 10 I-i-g54561 

234 A 11 

235 12 

236 13 

245 D 14 

246 15 

256 D 16 

345 17 

346 D 18 

356 D 19 

456 E 20 
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Here the upper bounds of the summations are, a~ - 1 =1, a2 - a I - 1=1, and Ct 3 -  a 2 - 

1=1, respectively, with exceptions for a~=a~_l+l(ao=O), in which the 
corresponding term vanishes. 

This coding procedure can be extended to systems having N ~r-electrons. 
The spin-up site sequence{a,,a2,...,a~ .... ,a~/2_u} with a~<a2<...<aN/2_ M is 
extracted from the Slater determinant of quantum number M. No matter how 
huge the dimension of the subspace is, an ordinal number can be defined 
uniquely for every determinant to maintain the one-to-one correspondence with 
the spin-up sequence. The general formula is as follows 

N I 2 - M  

,5 {a,,a 2 ..... a, au/2_u} = N "N'c'u-a'-'-j ,..., z..,z.,'-'u/~-u-t + 1 (36) 
i=1  j 

where 1 <_ j < or, - oti_ , - 1 and a0 = 0. Obviously, Eq. (36) generates natural 

numbers from 1 to n(M), mapping one-to-one to the Slater determinants of 
conserved M, as displayed in Table 1 for N=6. 

In summary, we can use natural numbers obtained using Eq. (36) instead 
of the spin-up sequences to store the n(M) Slater determinants in the central 
memory of the computer. As a result, the time consumed in searching the 
determinants and the space needed to store the determinants are minimized. 

2.2.3. Symmetry  adapted linear combinations (SALCs) o f  the determinants 
The VB Hamiltonian matrix can split into N+I blocks characterized by 

M=0, _+ 1, ___ 2, ..., __. N/2 for even N. Each block of dimension n(M) can be 
reduced again by utilizing the molecular point symmetry. Eigenvalues of each 
eigenlevel are found in the M=0 block, in which the spin-inversion symmetry 
can be employed for further simplification. 

One can deal with the reduction by constructing SALCs of the Slater 
determinants via the projection operator approach. In other words, we factorize 
n(M) Slater determinants into disjoint invariant subspaces under the point group 
of the molecule. An invariant subspace includes a subset of determinants 
generated by operating on an arbitrary determinant with all symmetry elements 
of the molecular point group G. Because a single determinant generating one of 
these invariant subspaces S may be invariant under a subgroup H of G, the basis 
determinants of S correspond to cosets of H in G. Often coset representatives of 
H in G may be themselves chosen to form a group, called the factor group. For 
illustration, the 20 determinants of M=0 for trimethylene-cyclopropane have 
been partitioned into six invariant subspaces under the point group D3h, 

symbolized by A, B, C, D, E, and F in Table 1. The factor groups for A (B), C 
(D) and E (F) are C3, C3~ and identity group, respectively. The sum of factor 
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group orders equals the dimension of M=0 block, n(0), i.e., 20=3+3+6+6 +1 + 1. 
After the factorization, one can derive SALCs within each invariant 

subspace via the action of the projection operator. The projection operator for 
irreducible representation j is defined as 

/3i = (N)-,/2 ~ a(R)z I (R)R (37) 
R 

where N is the normalizing factor, the summation runs over all symmetry 
operations of the factor group, 2,J(R) is the character of the jth irreducible 
representation anda(R)is a phase factor equal to +1 or -1  depending on whether 
R refers to an even or odd permutation of atom sites. For the computation of 
low-lying states, we can limit our attention to one-dimensional irreducible 
representations. Consider trimethylene-cyclopropane as an example. It is easy to 
derive six SALCs of A I by using the operator (37) on each of the six invariant 
subspaces and two SALCs of A'2 from C and D displayed in Table 1 under point 
group D3h. Thus, we simplify the calculation by reducing the original 20• 20 
matrix to smaller matrices, 6• and 2• provided we deal with the lowest 
singlet and triplet states only. 

For medium-sized molecules such as hexacene of 26 z-electrons, n(0) is 
equal to 10,400,600. By means of symmetry, the ground state is solved from the 
block of Ag under point group D2hwith a dimension of 2,600,612. Thus the 
Hamiltonian matrix can be considerably reduced for those molecules with higher 
symmetry. For hexacene and two other benzenoids, the dimensions of one- 
dimensional irreducible representations in subspaces of M=0, 1, and 2 are listed 
in Table 2. 

In addition, the spin-inversion symmetry is available for M=0. The 
operator d is defined when it acts on a Slater determinant, transforming all 
spin-up sites to spin-down sites and vice versa. Thus the space of M=0 is 
invariant under the group[I,d] which consists of identity and spin-inversion 
operations. Let us discuss the 20 determinants of M=0 for trimethylene- 
cyclopropane, the spin-inversion operator transforms A to B, C to D, and E to F, 
or vice versa, respectively. Under the compounded group D3h | a pair of 
Slater determinants that are transformable via the spin-inversion operation 
should combine, as represented by A+B, C+D and E+F respectively. Thus 
blocks AI and A'2 are further reduced to two 3x3 and two l xl blocks 

belonging to irreducible representations AI +, AI- and A~ § A'2- of group 

D3h | [I, O1. 
The combination of Slater determinants in different invariant subspaces to 

simplify the secular equation has been called the "half-projected Hartree-Fock" 
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method [36,37]. In general, under the compounded group of point group and 
spin-inversion, all irreducible subspaces have smaller dimensions: nearly half of 
those in the point group alone. These are illustrated in Table 2 for three 
molecules. 

After the SALCs of the Slater determinants have been obtained, the 
Lanczos method is employed for diagonalization. 

T a b l e  2 
Dimensions of each irreducible representation in the various Sz spaces. 

Ag B lg B2u Bu Total dimensions 
D2 h (Ag+) a (Big +) (B2u +) (Bu +) in S z space 

S z =0 

S Z =1 

S z =2 

2,600,612 2,599,688 2,599,688 2,600,612 10,400,600 
(1,302,354) (1,309,756) (1,309,756) (1,314,514) 

2,415,712 2,413,996 2,413,996 2,413,996 9,657,700 

1,931,936 1,931,144 1,931,144 1,931,936 7,726,160 

C2 h 
Ag Bu Total dimensions 

(Ag +) (Bu +) in S z space 

S z -0 5 ,200 ,300  5 , 2 0 0 , 3 0 0  10,400,600 
(2,602,198) (2,606,294) 

S z =1 4 , 8 2 7 , 9 9 2  4 , 8 2 9 , 7 0 8  9,657,700 

Sz =2 3 , 8 6 3 , 0 8 0  3 , 8 6 3 , 0 8 0  7,726,160 

D2h 
Ag Blg B2u Bu Total dimensions 

(Ag +) (Big +) (B2u +) (Bu +) in S z space 

Sz=0 10,032,648 10,027,368 10,027,368 10,029,216 40,116,600 
(5,020,420) (5,013,684) (5,013,684) (5,010,512) 

Sz=I 9,362,256 9,358,824 9,358,824 9,362,256 37,442,160 

Sz=2 7,608,483 7,603,896 7,603,896 7,605,480 30,421,755 

a The values in brackets are the dimensions of the totally symmetric irreducible representation, 
according to the point group plus spin-inversion symmetry G| 
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3. APPLICATIONS TO THE n-CONJUGATED MOLECULES 

Using the effective computational methods introduced above, the VB 
energies and wave functions of the ground and the lowest excited states have 
been calculated for a large number of conjugated systems with up to 28 re- 
electrons (Fig. 1). We will demonstrate that these results can be used to account 
for some physical and chemical properties such as the bond lengths, kinetic 
reactivities, low-lying electronic spectra, and local and global aromaticities of 
BHs. In addition, we illustrate that the VB model provides a feasible way of 
calculating the spin coupling strength of the re-conjugated radicals. 

3.1. Bond lengths 
Analogous to the bond orders in the MO approaches, p/~., as defined in Eq. 

(38), which stands for the probability of finding a singlet arrangement between 
atoms i and j [38], has been introduced as an index to correlate with the bond 
lengths of BHs. 

Pg=(Wl-~(aTa+--a-+a+ - l )  j i j)(a3ai aja 7)W (38) 

The reason for choosing this index is because the VB energy of a molecule can 
be partitioned into the sum of the probabilities of finding local singlet 
arrangements on its various bonds, as shown in Eq. (39). 

= - 2 J Z  P/] 
i - j  

(39) 

As a result, one may expect that p;j could measure the strength of the i-j 

bond and correlate with the i-j bond length. A good linear correlation (Fig. 2) 
between the calculated ground-state p~. and the experimental bond lengths of 

several BHs (displayed later in Table 3) encouraged us to apply these p~. values 

to predicting carbon-carbon bond lengths. In order to do so, we must establish 
the appropriate empirical formula between the bond length and the 
corresponding ground-state p~. Since the VB model (18) homogenizes all sites 

and all bonds, it is suitable to select two typical species, benzene (1) and pyrene 
(5), to determine this formula. A least-square procedure results in an excellent 
linear relationship below 
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Fig. 1. Selected benzenoid  hydrocarbons (to be continued).  
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Table 3 
Bond lengths in benzenoid hydrocarbons (./~) 

p..s Bond length 
Compound Bond 'J Exptl a Caled 

0.717 1 . 3 9 7  1.395 Benzene 
Pyrene 

f 

Naphthalene 

Anthracene 

Tetracene 

Compound 
Phenanthrene 

a 0.718 1 .395  1.395 
b 0.666 1 . 4 0 6  1.411 b 
c 0.616 1 .425  1 . 4 2 7  ~ a  
d 0.586 1 . 4 3 8  1.437 
e 0.615 1 . 4 3 0  1.428 
f 0.807 1 . 3 6 7  1.367 

a 0.628 1 . 4 2 2  1 .423  Chrysene 
b 0.766 1 .371  1.380 

0.661 1 . 4 1 2  1.413 / , , - ~ " , , 1 ~  b 
0.619 1 . 4 2 0  1 .426 ~ c  c 

d 
0.613 1 . 4 4 4  1.428 e 

1.375 1.377 f b 0.775 
c 0.649 1 .418  1.417 
d 0.673 1 . 4 0 5  1.409 
e 0.594 1 .433  1.434 

Pf 
Bond 

Bond length 
ExptP Calcd 

a 0.608 1 . 4 2 0  1.430 
b 0.777 1 .381  1 . 3 7 6  Triphenylene 

c c 0.646 1 . 4 5 9  1.418 c k , - - - - - x  
d 0.586 1 . 4 2 0  1.437 ~' '~ 
e 0.681 1 . 3 9 0  1.407 
f 0.655 1 . 4 0 4  1.415 
g 0.574 1 . 4 6 0  1.441 

a 0.646 1.423 1.418 
b 0.751 1.386 1.385 
c 0.678 1.394 1.408 
d 0.748 1.401 1.386 
e 0.655 1.409 1.415 
f 0.557 1.465 1.446 
g 0.634 1.420 1.422 
h 0.588 1.453 1.436 
i 0.807 1.350 1.367 

0.640 
0.754 
0.673 
0.751 
0.649 
0.571 
0.629 
0.599 
0.792 
0.611 
0.655 

a Values are from Ref. 18 and references therein. 

1.428 
1.363 
1.394 
1.381 
1.409 
1.468 
1.409 
1.421 
1.369 
1.428 
1.401 

1.420 
1.384 
1.409 
1.385 
1.417 
1.442 
1.423 
1.433 
1.372 
1.429 
1.415 

a 0.665 1.410 1.412 
b 0.739 1.381 1.388 
c 0.688 1.397 1.405 
d 0.646 1.413 1.418 
e 0.531 1.458 1.454 

d o (~1) = 1.622 - 0.316p,~. (40) 

where dij denotes the length of the i-j bond. By applying this relationship, the 
bond lengths of these two molecules and several other BHs have been calculated 
and listed in Table 3. 

The average deviation of the calculated and experimental values, +0.009A, 
is slightly larger than the average estimated experimental error of +0.008A and 
comparable to the results given by Cioslowski based on the ab initio VB 
approach [39]. Deviations between calculated and experimental bond lengths 
depend on the approximate extent of the Hamiltonian (18) in which equal J for 
each C-C bond is assumed. For examples, in triphenylene almost all bond 
lengths are predicted in remarkable agreement with the observed values because 
this molecule may be regarded as being composed of three benzene tings joined 
together through single bonds and consequently to a larger extent it satisfies the 
approximation made in the Hamiltonian (18). While the bond lengths predicted 
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Fig. 2. Relation between the ground-state singlet probabilities and experimental bond lengths 
for BHs listed in Table 3. 

by Eq. (40) is less satisfactory for tetracene because its diminished aromatic 
character leads to larger differences among the bond lengths, which conflicts 
with the equal J-value assumption. 

3.2. Reactivities 
Electrophilic aromatic substitution is a typical reaction for BHs. In the MO 

treatment, some indices such as free valence [40], localization energy [41], and 
other quantities [42,43] have been introduced to predict the orientation of 
electrophilic aromatic substitution. Within the VB framework, several indices 
have also been formulated [44]. Here we introduce an alternative index, which is 
available from accurate VB wave functions, and demonstrate its applicability in 
accounting for the electrophilic aromatic substitution. 

According to Eq. (39), the total VB energy could also be partitioned into 
the sum of the quantities with respect to each site, i.e., 

E,~ = - 2 J Z Z p ~ .  
i j>i 

= ~ ' E  i 
i 

(41) 

where 

Ei --JZe; 
i - j  

(42) 
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Since p~. w a s  proven to be a well-behaved local index of a certain i-j bond, E i 

(negative) might be feasibly understood as the local site-energy of the ith atom. 
When an electrophilic substitution occurs, primary concern is to the change of 
the total energy as an electrophilic group attacks a certain carbon atom. 
Supposing lengths of those bonds bound to the ith atom are equally varied in the 
preliminary stage of the electrophilic attack, resulting in a small variation of 
exchange parameter J, the first-order change in the total n-energy of this 
molecule can be easily evaluated with 

zXE = zk/(-2y'  P~]) = 2 M ,-, 7E ,  (43) 

Thus AE (positive) is proportional to the site-energy Ei of the ith atom defined 
by Eq. (42), indicating that the site-energy E i may be anticipated to serve as a 
reactivity index for electrophilic aromatic substitution, i.e., a site is more 
reactive the smaller is the absolute value of its site-energy. For a few selected 
BHs, the calculated site-energy values and Hammett 's  o + constants [30], which 
were derived from the empirical fitting of experimental data, are given in Table 
4. Evidently, there exists a good correlation between the calculated Ei and 
Hammett 's  o + constants as shown in Fig. 3. 

Table 4 
Reactivity indices for selected BHs a 
Compound Position Ei b o § c Compound Position E i  b o + r 

1 1.434 -7.8 5 1 1.383 6.1 
1 1.394 0.0 2 1.436 
2 1.427 -3.4 4 1.393 
1 1.388 1.1 6 5 1.336 9.8 
2 1.424 0.0 7 7 1.350 6.6 
9 1.346 8.1 12 1.355 6.6 
1 1.397 -0.2 8 6 1.391 2.6 
2 1.429 -2.5 10 1 1.404 -0.8 
3 1.426 -0.5 2 1.427 -2.3 
4 1.403 -2.7 11 3 1.377 8.4 
9 1.395 0.5 13 6 1.339 11.1 

a The numbering of compounds and their positions (C atoms) are shown in Fig. 1. b In units of 
_j.c Values are from Ref. 30. 

3.3.  L o w - l y i n g  e lec tronic  spectra  
Compared with ground states of BHs, the low-lying excited states of these 

systems have been less studied from the semiempirical VB approaches. This is 
not accidental because even for benzene (1) the descriptions of the classical VB 



587 

15 

10 

5 
+ 

0 

-5 

-10 ' ' ' 

1.3 1.35 1.4 1.45 1.5 

Fig. 3. Correlat ion of  E i values with experimental  reactivities. 

theory for its lowest excited state are not satisfactory [13]. The inclusion of 
nonadjacant and cyclic six-body contributions into the classical VB model has 
been proven to be necessary for improving the low-lying electronic spectra of 
benzene [13]. Meanwhile, the effect of higher order corrections was found to 
become gradually smaller with the increase in the size of benzenoids, and the 
classical VB model could yield reasonably accurate results for the low-lying 
excited states, especially for the lowest excited states of BHs with more than 14 
n-electrons [ 19]. 

For all BHs with up to 26 n-electrons and two species having 28 electrons 
(Fig. 1), we have calculated the energies of the singlet ground states and lowest 
triplet states, which are tabulated in Table 5. For some BHs, we compare the 
calculated singlet-triplet (S-T) energy gaps AEs_r (in units of J) with the 
available experimental spectra (in units of eV) in Table 6. As shown in Fig. 4, 
the calculated energy gaps exhibit a good linear correlation with experimental 
data. From this correlation, we obtain the realistic value of the exchange 
parameter J to be about 3.15 eV for BHs in the VB model. The predicted S-T 
energy separations using this parameter are also collected in Table 6. One can 
see that our predicted lowest triplet spectra compare well with the available 
experimental spectra with the average deviation of only +0.13eV, being 
comparable to the results of the semiempirical PPP MO calculations [45]. 

The calculated S-T energy gap may also be employed to deduce the kinetic 
reactivities of a given BH. One might notice that those BHs with large S-T gaps 
commonly behave relatively inert toward the various reactions, while those BHs 
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Table 5 

Energies of  the singlet ground and lowest triplet states and the corresponding S-T energy gaps 
for all benzenoid hydrocarbons shown in Fig. 1 
Compd a Es b Er b,r AE~.T d Compd a Es b ET b'r AEs_T d 

1 -8.60555 -7.23607 1.36948 46 -40.82553 -40.23698 0.58855 
2 -15.03997 -14.03395 1.00602 47(C2v) -40.83301 -40.21604(A~) 0.61697 
3 -21.45050 -20.67185 0.77865 48(C2h) -40.83521 -40.22167(B~ 0.61354 
4 -21.52250 -20.64475 0.87775 49(C2v) -40.85050 -40.23585(A~) 0.61465 
5 -25.13256 -24.41103 0.72153 50(C2h) -40.85058 -40.23672(Bu) 0.61386 
6 -27.85819 -27.22240 0.63579 51 -40.85894 -40.21862 0.64032 
7 -27.94444 -27.20543 0.73901 52 -40.85930 -40.22098 0.63832 
8 -27.99497 -27.21658 0.77839 53 -40.88914 -40.24138 0.64776 
9 -27.99314 -27.20919 0.78395 54 -40.88999 -40.24151 0.64848 

10 -28.03938 -27.21988 0.81951 55 -40.89019 -40.24242 0.64777 
11 -31.60319 -30.98949 0.61370 56 -40.89190 -40.24721 0.64469 
12 -31.65132 -30.94675 0.70457 57 -40.90432 -40.24684 0.65748 
13 -31.59204 -30.96224 0.62960 58 -40.90448 -40.24751 0.65697 
14 -34.26652 -33.72357 0.54295 59 -40.90616 -40.25075 0.65541 
15 -34.35497 -33.72939 0.62558 60 -40.90648 -40.25313 0.65335 
16 -34.36970 -33.70609 0.66361 61 -40.94197 -40.26271 0.67926 
17 -34.41313 -33.73185 0.68128 62(C2h) -40.94246 -40.26236(Bu) 0.68010 
18 -34.41514 -33.73779 0.67735 63 -40.94323 -40.26551 0.67772 
19 -34.43451 -33.73109 0.70342 64 -40.94415 -40.26660 0.67755 
20 -34.43483 -33.73365 0.70118 65(C2v) -40.94431 -40.26655(A0 0.67776 
21 -34.46809 -33.74483 0.72326 66(C2h) -40.94598 -40.27243(B~) 0.67355 
22 -34.46908 -33.74615 0.72293 67(C2v) -40.88045 -40.25706(B2) 0.62339 
23 -34.47083 -33.75256 0.71827 68(C20 -40.89934 -40.23911(B2) 0.66023 
24 -34.46838 -33.74775 0.72063 69 -40.92131 -40.27544 0.64587 
25 -34.50282 -33.77033 0.73249 70 -40.93073 -40.27045 0.66028 
26 -35.28475 -34.65456 0.63019 71 -40.93073 -40.27145 0.65928 
27 -35.19345 -34.66378 0.52967 72 -40.96899 -40.29443 0.67456 
28(D2h) -38.16881 -37.48431(B3.) 0.68450 73(C2v) -40.97003 -40.29997(B2) 0.67006 
29 -38.11672 -37.48465 0.63207 74 -40.95613 -40.27137 0.68476 
30 -38.11525 -37.46932 0.64593 75(C2v) -40.96865 -40.29234(B2) 0.67631 
31 -38.10104 -37.48538 0.61566 76 -40.97999 -40.28980 0.69019 
32(C20 -38.08140 -37.43523(B2) 0.64617 77 -40.98104 -40.29205 0.68899 
33 -38.08381 -37.50029 0.58352 78(D2h) -41.00554 -40.32046(B3u) 0.68508 
34 -38.07192 -37.46434 0.60758 79 -41.79631 -41.18568 0.61063 
35 -38.07579 -37.47899 0.59680 80(C2v) -41.78128 -41.20091 (B2) 0.58037 
36(C2v) -38.05767 -37.48564(B2) 0.57203 81 -41.75342 -41.18156 0.53633 
37(C2h) -38.04832 -37.49477(Bu) 0.55355 82 -41.73391 -41.17928 0.55463 
38 -38.04258 -37.52352 0.51906 83 -41.71789 -41.18156 0.53633 
39 -38.01145 -37.45350 0.55795 84(D2h) -41.71585 -41.22052(B2u) 0.49533 
40(C2h) -37.96759 -37.54490(B.) 0.42269 85 -41.70826 -41.19810 0.51016 
41(D6h) -38.95098 -38.34755(B~.) 0.60343 86 -41.66739 -41.17575 0.49164 
42(D2~ -40.67565 -40.19577(B3u) 0.47988 87 -41.64940 -41.18098 0.46842 
43 -40.76389 -40.22198 0.54191 88(C20 -44.61813 -44.00645(B2) 0.61168 
44 -40.78130 -40.19558 0.58572 89(D2h) -45.31055 -44.90399(B3u) 0.40656 
45 -40.82351 -40.23290 0.59061 
a The point groups are given in parentheses, b Energies of  the singlet ground states (Es) and the 
lowest triplet states (ET) are in units of  J. c The irreducible representations are given in 
parentheses, d The lowest singlet-triplet energy gaps are in units o f - J .  
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Table 6 
Th e lowest triplet spectra for some benzenoid h~cdrocarbons 

Lowest triplet spectra b 
ComPd AEs_r ~ VB ~ Exptl d MO d Compd AEs_T a 

5 0.72153 2.27 2.11 1.79 16 0.66361 
6 0.63579 1.26 1.26 1.24 17 0.68128 
7 0.73901 2.33 2.04 2.03 18 0.67735 
8 0.77839 2.45 2.47 2.20 19 0.70342 
9 0.78395 2.47 2.49 20 0.70118 2.21 

10 0.81951 2.58 2.89 2.76 21 0.72326 
11 0.61370 1.93 1.56 1.67 22 0.72293 2.28 
12 0.70457 2.22 2.29 23 0.71827 2.26 
13 0.62960 1.98 1.82 1.65 24 0.72063 2.27 
14 0.54295 1 . 0 8  <1.24 25 0.73249 2.31 
15 0.62558 1.97 26 0.63019 1.99 

Lowest triplet spectra b 
VW Exptl MO d 
2.09 2.08 2.07 
2.15 1.89 
2.13 2.23 1.95 
2.22 2.30 2.33 

2.26 2.29 
2.28 2.45 

2.52 2.35 
2.49 2.35 
2.20 

1.99 

2.13 
2.27 
2.11 

.... a s inglet.triplet energy gaps are in units of-J.  bin units of eV an cl referring to their ground- 
state energies, c All molecules, except for naphthacene (6) and pentacene (14) 0=1.99 eV 
[ 19b]), are calculated by taking J=3.15 eV. d Ref. 19b and references therein. 

with very narrow S-T gaps might  be very reactive or even difficult to synthesize 
[30]. For  instance, S-T gaps from VB calculations suggest  that for sufficiently 
long polyacenes their ground and lowest triplet states will become nearly 
degenerate  and thus they may  be elusive to synthesize [46]. 
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Fig. 4. Correlation of the calculated S-T gaps with experimental data. 
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3.4. Aromaticity 

The concept of aromaticity has rooted in the thought Of chemists for a long 
time. Aromaticity, which is associated with high thermodynamic stability and 
low reactivity, is helpful in unearthing structure-activity relations and designing 
novel molecular systems [47,48]. It is easier to describe the nature of aromaticity 
of a single-ring system than that of polycyclic systems, which has an additional 
complication due to the local aromaticity for individual hexagons [47,49]. For 
example, phenanthrene, as a whole entity, is usually considered to be aromatic, 
but its central ring behaves more like an olefin than the other two terminal rings 
which resemble benzene to a large degree. Therefore it is necessary to further 
subdivide the concept of aromaticity into local and global aromaticities. For a 
certain hexagon within a polycyclic compound, its local aromaticity could be 
understood as to what extent it chemically behaves like benzene [47]. Local 
aromaticity has been studied for many years, several indices based on either 
approximate VB [10,50] or simple MO calculations[51,52] have been put 
forward to account for local aromaticity. 

Global aromaticity, or conventionally termed aromaticity in short, is usually 
assumed to reflect the thermodynamic stability and kinetic reactivity of a species 
as a whole [53]. Quantitative descriptions of global aromaticity usually start 
from consideration of the thermodynamic stability of aromatic compounds 
relative to reference acyclic olefins. Traditionally, resonance energy (RE) per n 
electron (REPE) [54] has been extensively employed as a quantitative measure 
of global aromaticity. Resonance energy is defined as the difference between the 
total n-electron energy of a given conjugated molecule and that of its 
corresponding hypothetical reference structure. Several strategies for 
determining the reference structure and its energy have been reported [54-58], 
and resultant REPE values correlate reasonably well with each other, giving 
predictions consistent with chemical facts. Besides the REPE index, absolute 
hardness and relative hardness [53], indices that could simultaneously cover 
stability and reactivity, have been shown to be good measures of global 
aromaticity. Interestingly, it was demonstrated that absolute hardness (or relative 
hardness) correlates with REPE in general, thus yielding similar predictions in 
most cases [53 ]. 

It is worth pointing out that measures to quantify local and global 
aromaticities have been principally calculated by means of MO theory, although 
their definitions are also generally applicable to VB theory. The predominance 
of MO theory is certainly due to its computational simplicity, e.g., the total n- 
electron energy of a given conjugated system with N n-electrons is easily 
obtained by diagonalizing only a N xN Hamiltonian matrix. Here, we 
demonstrate that with exact VB results for 89 BHs we obtained it is now 
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plausible to discuss local and global aromaticities for these BHs from a strict VB 
model. 

3.4.1. Local aromaticity 
Similar to Hemdon-Ellzey's definition of local aromaticity [ 10b], we define 

the relative local hexagon energy (RLHE) as the ratio of the local hexagon 
energy to the ground-state energy of benzene to measure the local aromaticity of 
individual rings [18]. Due to the additivity of singlet probabilities on various 
bonds as indicated in Eq. (39), the local energy of each hexagon in the ground 
state of a given BH can be directly calculated by 

E, = - 2 J Z  P~ (44) 
i - j  

where the summation goes over the bonds in the rth hexagon. 
The calculated RLHE values of several BHs have been given in Fig. 5. For 

the polyacene series, the local aromaticity of each hexagon reflected by its 
corresponding RLHE monotonously decreases from the terminal toward the 
central, verifying the idea of the "aromatic dilution" of Clar's sextet concepts 
[47]. Along this series, the local aromaticity of the end hexagons becomes 
weaker gradually and finally arrives at a constant value with the increasing 
number of rings, while the decrease in the local aromaticity of the middle rings 
is more noticeable. Thus, the ease on addition reaction occurring across the para 
positions in the central rings of long chain polyacenes could be anticipated, in 
accord with the observed increasing reactivity upon the annelation of hexagons 
[49]. 

For triphenylene (10) and perylene (11), their central rings have the lowest 
RLHE values, 0.821 and 0.814, respectively (Fig. 5). As we know, for 
hypothetical non-aromatic cyclohexatriene with three localized bonds, whose 
energy should be the same as the energy of either one Kekul6 structure of 
benzene, the ratio of its energy to the total n-electron energy of benzene is 0.871. 
Hence, the central hexagons of triphenylene and perylene are less stable than the 
non-aromatic cyclohexatriene, numerically confirming the concept of Clar's 
"empty" ring [47]. 

It has been shown that a linear relationship between the present RLHEs and 
the F[ values (normalized benzene character in PPP-MO theory [51 ]) holds very 
well. Very recently, Suresh and Gadre [49] suggested a new local aromaticity 
index based on the molecular electrostatic potential topography (MESP) of the rt 
regions of BHs, which is obtainable from ab initio MO calculations. This index 
was also found to bear linear correlation with the RLHE values. As a result, one 
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Fig. 5. RLHE values of selected BHs. Values are given as 1000RLHE. The av. RLHE values 
are listed in the parentheses. 

can see that VB and MO models give consistent interpretations on the local 
aromaticity of BHs. Moreover, it is encouraging that the RLHE index avoids the 
limitations of those VB indices [ 10b,50] based solely on the enumeration of the 
Kekul6 structures, which provide unsatisfactory predictions of local aromaticity 
for individual rings within some BHs such as polyacene series and 
benz[a]anthracene. 

3.4.2. Global aromaticity 
As done in MO theory, REPE values can be computed within the VB model 

if an appropriate reference structure and its energy are determined [22]. Then 

REPE=REm (45) 

where 

RE = E, - E,(ref) (46) 
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and E~ is the VB ground state energy of the studied molecule, and E~(ref) is the 
VB ground state energy of the acyclic n-conjugated reference system. 

A number of strategies [54-58] for determining the energy of the reference 
structure have been proposed, among which the scheme, due to Jiang, Tang, and 
Hoffmann (JTH in short) [58], is unique in parameterizing and independent of 
Kekul~ structures and consequently will be employed here. According to this 
scheme, the n-electron energy of the acyclic reference system is evaluated by 

E.(ref) = nl2El2 + nl3El3 + n22E22 + n23E23 + n33E33 (47) 

where Eij is the n-electron energy in units of J for a bond i-j in which two 
vertices are of degrees i and j, and nij is the number of such kind of bonds in the 
studied molecule. The values of Eij can be obtained by a least-square fit of 
ground state VB energies of acyclic polyenes as the sum of bond energies, as 
shown in Eq. (47). The determined Eij values are listed in Table 7. Actually, only 
three types of bonds, i.e., 2-2, 2-3, and 3-3 occur in BHs. 

Table 7 
The E U values (in units of J) determined by a least-square procedure 

El 2 E13 E2 2 E2 3 E3 3 

J < 
Bond type ~ 0 - ~  -----o---o------ c, 

VB bond energy -1.6701 -1.5433 -1.3837 -1.2769 -1.1783 

5.5 

5 

4.5 

4 

~ 3 . 5  
e ~  3 

2.5 

2 

1.5 

i 

r  # $ 

�9 polyacene  s e r i e s  

�9 po lyphenan th renes  

I I I I f 

1 2 3 4 5 6 7 

Nn 

Fig.6. The REPE values vs. the number of hexagons (NH) for polyacene and 
polyphenantl~"ene series 



594 

According to the JTH scheme, the calculated RE and REPE values are listed 
in Table 8. Encouragingly, our VB RE values bear an excellent linear correlation 
with the delocalization energies obtained by Wiberg [59] at the B3LYP/6- 
311G** level (the correlation coefficient=0.994) for the first four members of 
polyacene and polyphenanthrene series, respectively. Thus it appears that the 
VB RE is a good measure of the thermodynamic stability for isomeric BHs. 

However, for comparing the global aromaticity of BHs of different size, 
REPE values are needed. For the polyacene and polyphenanthrene series, the 
variation of their REPE values with the number of hexagons is displayed in Fig. 
6. One can notice that polyacenes exhibit a descending trend of the global 
aromaticity with the increase in the number of hexagons, in good accord with 
corresponding experimental facts and MO-based REPE values [54-58]. 
Nevertheless, VB REPEs of [n]phenanthrenes remain constant with variation of 
n, while corresponding REPE scales within the simple MO theory show a slight 
decrease in the global aromaticity along the series, at least for the members we 
studied [54-58]. 

The inconsistency between predictions made by MO REPEs and VB REPEs 
may be attributed to the different natures of simple MO and VB theories, i.e., the 
simple MO theory is a one-electron model, free of electron correlation, but VB 
theory is a many-electron, correlation model. This difference may result in the 
different topological dependence of re-conjugation in MO and VB models, as 
illustrated by the [n]phenanthrene series. 

As stated above, a new scale is desirable to describe quantitatively the 
global aromaticity in the VB model. Since the global aromaticity measures the 
average benzene character of a conjugated system, resonance energy per 
hexagon (REPH), as defined by Eq. (48), may be a natural choice for BHs [22]. 

REPH = RE/N H (48) 

where N n stands for the number of hexagons for a given BH. In this way, for all 
BHs under study, we calculated their VB REPHs, which are tabulated in the 
fourth and eighth columns of Table 8. The slightly descending trend of the 
global aromaticity for the first four members of polyphenanthrenes (if 
phenanthrene is taken as the first member) is now clearly brought out by their 
corresponding REPH values. In general, the consistency between VB REPHs 
and MO REPEs is obvious, as shown in Fig. 7 for all BHs with up to 22 n- 
electrons. 



Table 8 

The calculated RE, REPE, and REPH values (in J) of BHs shown in Fig. 1 
Molecule RE REPE REPH Molecule RE REPE 

(x 10-2) (x 10-2) 
REPH 

595 

1 0.30335 5.056 0.30335 46 1.07820 4.147 
2 0.45187 4.519 0.22594 47 1.08570 4.176 
3 0.57650 4.118 0.19217 48 1.08798 4.185 
4 0.64030 4.574 0.21343 49 1.10316 4.243 
5 0.72366 4.523 0.18092 50 1.10328 4.243 
6 0.69829 3.879 0.17457 51 1.11162 4.275 
7 0.77634 4.313 0.19409 52 1.11198 4.277 
8 0.81867 4.548 0.20467 53 1.13358 4.360 
9 0.81684 4.538 0.20421 54 1.13448 4.363 
10 0.85488 4.749 0.21372 55 1.13466 4.364 
11 0.89199 4.460 0.17840 56 1.13634 4.371 
12 0.94012 4.701 0.18802 57 1.14876 4.418 
13 0.88904 4.445 0.17781 58 1.14894 4.419 
14 0.82072 3.731 0.16414 59 1.15062 4.425 
15 0.90097 4.095 0.18019 60 1.15092 4.427 
16 0.91570 4.162 0.18314 61 1.17822 4.532 
17 0.95093 4.322 0.19019 62 1.17870 4.533 
18 0.95294 4.332 0.19059 63 1.17948 4.536 
19 0.97231 4.420 0.19446 64 1.18038 4.540 
20 0.97263 4.421 0.19453 65 1.18056 4.541 
21 0.99769 4.535 0.19954 66 1.18224 4.547 
22 0.99868 4.539 0.19974 67 1.12494 4.327 
23 1.00043 4.547 0.20009 68 1.14378 4.399 
24 0.99798 4.536 0.19960 69 1.15752 4.452 
25 1.02422 4.656 0.20484 70 1.16694 4.488 
26 1.04685 4.758 0.17448 71 1.16694 4.488 
27 0.96375 4.381 0.16062 72 1.19700 4.604 
28 1.15596 4.817 0.19266 73 1.19808 4.608 
29 1.11210 4.634 0.18535 74 1.19238 4.586 
30 1.11066 4.628 0.18511 75 1.19664 4.602 
31 1.09644 4.569 0.18274 76 1.20804 4.646 
32 1.08498 4.521 0.18083 77 1.20906 4.650 
33 1.07922 4.497 0.17987 78 1.22532 4.713 
34 1.07550 4.481 0.17925 79 1.25685 4.834 
35 1.07940 4.498 0.17990 80 1.24180 4.776 
36 1.06128 4.422 0.17688 81 1.22220 4.701 
37 1.05192 4.383 0.17532 82 1.20267 4.626 
38 0.93936 3.914 0.15656 83 1.18664 4.564 
39 1.02330 4.264 0.17055 84 1.18461 4.556 
40 0.97122 4.047 0.16187 85 1.17705 4.527 
41 1.18713 4.946 0.16959 86 1.14436 4.401 
42 0.94476 3.634 0.15746 87 1.12637 4.332 
43 0.98370 3.783 0.16395 88 1.31131 4.683 
44 1.04220 4.008 0.17370 89 1.24448 4.445 
45 1.07616 4.139 0.17936 

0.17970 
O. 18095 
0.18133 
0.18386 
0.18388 
0.18527 
0.18533 
0.18893 
O. 18908 
0.18911 
0.18939 
0.19146 
0.19149 
0.19177 
0.19182 
0.19637 
0.19645 
0.19658 
0.19673 
0.19676 
0.19704 
0.18749 
0.19063 
0.19292 
0.19449 
0.19449 
0.1995O 
0.19968 
0.19873 
0.19944 
0.20134 
0.20151 
0.20422 
0.17955 
0.17740 
O. 17460 
0.17181 
0.16952 
0.16923 
0.16815 
0.16348 
O. 16091 
0.18733 
0.15556 
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Fig. 7. Correlation of VB REPHs with REPEs from simple MO caluclations. 

It is also instructive to look into the global aromaticity of a BH by 
averaging the local aromaticity of all hexagon tings. Accordingly, the global 
aromaticity may be measured by an average" 

N i l  

av .RLHE = ~ (RLHE) i /N  H (49)  
i = l  

where the summation runs over all hexagons of total number N H. For those BHs 
in Fig. 5, we also list their av. RLHE values in Fig. 5. It is not unexpected that 
av. RLHE values linearly correlate with REPH values, as exemplified in Fig. 8 
by those BHs collected in Fig. 5. 

The indices proposed above, the REPH and the av. RLHE, mainly 
concentrate on characterizing the thermodynamic stability aspect of the global 
aromaticity. As we pointed out in the above subsection, the S-T gap could be 
utilized to correlate with the kinetic reactivity of a given BH. Meanwhile, it 
appears that a linear correlation holds reasonably well between S-T gaps and 
REPHs. This is shown in Fig. 9 for all 89 BHs we investigated. Hence, the S-T 
energy gap could also serve as a good measure of the global aromaticity in the 
VB model, playing a similar role as absolute hardness [53] (which is 
approximately half the HOMO-LUMO gap) in the simple MO theory. 
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Fig. 9. Relation between S-T gaps and REPH values of BHs shown in Fig. 1. 

3.5. Spin coupling in radicals 
Chemists have long recognized that a diradical or polyradical can be built up 

from two elements [60-62]: the spin-containing unit that provides the unpaired 
electrons, and the spin-coupling unit that couples any two or more spin- 
containing units. Accordingly, a diradical could be assumed to be composed of 
two "unpaired" electrons coupled through a spin-coupling unit, characterized by 
a coupling constant Jee (Jee is used here to denote,the coupling constant, differing 
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from J in Eq. (18)). For example, m-quinodimethane (90) can be schematically 
represented by the following reduced "molecule", in which Jee is the spin- 
coupling constant through m-phenylene. 

90 
~ J c c  ~ 

Similarly, a polyradical might be viewed as many "unpaired" electrons 
coupled through spin-coupling units with different coupling constants. 

Obviously, calculating theoretically spin coupling constants in diradicals and 
their homologous polyradicals (even related polymers) is very helpful for 
designing stable high-spin organic molecules and high temperature organic 
ferromagnets in practice [62]. A strategy commonly used for obtaining coupling 
constants in radicals [20,21,63] is as follows: (1) Compute the energy gaps 
between the ground and lowest excited states by using available theoretical 
methods; (2) Derive coupling constants in radicals from the obtained energy 
gaps by using the classical VB model. In principle, step (2), a "renormalization" 
process, could actually be derived by applying a cluster expansion technique 
[64]. 

Usually, in step (1) one uses various MO-based correlation methods, 
primarily because MO-based methods dominate in molecular electronic 
structure calculations. Nevertheless, for open-shell radicals available MO-based 
approaches are not free of drawbacks [6,7]. Unrestricted Hartree Fock (UHF) 
theory and those UHF-based correlation methods usually suffer from spin 
contamination to some extent. Truncated configuration interaction (CI) methods 
are not size-consistent and therefore cannot be utilized to compare the spin 
coupling constants for molecules of different size. On the other hand, VB theory 
could avoid these problems by solving exactly the VB model in different spin 
subspaces. As a result, we have applied various VB models in discussing the 
spin coupling problem for a series of conjugated radicals [20,21]. Here we just 
choose m-phenylene as the spin-coupling unit, and illustrate how coupling 
constants in related radicals, depicted below, can be estimated. 

90 91 92 93 
Since m-phenylene (90) is a ferromagnetic coupling unit, radicals 91-93 all 
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have high-spin ground states. The coupling constant through m-phenylene in 
diradical 90 (m-quinodimethane) is easy to obtain from the singlet-triplet energy 
gap AEsT by the relation AEsT=-2J~r In an analogous way, the coupling 
parameters in linear triradical 91 and circular triradical 92 can be derived from 
the relations AEDQ=-J~r and AEDQ=-3Jr162 (AEDQ is the energy separation between 
the ground quartet and lowest doublet states), respectively. For linear tetraradical 
93, the coupling parameter through the terminal m-phenylene may differ from 
that through the middle m-phenylene. A reasonable treatment is to assume that 
the coupling constant through the terminal m-phenylene has the same value as 
that in the linear triradical 91. This assumption allows for the coupling constant 
through the middle m-phenylene to be determined from the calculated triplet- 
quintet gap. For these radicals, we have listed the calculated energy gaps and 
coupling constants in Table 9. The data show that about two-thirds of the 
coupling constant in diradical 90 is maintained in the linear triradical 91 and half 
in the circular triradical 92. Here we would like to mention the related 
experimental results obtained by Ishida and Iwamura [65]. In their experiments, 
nitroxide groups were introduced as radical centers in species 90 and 91. They 
found that Jee in the diradical is about half that in the triradical, basically 
consistent with our estimates for model systems 90 and 91. For the linear 
tetraradical 93, one can see that the magnitude of the coupling constant through 
the central m-phenylene is lower than that through the terminal m-phenylene in 
91, indicating that the coupling constant decreases with the connectivity of 
radical sites. Reasonably, we may expect that the coupling constant through the 
central m-phenylene in 93 is a good approximation to that in infinite poly(m- 
phenylmethylene) system. 

Table 9 
Energy gaps between the ground and lowest excited states and coupling constants through m- 
phenylene for molecules 90-93 a . . . . . . . . . . . . .  
Radicals A.E(J) coupling constant (-J) rati o .... 

90 0.718 0.359 
91 0.245 0.245 0.68 
92 0.578 0.193 0.54 
93 b 0.129 0.205 0.57 

a The ratio of coupling constants between polyradicals and diradical is also listed for 
comparison, b The coupling constant through the central m-phenylene is given. 

4. CONCLUDING REMARKS 
In this chapter, a combination of effective computational methods have been 

invoked to solve the VB model exactly for the ground and first excited states of 
conjugated molecules with up to 28 n-electrons. These methods include" (1) 
coding all Slater determinants in a spin subspace with conserved M as a set of 
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natural numbers to minimize the searching time and storing space; (2) reducing 
the size of the Hamiltonian matrix by using molecular point group and spin- 
inversion symmetry; (3) diagonalizing the large sparse matrix by employing the 
Lanczos technique. 

The focus of this chapter is to interpret systematically some physical and 
chemical properties of conjugated hydrocarbons by means of the obtained VB 
energies and wave functions of the ground and lowest excited states. For all BHs 
containing up to 26 n-electrons and two BHs of 28 n-electrons, their bond 
lengths, orientation of electrophilic aromatic substitution, and local aromaticities 
have been well accounted for by defining corresponding local indices, which are 
available from the ground-state wave functions. For lowest triplet states of BHs, 
which are primarily covalent in nature, our VB results are able to give 
satisfactory descriptions, in good agreement with available experimental data. In 
addition, our results indicate that some BHs with very narrow VB S-T energy 
gaps should be very reactive or hard to synthesize, as predicted from MO 
calculations. 

For describing the global aromaticity of BHs, three indices including a wave 
function-based av. RLHE, the ground-state energy-based REPH, and the energy 
gap between the ground and lowest triplet states, were introduced. They all lead 
to predictions agreeing with the known experimental facts. The traditionally 
adopted REPE scale, although it is successful in the simple MO theory, gives 
less satisfactory descriptions in some cases within the VB model, revealing the 
different nature of VB and MO approaches. 

The last application is devoted to calculating the spin coupling constants in 
conjugated radicals, which is a difficult task in MO approaches. Our calculations 
illustrated here and reported elsewhere [20,21] first revealed the topological 
dependence of coupling constants in a number of di- and poly-radicals, and the 
variation of coupling constants through some spin-coupling units from related 
diradicals to their homologous polyradicals. 

In summary, our work collected in this chapter leads us to conclude that VB 
theory can also make very valuable predictions for some properties of 
conjugated hydrocarbons, either closed-shell BHs or open-shell radicals, 
although most of these properties were believed to belong to MO theory's 
province. Finally, we would like to point out that the exact solution of the VB 
model for larger conjugated systems is becoming feasible with the advent of 
more powerful methods such as the density-matrix renormalization group 
method [66]. Thus, more applications of the VB theory to the conjugated 
systems could be expected in the near future. 

ACKNOWLEDGEMENT 
We thank the China NSF for continuing support to this research. One of the 



601 

authors, S. Li, also acknowledges the financial support from the China 
Postdoctoral Science Foundation (1996-1998). The authors are grateful to Dr. J. 
Ma and Dr. J. Wu for their collaborations and Dr. J. Ma ' s  assistance in preparing 
this chapter. Dr. M. Yang and Ph.D. candidate G. Zhang are also thanked for 
their help in typing of  the manuscript. 

REFERENCES 

[1] W. Heitler and F. London, Z. Phys., 44 (1927) 445. 
[2] D.J. Klein and N. Trinajstic (eds.), Valence Bond Theory and Chemical Structure, 

Elsevier, Amsterdam, 1990. 
[3] L. Pauling, The Nature of the Chemical Bond, Comell University Press, Ithaca, 1960. 
[4] (a) L. Pauling and G.W. Wheland, J. Chem. Phys. 1 (1933) 362. (b) L. Pauling, J. Chem. 

Phys. 1 (1933) 280. 
[5] R. McWeeny, Coulson's Valence, Oxford, 1979. 
[6] A. Szabo and N.S. Ostlund, Modem Quantum Chemistry, Dover, Mineola, New York, 

1996. 
[7] I.N. Levine, Quantum Chemistry, Prentice Hall, New Jersey, 2000. 
[8] R. McWeeny, Methods of Modem Quantum Mechanics, Academic Press, London, 1992. 
[9] (a) M. Randi6, Chem. Phys. Lett. 38 (1976) 68. (b) M. Randi6, Tetrahedron 

(1977) 1905. (c) M. Randid, J. Am. Chem. Soc. 99 (1977) 444. 
[10] (a) W.C. Hemdon, J. Am. Chem. Soc. 95 (1973) 2404. (b) W.C. Hemdon and M. L. Jr. 

Ellzey, J. Am. Chem. Soc. 96 (1974) 6631. 
[11] J. H. Van Vleck and A. Sherman, Rev. Mod. Phys. 7 (1935) 167. 
[12] D.J. Klein and M.A. Garcia-Bach, Phys. Rev. B 19 (1979) 877. 
[ 13] (a) J.P. Malrieu and D. Maynau, J. Am. Chem. Soc. 104 (1982) 3021. (b) D. Maynau and 

J.P. Malrieu, J. Am. Chem. Soc. 104 (1982) 3029. 
[ 14] M. Said, D. Maynau, J.P. Malrieu and M.A. Garcia-Bach, J. Am. Chem. Soc. 106 (1984) 

571. 
[ 15] S. Kuwajima, J. Chem. Phys. 77 (1982) 1930. 
[16] S.A. Alexander and T.G. Schmalz, J. Am. Chem. Soc. 109 (1987) 6933. 
[17] D.J. Klein, Top. Curr. Chem. 153 (1990) 59 and references therein. 
[18] S. Li and Y. Jiang, J. Am. Chem. Soc. 117 (1995) 8401. 
[19] (a) J. Ma, S. Li, Y. Jiang, J. Phys. Chem. 100 (1996) 15068. (b) J. Ma, S. Li, Y. Jiang, J. 

Phys. Chem. A 101 (1997) 4970. 
[20] S. Li, J. Ma, Y. Jiang, J. Phys. Chem. 100 (1996) 4775. 
[21] (a) S. Li and Y. Jiang, Chem. Phys. Lett. 211 (1995) 246. (b) S. Li, J. Ma, Y. Jiang, J. 

Phys. Chem. A 101 (1997) 5567. 
[22] J. Wu and Y. Jiang, J. Compt. Chem. 21 (2000) 856. 
[23] D.L. Cooper, J. Gerratt and M. Raimondi, Nature 323 (1986) 699. 
[24] J. Gerratt, D.L. Cooper, P.B. Karadakov and M. Raimondi, Chem. Soc. Rev. 97 (1997) 

87. 
[25] Q. Zhang and X. Li, J. Mol. Struct. 198 (1989) 413. 
[26] (a) W.A. Goddard, Phys. Rev. 157 (1967) 73. (b) W.A. Goddard, Phys. Rev. 157 (1967) 

81. 
[27] G.A. Gallup, Adv. Quantum Chem. 16 (1973) 229. 
[28] J.H. van Lenthe and G.G. Balint-Kurti, Chem. Phys. Lett. 76 (1980) 138. 



602 

[29] L. Salem, The Molecular Orbital Theory of Conjugated System, Benjamin, New York, 
1966. 

[30] A. Streitweiser, Molecular Orbital Theory for Organic Chemists, Wiley, New York, 1961. 
[31] J. Hubbard, Proc. Roy. Soc. London A 276 (1963) 283. 
[32] J. Linderberg and Y. Ohm, Propagators in Quantum Chemistry, Academic Press, New 

York, 1973. 
[33] (a) R.D. Poshusta and D.J. Klein, Phys. Rev. Lett. 48 (1982) 1555. (b) D.J. Klein, W.A. 

Seitz, M.A. Garcia-Bach, J.M. Picone, D.C. Foyt, Int. J. Quantum Chem. 17S (1983) 
555. (c) Ph. Durand, Phys. Rev. A 28 (1983) 3184. (d) D. Maynau, Ph. Durand, J.P. 
Daudey, J.P. Malrieu, Phys. Rev. A 28 (1983) 3193. 

[34] (a) H. Weyl, The Theory of Groups and Quantum Mechanics, Dover, New York, 1956. (b) 
G. Rumer, Nachr Ges Wiss G61fingen, Math. Phys. KL (1932) 337. 

[35] C.J. Lanczos, Res. Nat. Bur. Stand 45 (1950) 255. 
[36] Y.G. Smeyers and L. Doreste-Suares, Int. J. Quantum Chem. 7 (1973) 687. 
[37]Y.G. Smeyers and G. Delgado-Barrio, Int. J. Quantum Chem. 8 (1973) 733. 
[38] D. Maynau, M. Said, J.P. Malrieu, J. Am. Chem. Soc. 105 (1983) 5244. 
[39] J. Cioslowski, Theor. Chim. Acta 75 (1989) 271. 
[40] C.A. Coulson, Proc. Roy. Soc. London A 169 (1939) 413. 
[41] G.W. Wheland, J. Am. Chem. Soc. 64 (1942) 900. 
[42] Y. Jiang and H. Zhang, Theor. Chim. Acta 75 (1989) 279. 
[43] K. Fukui, T. Yonezawa, C. Nagata, J. Chem. Phys. 27 (1957) 1247. 
[44] (a) W.C. Hemdon, J. Org. Chem. 40 (1975) 3583. (b) W.C. Hemdon, Int. J. Quantum 

Chem., Quantum Biol. Symp. 1 (1974) 123. 
[45] M.J.S. Dewar and N. Trinajstid, J. Chem. Soc. A (1971) 1220. 
[46] S. Astilean, V. Chitta, A. Corval, R.J.D. Miller, H.P. Trommsdroff, Chem. Phys. Lett. 219 

(1994) 95. 
[47] E. Clar, The Aromatic Sextet, Wiley, New York, 1972. 
[48] P.J. Garratt, Aromaticity, John Wiley & Sons, New York, 1986. 
[49] C.H. Suresh and S.R. Gadre, J. Org. Chem. 64 (1999) 2505. 
[50] M. Randid, Tetrahedron 30 (1974) 2067. 
[51] M. Aida, H. Hosoya, Tetrahedron 36 (1980) 1317. 
[52] O.E. Polansky, G. Derflinger, Int. J. Quantum Chem. 1 (1967) 379. 
[53] Z. Zhou and R.G. Parr, J. Am. Chem. Soc. 111 (1989) 7371. 
[54] M.J.S. Dewar and C.J. de Llano, J. Am. Chem. Soc. 91 (1969) 789. 
[55] B.A. Hess and L.J. Schaad, J. Am. Chem. Soc. 93 (1971) 305. 
[56] J.I. Aihara, J. Am. Chem. Soc. 98 (1976) 2750. 
[57] I. Gutman, M. Milun, N. Trinajsti~, J. Am. Chem. Soc. 99 (1977) 1692. 
[58] Y. Jiang, A. Tang, R. Hoffmann, Theor. Chim. Acta 66 (1984) 183. 
[59] K.B. Wiberg, J. Org. Chem. 62 (1997) 5720. 
[60] D.A. Dougherty, Pure Appl. Chem. 62 (1990) 519. 
[61 ] H. Iwamura, Advan. Phys. Org. Chem. 26 (1990) 179. 
[62] A. Rajca, Chem. Rev. 94 (1994) 871. 
[63] D.A. Dixon, T.H. Dunning, R.A. Eades, D.A. Kleier, J. Am. Chem. Soc. 103 (1981) 

2878. 
[64] D.J. Klein, C.J. Nelin, S. Alexander, F.A. Matsen, J. Chem. Phys. 77 (1982) 3101. 
[65] T. Ishida, H. Iwamura, J. Am. Chem. Soc. 113 (1991) 4238. 
[66] S. R. White, Phys. Rev. Lett. 69 (1992) 2863. 



D.L. Cooper (Editor) 
Valence Bond Theory 
Theoretical and Computational Chemistry, Vol. 10 
�9 2002 Elsevier Science B.V. All rights reserved 

Chapter 19 

Symmetric group approach to the theory of 
Heisenberg lattices 

N o r b e r t  F l o c k e  ~ a n d  J a c e k  K a r w o w s k i  b 

~Quantum Theory Project, University of Florida, 
Gainesville, FL 32611, USA 
bInstytut Fizyki, Uniwersytet Mikotaja Kopernika, 
Grudzi~dzka 5, PL-87-100 Torufi, Poland 

603 

1. I N T R O D U C T I O N  

Theoretical studies on spectroscopic properties of polyenes and polyacenes, 
investigations of magnetic properties of crystalline lattices, analyses of car- 
cinogenic power of unsaturated organic compounds, and the search for or- 
ganic ferromagnets have one feature in common: they are based on an 
analysis of the eigenvalue problem of simple model Hamiltonians such as 
the Pariser-Parr-Pople Hamiltonian, the Hubbard Hamiltonian and the 
Heisenberg Hamiltonian. After the discovery of high-temperature super- 
conductivity in cuprates, the interest in the model Hamiltonians, partic- 
ularly in the Heisenberg Hamiltonian, increased considerably since this 
Hamiltonian is appropriate for describing specific properties of compounds 
with highly correlated electrons, which are believed to be responsible for 
the superconductivity-related phenomena. 

Most interesting in this context are properties of Heisenberg lattices 
of mesoscopic dimensions, i.e. containing hundreds, if not thousands, of 
nodes. Unfortunately, except for some simple model cases, an exact the- 
oretical description of the spectrum of the corresponding Hamiltonian is 
extremely difficult. In the majority of cases the only way to get some insight 
into the bulk limit properties is by extrapolation of the results obtained for 
small lattices. The number of spins in a lattice which can be treated exactly 
is severely limited by the combinatorial explosion of the dimension of the 
basis [1] and exact calculations for more than 30 spins without explicitly 
using symmetry properties of the lattice are next to impossible. In order 
to circumvent this problem several approximation methods were designed, 
like the resonating valence bond (RVB) method [2, 3], perturbational ap- 
proaches [4, 5], or methods based on renormalization group techniques like, 
for example, the density matrix renormalization group (DMRG) approach 
[6]. The usual procedure for testing these approximate methods is to com- 
pare their results with the ones derived from exact calculations obtained for 
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lattices for which the exact calculations are feasible. Therefore, designing 
methods aimed at obtaining exact results for lattices as large as possible 
is of particular interest and importance. 

In this chapter we address the problem of the construction and diag- 
onalization of model Hamiltonian matrices using the so called symmetric 
group approach (SGA) to the theory of many-electron systems [7, 8]. A 
general N-electron Hamiltonian eigenvalue problem has been formulated 
and successfully solved within the SGA for both spin-independent [7, 8] 
and spin-dependent [9, 10] interaction operators. These general meth- 
ods may, in principle, also be applied to the case of model Hamiltonians. 
However, simplifications resulting from the simple structure of the Pariser- 
Parr-Pople, Hubbard and Heisenberg Hamiltonians are so essential that a 
detailed discussion of their independent treatment within the SGA-based 
scheme is highly justified. The physical model becomes particularly simple 
and meaningful if the electrons are described by localized atomic orbitals. 
In this kind of formulation SGA leads to a valence-bond-like theory. In 
fact, valence-bond-like models are then applicable to handling the perti- 
nent eigenvalue problem. Therefore a presentation of this approach among 
other valence-bond methods seems to be most appropriate and useful to a 
reader. 

Heisenberg Hamiltonians describing systems of N spins are closely re- 
lated to the symmetric group SN. In fact, these Hamiltonians represent 
elements of the 8N algebra. This property, when related to SGA, appears 
to be essential for designing efficient computational methods. However, in 
a majority of studies, relations between the Heisenberg Hamiltonian and 
the symmetric group are put in a context of some fundamental, group- 
theoretical rather than numerical problems [11, 12]. Only very recently 
has SGA been applied to construct an algorithm applicable to studies on 
Heisenberg lattices [13]. The resulting method has been implemented as 
an efficient computer code [14] and has been used to solve exactly Heisen- 
berg eigenvalue problems of dimensions up to 10 7. A demonstration that 
the SGA-based theory, apart from giving new insights into the structure 
of the Hamiltonian matrices, allows us to formulate compact and efficient 
algorithms for the exact numerical treatment of the Heisenberg lattices is 
one of the aims of this work. 

In cases where Heisenberg Hamiltonian matrix dimensions prohibit their 
exact treatment one can use for energy states which are predominantly 
antiferromagnetic, an approximate method based on the idea of forming 
bonds between different lattice sites. These bonds, or rather the wave 
functions formed for these bonds, are then allowed to resonate giving rise to 
the RVB method mentioned earlier. The RVB method is very useful, since 
not only it makes possible a treatment of lattices which are out of reach by 
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the exact methods but also gives some insight into the structure of the exact 
wave function by identfying from the very beginning its major components. 
Therefore, in Section 4 of this chapter, the exact SGA approach is compared 
with the RVB method. Besides, differences in computational strategies for 
both methods are briefly discussed. 

2. G E N E R A L  D E F I N I T I O N S  

We are concerned with the eigenvalue problem 

H @,~ - & O , ~  ( 1 )  

of a clamped-nuclei spin-independent N-electron Hamiltonian 

N N 
H(r) - ~ hl(ri) + Y] h2(ri, rj), (2) 

i=l  i>j 

where r - {rl, r2,..., rg} is a shorthand notation for the collection of all 
electronic space coordinates, h1(ri) includes the kinetic energy and inter- 
actions of the i-th electron with an external field and h2(ri, rj) describes 
the interaction between electrons / and d- Usually, in atomic units, 

1 
h2(ri, rj) - --. (3) 

rid 

Two universal symmetry properties of the Hamiltonian are particularly 
significant in designing methods of solution of its eigenvalue problem: the 
invariance with respect to rotations in the spin space and the invariance 
with respect to permutations of electrons. As a consequence of these sym- 
metries the Hamiltonian commutes with spin operators and with permu- 
tation operators. In particular, the Hamiltonian, the square of the total 
spin operator (S 2) and the projection of the total spin operator (Sz) form 
a set of commuting operators: 

[H, S 2] - [H, S,] - [S 2, Sz] - 0. (4) 

The permutational invariance results in 

[H, P] - [S 2, P] - -  [Sz, P] - 0, (5) 
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but different permutations P E SN, where 8N is the N!-element symmetric 
group, in general do not commute with each other. 

The eigenvalue problem of the Hamiltonian operator (1) is defined in 
an infinite-dimensional Hilbert space G and may be solved directly only 
for very few simple models. In order to find its bound-state solutions 
with energies not too distant from the ground-state it is reduced to the 
corresponding eigenvalue problem of a matrix representing H in a properly 
constructed finite-dimensional model space, a subspace of ~. Usually the 
model space is chosen to be spanned by N-electron antisymmetrized and 
spin-adapted products of orthonormal spinorbitals. In such a case it is 
known as the full configuration interaction (FCI) space [8, 15]. The model 
space 7/A(N, K, S, M) may be defined as the antisymmetric part of the 
N-fold tensorial product of a one-electron space 

~A(N, K, S, M) -- [?-/s~ 2K)| h 
S M  ~ 

(6) 

where the superscript A stands for antisymmetry and S and M refer to 
the respective eigenvalues of the total spin operators S 2 and Sz. The 2K- 
dimensional one-electron space 7/s~ 2K) is spanned by a set of orthonor- 
mal spinorbitals and is a tensorial product of the two-dimensional one- 
electron spin space 7/s(1, 2) = {a,/3} spanned by the two one-electron spin 
functions, and the K-dimensional one-electron orbital space 7/~ K) = 
{r = 1 , . . . , K } ,  i.e. 

7/s~ 2K) - 7/s(1, 2) | 7/~ K). (7) 

Eqs.(6) and (7) imply that the basis in the model space is formed by spin- 
adapted combinations of Slater determinants. This way of constructing 
the model space is specific for the unitary group approach to the theory of 
N-electron systems [15, 16]. 

Alternatively the model space may be constructed as 

7/A(N, K, S, M) - A [ n ~  K) | 7{S(N, 2, S, M)], (8) 

where 7/~ K) is the N-electron orbital space spanned by all Hartree 
products of the orbitals and 

7/S(N, 2, S, M) - {OkSM; k - 1, 2 , . . . ,  f} (9) 

is the N-electron spin space spanned by the eigenfunctions Ok sM of the 
total spin operators, where 
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f -  f ( S , N ) -  2 S +  1 (  N +  1 
N + I ~N/2-  S) 

(,o) 

is the dimension of 7-/S(N, 2, S, M) [17, lS]. The construction of the model 
space according to Eq.(8) is specific for the SGA and results in a neat 
separation of the orbital and spin space contributions to the Hamiltonian 
matrix elements. This independent handling of the orbital and spin spaces 
constitutes the key to the compact structure of the SGA matrix element 
formulas for a general spin-dependent Hamiltonian [9, 10]. The N-electron 
basis functions are defined in the SGA as 

�9 ~ (r, s) -- ~,xA [ ~  (r) Ok sM (s)], (11) 

where s - {Sl, $ 2 , . . . ,  sN} denotes the collection of spin variables, 

1 
A-N-- i  E e(P)P (12) 

�9 P E S N  

is the idempotent antisymmetrization operator with e(P) - +i being the 
parity of the permutation P and ~ is the normalization constant. The 
orbital part of the basis functions in (ii) corresponding to 7i ~ K) is 
defined as 

N 
(1)~(r)- II r (13) 

j=l 

where ) , -  {Aj; j -  1, 2 , . . . ,  N} is referred to as the orbital configuration. 
The antisymmetry condition implies that  an orbital may appear in A at 

of Cp in A may thus take only one most twice. The occupation number np 
-- 2 are referred to of three possible values" 0, 1, or 2. The orbitals with np 

-- 1 as singly occupied as doubly occupied or doubles and the ones with np 
or singles. The numbers of singles (s~) and doubles (da) are connected 
by the obvious relation s~ + 2d~ - N. As one can easily check [7], the 
normalization constant is equal to 

~N!  (14) 
~ - 2 e  ~ .  

We adopt a convention that in all products of orbitals the position 
index of an orbital in the product is equal to the designation index of 
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the electron described by this orbital, i.e. if r is contained in the 
product, then i - j .  As a consequence of this convention we usually omit 
the electron designation indices in the products of orbitals. We assume 
that in the orbital products the electron coordinate indices of singles are 
always smaller than those of doubles and that  both singles and doubles 
stand in an ascending order of their orbital indices, i.e. 

A1 < A2 < . . .  < As, As+ 1 -- As+2 < . . .  < AN-I -- AN, (15)  

where s -- s~. Let us note that the number of different basis functions in 
(11) associated with an orbital configuration A is equal to f(S, s~) rather 
than f(S,  N). This is because the antisymmetry requirement restricts the 
spin coupling schemes in the parts of Ok sM which corresponds to doubles in 
(I)~. Since (I)x is symmetric upon transpositions within doubles, the corre- 
sponding parts of the spin functions must be antisymmetric. Therefore the 
spins of those electron pairs that  correspond to doubles must be coupled 
in ~k SM to two-electron singlets, i.e. 

d~ 
f~--~ 0 0 IS I~kSM(sl,S2,... ,SN) = I~kSM(sI, S2, .-- ,$sx) g ~J1 k sx+2j-1 Ssx+2j). 

j = l  

(16)  

The Hamiltonian in the model space may be represented in second- 
quantized form as 

K K 
H - E (Plq)1E~ + 1 E ( p q [ r s ) 2 E ~ ,  (17) 

pq pqr  s 

where (Plq) and (Pql~) are the respective one- and two-electron integrals 
expressed in terms of the orbitals. The operators 

1Eq p - -  E atpaaqa (18) 
Or 

and 

G1 ~G2 

are, respectively, the first- and the second-order reduced density operators 
and atpo/apo are the fermion creation/annihilation operators with a -  a,/3 
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referring to the spin state of the electron. Expressing the reduced den- 
sity operators in terms of shift operators [19], also known as replacement 
operators [8], 

Epq -- a taq,~ + at#aq#, (20) 

we get 1E~ = Evq and 

2 E ~  - E p q E r s  - rJqrEvs. (21) 

From the definition of Epq we further obtain the commutation rule 

[Epq, E,.,] - 5rqEps - 5psErq, (22)  

which is specific for the generators of the unitary group H(K). Therefore 
the shift operators can also be viewed as unitary group generators [15]. 
Consequently, 7-/A(N, K, S, M) is a carrier space for the representations of 
the unitary group U (K) labeled as {2 v 1 ~-v}, with 

N N 
x - + s ,  v = 2 s. (23)  

Therefore the dimension of the model space is equal to the dimension of 
the pertinent representation and is given by the Weyl-Paldus dimension 
formula [20, 21] 

D _ D ( N , K , S ) _ 2 S + I (  K + I  ~ (  
K + I k g / 2 - S ]  N~ 

K + 1 / (24) 
2 + S + 1 ]  

Dimensions of the spin-adapted FCI spaces grow up exponentially with the 
number of orbitals and electrons reaching the order of Avogadro's number 
at aboutN=K=50 (if S=0). 

The shift operators in the spin space act as unit operators (Eq.(20) 
corresponds to an integration over spin variables) and their action in the 
orbital space may be expressed in terms of the orbitals as [19] 

N 

Epq- E ICs(r~)} (r �9 (25) 
i = l  
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According to Eqs.(20) and (25), Epq, when acting on (I)~, raises by 1 the 
occupation number np )' and lowers by 1 the occupation number nq ~, i.e. it 
replaces Cq by Cp. In particular Epq{~, -  0 if nq ~ - 0  and 

EvqCpCq  - CpCv, (26) 

EqpCpCp - CqCp + CpCq. (27) 

From Eqs.(26) and (27) one can easily deduce that 

( EqpEpq - I) Cp(~q - -  Cq(~p, (28) 

~ -  1 then where I is the unit operator. Consequently, if np - - n q  

(EqpEpq  - I) m~ -- (p, q) (I:),~, (29) 

where (p, q) is the transposition operator. Besides, 

~m~, (30) F_.pp ~2 )~ -- np 

thus Epp- rip is the orbital occupation number operator. 
The eigenvalue problem of Eq. (1), projected onto 7{A(N, K, S, M), may 

be expressed as 

D 
SM E[<~MIHI~j  > - ~jE~]Cj,~ - 0, (31) 

J 

where j - {/~k}, i - {#/~} and i, ~ - 1 , . . . ,  D. The resulting wave func- 
tions are 

D D 
I'~SM E SM SM - - ~#~k  C ~ k , ~  % cj~ E , (32) 

j )~k 

where C~k,,~ -- (qjSMI~,~) are the coefficients representing the solutions of 
the system of equations (31). The corresponding energies fulfill the vari- 
ational condition, that is we have E~ _< s if ~c _< $~+1 and E~ _< E~+I, 
where $~ are the exact eigenvalues of the Hamiltonian defined in Eq. (1). 
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3. T H E  M O D E L  H A M I L T O N I A N  

The one- and two-electron integrals appearing in the second-quantized form 
of the Hamiltonian carry all information about the specific features of the 
quantum system. The one-electron integrals are defined as 

(plr - f drlr162 (33) 

and the two-electron ones as 

(pqlrs) - f drldr2r162 r2)r162 (34) 

In the ab-initio approaches the orbitals q~q a r e  usually constructed as linear 
combinations of some primitive basis functions. Consequently, the evalua- 
tion of the two-electron integrals is associated with the so called four-index 
transformation, a procedure both time- and space-consuming. Modern 
group-theory-based algorithms for construction and analysis of the Hamil- 
tonian eigenvalue problem in the FCI space, combined with the develop- 
ment in computer technology, resulted in considerable progress in solving 
the CI eigenvalue equations. However, though the length of tractable CI 
expansions have grown up during the last two decades by several orders 
of magnitude reaching up to 109 Slater determinants [22], only systems of 
several electrons may be treated this way with a sufficient accuracy. For 
larger systems the use of simplified semiempirical approaches is necessary. 

In semiempirical theories the number of one- and two-electron integrals 
is drastically reduced. In consequence, their evaluation and handling be- 
comes a trivial task. The basic idea of these theories may be formulated 
as follows [23]. Let us assume that  there exists a set of orbitals such that  
the majority of the one- and two-electron integrals, when evaluated within 
these orbitals, is either very small or equal to 0. Then let us assume that 
our theory has been formulated in terms of these orbitals. We do not 
have to know the specific form of these orbitals, since the integrals need 
never be evaluated. They are treated as empirical parameters of the theory 
and determined by fitting the results obtained for some reference systems 
to the experimental data. Among semiempirical theories, models based 
on the zero-differential-overlap (ZDO) approximation leading to neglect 
of all three- and four-center integrals belong to the most commonly used. 
They are particularly useful in describing lattices composed of regularly 
distributed identical atoms. To this category belongs the Pariser-Parr- 
Pople theory of ~-electron systems in unsaturated hydrocarbons as well 
as the Heisenberg and the Hubbard models used extensively in solid state 
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physics. In the case of 7r-electron systems of conjugated hydrocarbons one 
can choose an orbital basis in which all but the Coulomb two-electron 
integrals may be neglected. This approximation is best fulfilled for sym- 
metrically orthogonalized localized 2pTr orbitals, often referred to as the 
L5wdin orbitals [24]. In order to describe the magnetic properties of the 
molecules, one also has to retain the exchange integrals, since these are pri- 
marily responsible for removing degeneracies between different spin states. 

The two-electron integrals in the LSwdin basis are then assumed to be 
given by 

(pqlrs) - ~ 5pqS~ + Jr, q 5q~bp~ - ~vp 5pq5~5~, (35) 

where Vpr - (pplrr) are the Coulomb integrals and Jpq -- (pqlqp) are the 
exchange integrals. Substituting Eqs.(35) and (21) into Eq.(17) gives the 
semiempirical model Hamiltonian: 

K K 
1 1 _ H- Z [ppqEpq+~O,pqE~(Eqq-Spq)]+~ ~ Jm (EqpEpq Eqq), 

P'q Pi~q 
(36) 

where ~pq- (Plq) are the resonance integrals. The Lbwdin orbitals are lo- 
calized on individual atoms. Therefore each orbital product ~ corresponds 
to a specific distribution of electrons over the atomic orbitals. Each con- 
figuration A may be interpreted as a set of valence-bond-type structures. 
The structures are purely covalent if all the orbital occupation numbers 
are equal to 1. If some of the occupation numbers are 2 or 0, we have 
ionic structures with the degree of ionicity equal to the number of doubly 
occupied orbitals. This model is frequently referred to as a semiempirical 
orthogonal valence bond (VB) method [25, 26]. 

The localized atomic orbitals are associated with specific centers of the 
lattice or molecule and the corresponding charge densities decrease expo- 
nentially with increasing distance from these centers. In most cases one 
can therefore retain only those resonance and exchange integrals which cor- 
respond to neighboring centers. Another simplification may be obtained if 
we assume that  the Coulomb integrals are asymptotically equal to the in- 
teraction energy of two non overlapping spheres of unit charge. This leads 
to interpolation formulas for 7pr, P ~ r, of the form 7pr -- (Tpp x + RpZr) -1/x, 
where Rpr is the distance between the centers and 7pp is determined empir- 
ically. For x = 1 we get the Mataga-Nishimoto formula [27], and for x = 2 
the Ohno formula [28]. In essence this simplification can be viewed as con- 
densing the parameter set 7pr, P -~ r into a single parameter x describing 
the optimum form of decay of the Coulomb interaction energy with dis- 
tance. Hamiltonians describing several different models may be obtained 
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as special cases of the semiempirical Hamiltonian defined in Eq.(36). In 
particular, setting Jpq = 0 we obtain the Pariser-Parr-Pople Hamiltonian 
[29, 30] describing properties of ~-electron systems. Assuming additionally 
7pq - 0 for p ~ q we get the Hubbard Hamiltonian [31] useful in solid 
state physics. Finally, by restricting the model space to a single config- 
uration with all orbitals singly occupied, we get the Heisenberg Hamil- 
tonian [17] describing ferromagnetic properties of spin lattices (formally 
the Heisenberg Hamiltonian may be obtained from Eq. (36) by putting 
~pq - 7pq - 0). An excellent review about use of different model Hamilto- 
nians and different approximation methods for solving the electron corre- 
lation problem in molecular and solid state physics can be found in [32]. 

3.1. M a t r i x  e l emen t s  
In order to solve the eigenvalue problem in Eq.(31) we need to evaluate 

Hamiltonian matrix elements between the N-electron basis functions q2 sM. 
Combining Eqs.( l l ) ,  (12), (14), (16)and (17)we get 

ef" M) - N! E e(P)( IPI (37 )  
PESN 

where k - 1 , 2 , . . . ,  f ( S , s ~ ) ,  [ - 1 , 2 , . . . ,  f ( S ,  s~) and PC), means that  P 
acts on the orbital indices in the product ~ rather than on the electron 
coordinates. Due to the hermitian nature of H we can assume without loss 
of generality that sx _> s,,  i.e. the number of singles in ~x is greater than 
or equal to the number of singles in ~ , .  The orbital function ~x is invariant 
with respect to the subgroup H~ of SN consisting of transpositions within 
doubles. Permutations of this subgroup acting on the spin functions ~}fM 
either change their sign (if the permutation is odd) or leave it invariant 
(in the even case). It is easy to observe that  permutations belonging to a 
double coset HxPII,  of SN give identical contributions to Hk~ ~. Therefore 
Eq. (37) may be simplified to 

HkY - E c(Pq)  .(Pq)<e#MIPqlefM><Pq  IHl .). (38 )  
q 

where the sum runs over a complete set of distinct double coset represen- 
tatives Pq and 

oo,,(Pq) - 2 (d"-d~)/2+t", (39) 

.where tq is equal to the number of doubles in (I)~ being broken by Pq [7]. 
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As one can see from Eq.(36), three classes of matrix elements over the 
orbital variables appear in Eq.(37)" 

1. Matrix elements associated with the Coulomb integrals 7pq. These are 
expressed in terms of the orbital occupation number operators. Since 
�9 , is an eigenfunction of Epp we get 

{ (Pq  lF(Evv)l '} - 0, 

m 

if P E II~lII~, (40) 
otherwise, 

where F denotes a general function of its arguments. 

2. Matrix elements associated with the exchange integrals Jpq. Due to 
Eq.(29), and its generalization valid for doubly occupied orbitals (see 
[8] for details), 

( 5~, 
(Pm IEqpGq- Eqqlm ,> - O, I, 

if P E II~(p, q)II~, (41) 
otherwise. 

. 

The matrix elements vanish if ~ ~ - 0. npnq 

Matrix elements associated with the resonance integrals ~pq. For p = q 
these matrix elements are of the same kind as in class 1. For p ~ q, 
{P~IEpq]~,} - 1 if P ~  - EpqO,. In the opposite case the integral 
vanishes. Thus, the integral does not vanish if n p -  n~ + 1, nq - n ~ - 1  
and P - H~PoH,, where P0 is the so called line-up permutation, bring- 
ing the orbitals of ~ into a complete coincidence with the orbitals 
of Epq~2t,. One may easily demonstrate [8] that  P0 may always be 
expressed as a single cycle, where a cycle is defined as follows: 

(p..-q)--(p,p-1)(p-l,p-2)..-(q+l,q), p>q. (42) 

In order to evaluate integrals over spin variables let us note that Eq. 
(5) implies that the symmetric group SN is an invariance group for the 
total spin operators S 2 and Sz. Consequently, the eigenfunctions of these 
operators form bases for representations of 8N. In particular, 

I 
P e r  M - E M, (43) 

i=1 
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where V~(P)  are the matrices of such a representation. Indices S and N 
label the representation and f is its dimension. We assume that  the set 
of spin functions { 0  sM} is orthonormal. Then the matrices V~  are or- 
thogonal. As one can show (see e.g. [18]) the representations generated by 
{O sM} are irreducible, M-independent, and correspond to two-row Young 
diagrams with x boxes in the first row and y boxes in the second row, 
where x and y are defined in Eq.(23). Now, from Eq.(43) we readily get 

(e sM IPle sM) - (P)ke- (44) 

According to Eqs.(38) - (41) the non-vanishing matrix elements of the 
semiempirical Hamiltonian (36) are given by two kinds of equations: 

�9 If )~ -  # then 

K 

- -  5ke ( n p ~ p p  -Jr- -~np n p n q  g/p q 
=1 p<q 

K I l K II 
_ ! ~  x x 2 npnqJpq - ~.  Jpq VsN((p. q))ke. J p<q p<q 

(45) 

where the prime indicates that only terms with max (rip ~, nq ~) - 2 are 
A A__ included and the double prime means that  only terms with np - nq - 

1 are included. 

A A _  �9 If/k and # differ by one orbital, for example np - np ~ + 1 and nq - 
n ~ -  1, then 

Hk~e ~ -- e(Po)c~x.(Po) ~pq V~(Po)ke. (46) 

where k - 1 , 2 , . . . ,  f (S ,  sx) and e -  1, 2 , . . . ,  f ( S ,  st, ) . 

Eqs.(45) and (46) show a very simple structure of the semiempirical Hamil- 
tonian matrix. The the one-site resonance integrals ~pp and the Coulomb 
integrals 3'pq appear only in the diagonal elements. The exchange integrals 
Jpq are present only in the diagonal blocks of dimensions f (S ,  s~) x I (S ,  sa). 
Pairs of the diagonal blocks corresponding to configurations ~ and # differ- 
ing by one orbital are coupled by the off-diagonal blocks of matrix elements 
given by Eq.(46). These elements are proportional to the resonance inte- 
grals/3pq. In general, the Hamiltonian matrix is very sparse since majority 
of configurations differ by more than one orbital. 
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The structure of the matrix is particularly simple in the Hubbard model, 
when the only type of non-vanishing Coulomb integrals is ")'pp. In this case 
the energy difference between two configurations, one with np- 2, nq = 1 
and another one with np = nq - 1, is equal to ")'pp. The energetic se- 
quence of the diagonal matrix elements is determined by the value of d~: 
the smaller is the number of doubly occupied centers in A, the lower is the 
energy of this configuration. Thus, if ~pr - O, the ground state corresponds 
to the covalent structures in which all orbitals are singly occupied, the first 
excited state is composed of the ionic configurations, in which one orbital 
is doubly occupied and one is empty, and the highest energy state is related 
to the configuration in which N / 2  centers are doubly occupied and N / 2  
are empty. Configurations of the same degree of ionicity which differ by 

1) coupled by the off-diagonal one orbital (np ~ - n p  ~ + 1, nq - n ~ -  are 
matrix element (46). This coupling removes the degeneracy of the same 
ionicity configurations. Configurations A and # with adjacent degrees of 
ionicity, i.e. the ones for which [s~ - s,I - 1, may also be coupled by the 
matrix elements (46). However, unless the values of ~pr are unreasonably 
large compared to 7pp, in the eigenvectors the dominant ionic character 
of the "parent" configuration is retained. In particular, the ground state 
usually remains covalent. If the lattice is composed of identical or similar 
atoms, then the more uniform the valence electron distribution is (i.e. the 
larger the number of singles) the lower is the energy. The ground state 
is dominated by the orbital configuration in which all orbitals are singly 
occupied by the valence electrons. For a strongly correlated system, when 
]~pq[ < <  7pp, the coupling between different configurations is weak, giv- 
ing rise to energy bands for each configuration. The energy level splittings 
within each band depend on the relative magnitudes between the exchange 
and resonance integrals. If the exchange integrals are included they con- 
tribute, in the first order of the perturbation theory, to the energy level 
splitting (in this model the resonace integrals contribute in the second or- 
der only). In particular, if Jpq > I~pq[, the energy level splittings will only 
be slightly affected by the resonance integrals and will be given to a very 
good approximation by considering only the diagonal blocks H ~x given by 
Eq.(45). Large atomic exchange integrals favor the parallel alignment of 
spins, hence the ground state will be in this case of a ferromagnetic nature. 
On the other hand, if [~pr >> Jpq, then the off-diagonal blocks H ~" will 
have a considerable effect on the energy level splittings and cannot sim- 
ply be neglected. In this case, and if we assume still that 7pp > >  [/3pq[, 
one proceeds by performing perturbation [33] or cluster expansions [34] in 
~pq/Tpp leading to effective Heisenberg type operators in the )~ configura- 
tion space describing a predominantly antiferromagnetic ground state. For 
simplicity let us assume that we are dealing with the ferromagnetic case, 
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that  is we simply neglect the off-diagonal blocks H ~ of Eq.(46). If we are 
interested in the lowest energy configuration of a neutral system, then we 

- 1 for p -  1, 2 , . . .  K. In such a case the relevant take K -  N and np 
matrix elements in (45) become 

N 
Hk% ~ -- ~ 5a~ -- E Ypq Vff((p, q))ke, (47) 

p<q 

where 

N N 
C -  E flpp -Jr- E ")/Pq (48)  

p=l p<q 

is a (k, ~)-independent contribution to the diagonal elements of the Hamil- 
tonian matrix, shifting all eigenvalues of H by ~. 

When the long-range interactions (i.e. the Coulomb integrals for non- 
neighboring centers) are included, the simple correlation between the de- 
gree of ionicity of a configuration and its energy is frequently broken. For 
example, if we take the values of the Coulomb integrals derived from a least 
square fit to the ~-electron spectrum of benzene [35], then in the limit of 
~pq = 0 the ground state configuration of a linear chain of 6 atoms is ionic 
with occupation numbers on consecutive atoms equal to [2, 0, 1, 1, 0, 2]. 

4. T H E  H E I S E N B E R G  H A M I L T O N I A N  

The matrix defined in Eq.(47) represents a general, non-relativistic spin- 
independent N-electron Hamiltonian given by Eq.(2) in a specifically de- 
fined model space. The one-electron orbital space is spanned by N or- 
thonormal localized orbitals {r j - 1, 2 , . . . ,  N} and the N-electron or- 
bital space is one-dimensional with the basis function 

N 
( I ) ( r ) -  l-I Cj(rj). (49) 

j= l  

This basis function is associated with f ( S ,  N)  different spin functions 
{o~M; k -- 1, 2 , . . . ,  f ( S , N ) } .  Thus, in this case the N-electron antisym- 
metric model space may be expressed as 

'~A(N, N, S, M) - A ["~~ N) | 7t~(N, 2, S, M)] ,  (50) 
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. . - . . . . .  

where 7/means that all orbital occupation numbers are equal to i. Con- 
sequently, the dimension of the model space is equal to f(S, N), i.e. to 
the dimension of the N-electron spin space. The basis in the model space 
may be interpreted as a set of f(S, N) covalent structures corresponding 
to the orbital configuration (49). In principle, this is also the main idea of 
Anderson's resonating valence bond model [2, 3]. 

The specific form of the Hamiltonian matrix depends upon the choice 
of the spin coupling scheme. Thus, one can use a non-orthogonal ba- 
sis of the spin functions specific for the classical valence-bond-type mod- 
els [36, 37, 38] with a possibility of drawing the corresponding covalent 
structure diagrams, the Serber basis [39] with diagonal representation ma- 
trices for a selected set of commuting transpositions, the genealogically 
constructed Yamanouchi-Kotani basis described by Van Vleck's branch- 
ing diagram [40, 41, 42] or the basis described by the reversed branching 
diagram [8, 41]. Detailed review of a large variety of different spin cou- 
pling schemes may be found in the monographs by Pauncz [18, 43]. All 
these bases are related by similarity transformations and therefore give the 
same results if the Hamiltonian matrix is exactly diagonalized. However, 
for specific applications, particularly when the exact diagonalization pro- 
cedure is prohibitive to perform, the choice of the basis functions may be 
very essential. This point will be discussed in the next section. 

The procedure leading from the exact N-electron Hamiltonian (2) to 
the Heisenberg Hamiltonian matrix (47) is very instructive, but it is rather 
lengthy. Much simpler is the use of effective Hamiltonians which in the 
space of N-electron eigenfunctions of S2 and Sz are represented by the 
same matrix. Furthermore, using the effective Hamiltonians may bring 
another insight into the nature of the interactions described by the model. 
The simplest effective Hamiltonian in the pure spin is 

N 

H~ ~ - -  E Jpq(P, q), (51) 
p<q 

where, relatively to Eq. (47), the energy scale has been chosen such that c = 
0. This form of the Heisenberg Hamiltonian is most appropriate for group- 
theory-based formulations. In particular, Eq.(51) shows that, although the 
Heisenberg Hamiltonian does not commute with all P E SN, it is an element 
of the symmetric group algebra. As a consequence, the matrix of H~ ~ is 
block-diagonal in an SN-adapted basis of N-electron spin functions. The 
blocks are labeled by irreducible representations of SN (i.e. by pairs of S, M 
quantum numbers) [14, 44]. This property of the Heisenberg Hamiltonian 
also results, in a rather obvious way, from its construction presented in 
sections 2 and 4 of this chapter. 
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Another form of the Heisenberg Hamiltonian may be obtained by means 
of the so called Dirac identity [45] 

(p,q)-  �89 + 2 Sp. Sq, (52) 

where Sp - -  S(Sp) is the total one-electron spin operator corresponding to 
the p-th electron. The identity is valid if the operators act only in the spin 
space. Then, Eq.(51) may be rewritten as 

N N 
H~ ~' - - 2  F_, Jpq S%. S q -  1 E Jpq. (53)  

P<q P<q 

By changing again the origin of the energy scale we get 

N 
H~ ff - - 2  E Jpq Sp-S~. (54) 

p<q 

The effective operators defined in Eqs.(51) and (54) were first introduced 
by Heisenberg [17], Dirac [45] and Van Vleck [46] in order to formulate 
a quantum theory of ferromagnetism based on exchange effects. As ex- 
plained in the discussion following Eq.(46), the antiferromagnetic situa- 
tion can also be cast in form of a Heisenberg Hamiltonian, the same as in 
Eq.(51) but with a negative value of the exchange integral. For a unified 
treatment we will henceforth absorb the sign into Jpq and simply refer to 
Jpq as the Heisenberg exchange parameters with negative/positive values 
for ferromagnetic/antiferromagnetic treatment. The exchange parameters 
form the N x N Heisenberg exchange parameter matrix. 

As long as the model space is constructed according to Eq.(50), the 
matrices representing Hamiltonians defined in Eqs.(2), (17), (36), (51) and 
(54) are the same (up to a constant added to all diagonal elements) and 
in this sense they are equivalent. In the SGA-based formalism, the form 
given by Eq.(51) is most convenient and this form will be used in our 
further discussion. 

The geometry of the lattice determines the structure of the Heisenberg 
exchange parameter matrix. In most cases only nearest-neighbor interac- 
tions are taken into account and all non-vanishing Heisenberg exchange 
parameters are set equal, i.e. we set 

J if p and q are nearest-neighbors, (55) 
YPq- 0 otherwise. 
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In such a case 

/u  

Hf - j Z  (p, q), (56) 
p<q 

where the prime means that  the sum is extended over the nearest-neighbors 
only. 

Some sums of the transposition operators are represented by very simple 
matrices. For example the operator 

k 
- E k), k - 1, 2 , . . . ,  N (57) 

8--1 

in the Yamanouchi-Kotani basis is represented by diagonal matrices [10]. 
Consequently, the eigenvalue problem describing a lattice constructed in 
such a way that  the corresponding Hamiltonian (56) is a combination of 
the Ak operators may be easily solved analytically. In most cases how- 
ever one has to set up the Heisenberg Hamiltonian matrix and solve for its 
eigenvalues. 

4.1. T h e  m a t r i x  
As one can see from Eq.(47), the Heisenberg Hamiltonian matrix is a 

linear combination of the appropriate representation matrices of SN. Only 
the matrices which correspond to transpositions of nearest-neighbor par- 
ticles are needed. In principle, the representation matrices may be con- 
structed using one of the techniques developed over several decades by 
many different authors (for reviews see the monographs by Pauncz [18, 43] 
and references therein). However, to our knowledge, the most efficient ap- 
proach is based on using graphical techniques in model spaces [47] based 
on the Yamanouch-Kotani wave functions [48, 49]. This methodology has 
been developed in connection with designing general SGA-based CI pro- 
grams [8, 9, 10] and was also successfully applied in studies on Heisenberg 
Hamiltonians [13, 14]. 

The Yamanouchi-Kotani basis in the N-electron SN-adapted spin space 
is closely related to the standard Young tableaux used in characterizing 
irreps of the symmetric group [50] and is conveniently represented by Van 
Vleck's branching diagram [18, 42]. To a basis function (~fM we assign an 
array 

T s(~) - [So, $1,..., SN], ( s s )  
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Figure 1: Van-Vleck's branching diagram (A) and the reversed branching diagram (B) 
for S = 1, N = 8. Either 6 (full lines) or 8 (full and broken lines) spins are coupled in all 
ways allowed by the Yamanouchi-Kotani scheme. At vertices and arcs their weights (if 
different from 0) are shown. 

where Sk is the resultant spin obtained by coupling the spins of the first 
k electrons. The array may be represented graphically on a grid in which 
the vertical position equals Sk and the horizontal one k. The graphical 
representation of T S (g) is a directed path which starts at the (0, 0) vertex, 
joins consecutive vertices (k, Sk); k = 0, 1 , . . . ,  N, and ends at the (N, S) 
vertex. To a (k, Sk) vertex we assign the lexical weight of the vertex defined 
as 

d(k, - a ( k -  1 ) +  d ( k -  + �89 (59) 

If the coordinates of a vertex correspond to a point outside the diagram 
then its weight is equal to 0. To the arc of slope +1 contained between 
the ( k -  1, S ~ -  l) and (k, Sk) vertices we assign the lexical arc index 2 
y (+1, k, Sk) -- d ( k -  1, Sk - �89 and to the arc of slope - 1  contained be- 
tween the ( k -  1, Sk + 1) and (k, Sk) vertices we assign the lexical arc 
index y ( -1 ,  k, Sk) -- O. The overall lexical index I [  of the complete path 
representing TS(g) is then given by 

N 
I [  -- 1 + Y~ y (Pk, k, Sk ) , (60) 

k=l 

where Pk -- 2(Sk -- Sk-1)  -- • An example of a branching diagram is 
shown in Fig. 1 A. The branching diagram makes possible the representa- 
tion of very large bases of spin functions in terms of a few arcs and vertices 
and is thus of great practical importance. 
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As one can see by analyzing Fig. 1 A, a change in the number of spins 
results in changing the lexical numbers of all paths in the branching dia- 
gram. In particular, adding to the system of spin functions described by 
the branching diagram some singlet-coupled pairs results in renumbering 
of all spins in the system. This inconvenience may be removed by a simple 
change of the structure of the branching diagram: the reverse numbering 
of the spins and the reverse lexical ordering of the spin functions. The 
resulting diagram, referred to as the reversed branching diagram, is shown 
in Fig. 1 B. It has two important features: 

�9 Let us assume that we have two sets of Yamanouchi-Kotani spin func- 
tions: one describing a system of N spins and the other one describing 
a system of (N + 2) spins, both coupled to the same value of S. The 
functions of the (N + 2)-spin system may be divided into two sets: set 
I containing f(S, N) functions coupled according to the same scheme 
as in the N-spin system with two additional spins forming a singlet- 
coupled pair and set II containing the remaining f(S, N+ 2)- f(S, N) 
functions. In the corresponding reversed branching diagrams, the lex- 
ical indices of the functions belonging to set I of the (N + 2)-spin 
system are the same as the lexical indices of the functions describing 
the N-spin system. 

�9 Adding an arbitrary number of singlet-coupled pairs to a reversed 
branching diagram changes neither the indexing of the remaining part 
of the diagram nor the numbering of the spin functions. 

The reversed branching diagram is of crucial importance in setting up 
the Hamiltonian matrix for CI calculations. In this case we have to deal 
with orbital configurations having varying numbers of singly occupied or- 
bitals. The reversed branching diagram allows one to find the spin repre- 
sentation matrices in Eq.(44) corresponding to N - 2, N - 4,... electrons 
simply as upper left subblocks of V~(P), a fact which makes superfluous 
the generation of spin matrices corresponding to the overall number of elec- 
trons. Rather only those corresponding to the maximum number of singles 
are needed [8]. To treat the Heisenberg Hamiltonian the reversed branch- 
ing diagram offers no particular advantage, since the number of electrons 
corresponding to singly occupied orbitals is fixed from the very beginning. 
Hence, in what follows, we will base our discussion on the branching dia- 
gram as presented in Fig. 1 A. 

A transposition (k- i, k) which interchanges two adjacent elements is 
called an elementary transposition. When this elementary transposition 
acts on a branching diagram spin function O~ M, it affects only the arcs 
corresponding to k- 1 and k, that is the path segments contained between 
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vertices with abscissae k -  2 and k. It may be easily demonstrated [13, 18] 
that 

( k - l , k )  ~ = offO ( k - l , k )  % -~176 (61) 

(k- 1, k) o/~ ---- - ak o/~ + bk ~176 , (62) 

(k - 1, k) ~176 - + bk o/~ + ak 0%/o , (63) 

where only the path segments contained between k -  2 and k are shown 
and 

1 
bk -- ~/1 - ak 2. (64) 

ak -- 2Sk  + 1' 

From Eqs.(61) - (64) one can see that  

1, Eq. (61), 
V~V((k - 1, k))ii - - ak, Eq.(62), (65) 

ak, Eq. (63), 

where the equation number refers to the way the i-th spin function is 
transformed by the transposition ( k -  1, k). The representation matrices 
are orthogonal. Therefore, if VsN((k- 1, k ) ) i i -  ak and Vsg((k-  l, k))jj = 
--ak then v~v( (k -  1, k))ij = V~V((k- 1, k))ji - bk and the remaining off- 
diagonal elements corresponding to the i, j rows and columns are equal to 
0. This implies that the representation matrices of elementary transposi- 
tions have either a 1 on the diagonal or have 2 • 2 blocks composed of -r 
and bk. Matrices corresponding to other transpositions may be obtained 
by multiplication of the elementary transposition matrices. For example, 
( k -  1, k + 1 ) =  ( k -  1, k)(k, k + 1 ) ( k -  1, k), etc. A description of an al- 
gorithm which couples the procedure of evaluation of the representation 
matrix elements with a method of solving the eigenvalue problem of the 
Heisenberg Hamiltonian matrix is given in the next section. 

The Yamanouchi-Kotani basis is best suited if we want to solve the 
Heisenberg problem in the complete spin space. However, the number of 
spins that  can be handled this way, soon reaches an end due to the rapid 
growth of the spin space dimension f ( S ,  N ) .  Even with the present day 
computers, the maximum number of spins that  can be treated clusters 
around N = 30. For larger values of N one must resort to approximate 
treatments, one of which, as described hereafter, is based on the idea of 
resonating valence bonds (RVB) coming from the classical VB model devel- 
oped by Pauling and Wheland back in the early 1930's [37, 51]. In essence, 
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it consists in identifying the most important contributions from the entire 
spin space to the relevant part of the Heisenberg spectrum that one wants 
to treat. Thus, it can be viewed as a similarity transformation on the 
Heisenberg matrix with the goal of isolating its most important subblocks. 

Suppose that we have a system for which N is even and that we are 
interested in the singlet (S = 0) ground state of a Heisenberg Hamiltonian 
describing an antiferromagnetic material. Since in Eq.(56) the sum is only 
over nearest-neighbor spin pairs, a hypothetical wave function containing 
singlet spin functions between all these pairs would give the lowest energy, 
though it is generally not possible to build such a wave function, except for 
the obvious case of disconnected spin pairs. However, this idea of pairing 
the spins leads to the concept of the RVB space. To construct this space we 
index the sites of the system with the positive natural numbers from I to N 
and partition the resulting set of positive numbers {P} into N/2 disjoint 
two-numbered sets Pk~ in all possible ways. Each such partition is then 
associated with a spin product function r in which each two-numbered 
set Pke of the partition gives rise to a singlet spin pairing between sites k 
and/~: 

N/2 N/2 1 
{P} - @k,e Pke ~ r = ~ --~(akfle -- flkae). (66) 

The resulting set of RVB functions (r has the following properties" 

Each r E (r is a singlet function, i.e. it belongs to the S - 0 
subspace of the complete N-particle spin basis. 

The order of the set {r is equal to ( N -  1)!! but its dimension is given 
by f(O, N) - g ! / ( g / 2  + 1)!(g/2)!. Hence (r  constitutes a linearly 
dependent set for N > 2. 

The overlap between any two RVB functions is different from zero, 
that is (r162 ~ 0 for all i, j. 

�9 If G denotes a point group of the system and if g E G is any of its sym- 
metry elements, then gr - •162 where cg denotes the RVB function 
in {r obtained from r in Eq.(66) by permuting and rearranging to 
their original order all the index pairs {k, g} according to g; the + or 
- sign holding if an even or odd number of index pair rearrangements 
needs to be performed. 

The importance of the RVB space lies in the fact that we can now iden- 
tify its most important parts characterizing the ground state wave function 
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of an antiferromagnetic system. Obviously, since the Heisenberg Hamil- 
ionian involves only nearest-neighbor exchange interactions, we expect a 
RVB function to make a substantial contribution to the ground state wave 
function if we maximize the spin pairings between nearest-neighbor sites. 
This leads directly to the important notion of the so called' Kekul~ sub- 
space {r contained in {r and we define this subspace as the space 
containing all those RVB functions in which all spin pairings are between 
nearest-neighbors. The order of {r is usually much smaller than the 
RVB basis dimension but using {r alone one recovers typically ~ 90% 
of the exact ground state energy together with a very good description 
of the wave function. This has lead to formulation of qualitative rules 
concerning properties of ~r-electronic systems in organic chemistry, like for 
example the Clar sextet concept [52] in connection with relative stability 
of aromatic hydrocarbons or Herndon's structure count method [53] for 
predicting reactivities of polycyclic hydrocarbons. Further improvement 
over the Kekul6 subspace can be anticipated with the inclusion of the sub- 
space consisting of all those RVB functions possessing one excited bond, 
i.e. having one spin pairing between non-nearest-neighbors, then next with 
the inclusion of those possessing two excited bonds and so on. Note, how- 
ever, that by doing so the linear dependency problem of the spin basis 
comes more and more into play, although one can usually assume, with 
some confidence, that the Kekul6 subspace is linearly independent. Exam- 
ples of such type of restricted RVB Heisenberg Hamiltonian calculations 
performed on fullerene-type carbon cages in the range 20 < N < 60 and on 
two-, three- and four-legged spin-l/2 ladders are presented in [54, 55, 56]. 

Note, that  one can always choose a basis within the RVB space as the 
subset consisting of all RVB functions corresponding to the Rumer dia- 
grams [36]. However, from the way of constructing the Ruiner diagrams 
as a set of directed noncrossing arrows on a circular array of lattice nodes, 
the Kekul6 space is generally not contained in the Rumer basis, except 
for some trivial cases like the Heisenberg chain. The Rumer basis is thus 
inadequate for designing approximate treatments of large Heisenberg lat- 
tices. In case of exact treatments, however, it can be used and has resulted 
in the diagrammatic valence bond (DVB) approach developed by Soos 
and coworkers (see [57] and references therein) and applied successfully to 
Heisenberg problems [58]. The DVB approach has the same underlying 
structure as the RVB method, hence all that  follows regarding RVB also 
applies to DVB. 

A major drawback of RVB calculations is the fact that  RVB functions 
cannot be cast into a compact graphical form as it is possible in SGA 
using the branching diagram. Each RVB function has to be generated 
explicitly and special techniques (e.g. bit representation) have to be used 
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to store them efficiently on a disk. As a consequence, recalculation of 
matrix elements between RVB functions during iterative diagonalization 
procedures (see the next section) becomes prohibitive due to excessive disk 
I/O that would have to be performed. 

A last point worth mentioning about RVB functions is their easy trans- 
formation under the symmetry operations of the system point group G. 
As stated above, every RVB function transforms under such an opera- 
tion into only one other RVB function. Moreover, each RVB subspace, 
labeled by the number of bond excitations, is closed under G, i.e. any 
g E G does not create or destroy extra excited bonds. Hence, application 
of group projection operators, in particular the ones corresponding to the 
one-dimensional irreps of G, is easy to perform. This makes the point 
group adaptation of restricted RVB Heisenberg Hamiltonian calculations 
rather trivial. Consequnetly, the adaptation can be done for RVB spaces of 
very large dimensions (see for example [54]). This nice feature is not shared 
by the Yamanouchi-Kotani spin functions. Each Yamanouchi-Kotani spin 
function gives a linear combination of many other Yamanouchi-Kotani spin 
functions under the action of an element of G, a fact which makes the point 
group adaptation a very demanding task, except for very small systems 
where projection operator methods may be used [11]. For exact calcula- 
tions we would thus prefer a method which combines the nice features of 
both SGA (a compact graphical representation of an orthogonal basis) and 
RVB (an easy G-adaptation) approaches. To our knowledge this has not 
yet been achieved so far. 

4.2. The  e igenvalue  p r o b l e m  
In a recent series of papers [13, 14, 44, 54, 55, 56] SGA- and RVB- 

based algorithms of construction and solving the eigenvalue problem of 
a Heisenberg Hamiltonian matrix have been formulated and successfully 
applied to lattices containing up to 30 (in case of SGA) and up to 60 nodes 
(in case of RVB), with dimensions of the corresponding matrices ranging 
up to 2.5 x 107 and 3.8 x 106, respectively. In this section we describe only 
the main ideas of the methods. For details the reader is referred to the 
original papers and references therein. 

For the Heisenberg matrices H of low dimensions (up to orders of a 
few thousands) one can determine their full spectrum by using any one 
of the methods available for complete diagonalization, as discussed for ex- 
ample in [59]. For much bigger matrices one must make use of iterative 
diagonalization methods, which are able to extract several of the lowest 
or highest eigenvalues together with the corresponding eigenvectors. Most 
of these iterative methods are based on the original Lanczos scheme [60] 
or on one of its modifications [61, 62]. The key idea of these iterative 
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schemes is to expand the eigenvectors of interest in terms of so called cor- 
rection vectors at each iteration step by solving a small eigenvalue problem 
and repeating this process until convergence has been achieved. A central 
step during this procedure is the repeated construction of products HC, 
where C is a vector of the same dimension as H. Since H in SGA is a 
linear combination of transposition matrices V~((p, q)), each of which, in 
turn, is built up multiplicatively from elementary transposition matrices 
V ~ ( ( k -  1, k)), the problem of constructing an efficient SGA-based algo- 
rithm depends on finding a way of rapidly performing multiplications of the 
type V~((k  - 1, k))C. To this end we note from Eqs. (61)- (63) that  the only 
relevant contributions to this multiplication come from the bent-shaped 
segments in Eqs.(62) and (63). These contributions can be schematically 
represented as a two-segment loop in the branching diagram, as shown in 
Fig. 2 A, in which {I,} and {I~} denote the collection of lexical indices of 
all left and right subpaths reaching the corresponding leftmost and right- 
most vertices ve and v~ of the loop, and I1, /2 are the non-zero lexical 
arc indices of the loop. An algorithm can now be set up for evaluating 
D - V ~ ( ( k -  1, k))C" 

loop over all vertices ve at k - 2  

if vertex v~ exists at k, then 

calculate / ak -- (2Sk if- 1) -1 

t bk -- ~/1 - a 2 

determine h, /2, {/~} and {I~} 

loop over all I~ and I~ 

i = 
calculate 

j = 

calculate - D/ = 
[ Dj -- 

continue 

endif 

continue 

Il  q-- I~--~- Ir 

- a k C i  + bkCj 

bkCi + akCj 

This algorithm entirely avoids multiplications with zeros and repeated eval- 
uation of identical ak and bk constants. The most time consuming part 
is the search through the paths reaching ve and vr in order to evaluate 
the respective sets {I~} and {It}- Timings for evaluating the product 
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k l  t i .... 
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Figure 2: Two-segment (A) and three-segment (B) loop in the branching diagram 

V~((1, N))C, with the most dense transposition matrix, for several S and 
N, can be found in [14]. These timings show that the main limiting factor 
in a Heisenberg lattice calculation is the computer core memory available 
rather than the waiting time for each HC.  Note, that  one needs to hold 
at least three large vectors in the core memory, due to the multiplicative 
buildup of the transposition matrices. A further improvement in algorith- 
mic efficiency can be achieved by explicit coding of larger segment loops 
corresponding to consecutive cycle matrices. The three-segment loop in 
Fig. 2 B would be used, for example, to evaluate contributions coming from 
the consecutive cycle matrix V ~ ( ( k -  2, k -  1, k)). The gain is twofold" 1) 
the number of paths which have to be searched to establish the sets {It} 
and {I~} are reduced and 2) some of the loop contributions are equal to 
zero and need not be considered explicitly. Of course, coding of the loop 
contributions, in terms of the relevant sets of ak and bk, soon becomes 
tedious, but it can be eased using any of the symbolic mathematical pack- 
ages available. A program based on the above algorithm has been written 
including an explicit three-segment loop coding and is available from CPC 
[14]. 

Having established an efficient algorithm for performing the product 
HC,  there remains the issue of how to start the iterative diagonalization 
procedure, i.e. how to select appropriate starting vectors Co for each of 
the states required. This issue should never be underestimated since a bad 
choice of Co almost always leads to many more iterations needed to achieve 
the convergence. When dealing with Hamiltonians defined in model spaces 
constructed out of multidimensional N-electron orbital spaces this problem 
is of minor importance when dealing with the lowest part of the spectrum, 
since usually one has a good zero order description of the wave functions 
in terms of Hartree-Fock type determinants or excitations therefrom. In 
these cases H is diagonally dominant and Co can be set equal to the coeffi- 
cients of the Hartree-Fock wave function. For the Heisenberg Hamiltonian 
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expressed in the Yamanouchi-Kotani basis the situation is quite different. 
The Hamiltonian is no longer diagonally dominant and one does not know 
in advance, which of the Yamanouchi-Kotani spin functions play a major 
role in the final wave function. One way to proceed is to subdivide the 
Heisenberg lattice into several noninteracting sublattices, each of which 
can be solved exactly. A zero order wave function for the overall lattice 
can then be constructed simply as a product of the sublattice wave func- 
tions. This procedure works well if the spin correlations corresponding to 
the neglected interactions are small in the final wave function. Otherwise 
considerable iteration time might be spent in building up these correla- 
tions. Another possibility would be to use as a starting point the wave 
function obtained from a RVB calculation within the Kekul6 space {~K} 
expressed in terms of the Yamanouchi-Kotani spin functions. This proce- 
dure would avoid the need of large extra spin correlation buildup between 
any two sites and would probably be the optimum way to start the Heisen- 
berg iterations. However, in order to express the Kekul6 wave function in 
terms of the Yamanouchi-Kotani basis one needs to find efficient overlap 
expressions between these two bases and work is still underway to see if 
such expressions can be found. 

When trying to perform the Heisenberg RVB calculations the algorith- 
mic problems are entirely different in nature. The main difference, as 
compared to the SGA, is the necessity to evaluate the overlap matrix in 
addition to the Heisenberg matrix. Detailed formulas for both types of 
matrix elements can be found in I63, 64]. The overlap matrix poses a se- 
vere problem in RVB calculations: it is 100% dense, with no zeros. This 
fact prohibits its recalculation during an iterative diagonalization proce- 
dure, a similar situation holding for the Heisenberg matrix. Thus, partial 
evaluation and storage of conveniently sized subblocks of both matrices is 
essential. Hence, for a Heisenberg RVB calculation the disk space is the 
main limiting factor. As mentioned earlier effective use of the lattice point 
group G can be made here quite easily, reducing the dimensions and ma- 
trix evaluation cost roughly by a factor of IGI and hence the disk storage 
requirements by a factor of IGI 2. Such a G-adaptation of the RVB space 
made it possible to perform a RVB study on the icosahedral buckminster- 
fullerene C60(lh), where the largest calculation involving RVB Heisenberg 
and overlap matrices of dimension 3 840 260 were reduced to a manageable 
size of 32 520 in/h-adapted space [55]. For details regarding the necessary 
algorithmic changes to perform iterative diagonalizations in the presence 
of overlap and the choice of iteration starting vectors we refer to [54]. 
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5. S P E C T R A L  D E N S I T Y  D I S T R I B U T I O N S  

As we could see in the previous sections, the construction of the Heisen- 
berg Hamiltonian matrix within the SGA formalism in the (SM)-adapted 
model space is very s imple -  it is merely a linear combination of ,.,ON rep- 
resentation matrices corresponding to transpositions. Despite this, how- 
ever, the problem is far from being trivial. The dimension of the model 
space grows explosively with N. For example, f(1, 16) = 3 432, f(1, 32) = 
94 287 120, f(1, 40) = 17 902 146 600. Exact diagonalizations for lattices 
containing considerably more than, say, 32 nodes does not seem to be fea- 
sible in the foreseeable future. Therefore alternative ways of describing 
spectra have to be developed. One of them, originated in nuclear physics, 
is the statistical theory of spectra [65]. In this approach information about 
spectra is derived from the knowledge of spectral density distribution mo- 
ments. The moments are defined as traces of Hamiltonian powers. In the 
case of the Heisenberg Hamiltonian their evaluation is rather simple and 
the complexity of the approach does not depend upon the size of the lattice. 

The n-th spectral density distribution moment of a general Hamiltonian 
is defined as 

M~(H) - 1 ~Tr (H~) ,  (67) 

where D denotes the corresponding Hilbert space dimension in which H 
is represented. The n-th power of the Heisenberg Hamiltonian may be 
expressed in terms of products of n transpositions 

1 N 
Hn = - -  E Ji~j~Ji2j2 " " " Jinj, ,  (ikil)(i2J2)"" (injn), (68) 

2n {i},{j} 

where {i} = il, i2 , . . . ,  i ,  and {j} = j l ,  j 2 , . . . ,  j ,  and all J ' s  with equal 
indices are defined to be equal to zero. After further development Eq.(68) 
leads to 

N 
1 ~c y[xv] y~ J i~k  J i 2 j 2 " ' "  J i . j . ,  (69) Mn -- -~  "~'[C] {i},{J} 

where the first sum is extended over those classes [C] of $2~ C SN which 
can be generated by products of n transpositions, 

[zy] 
v'[*Y] _ X[C] 
~ ' [ c ]  - f ( S, N) (70) 
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are the normalized irreducible characters, introduced and studied by Klein 
et al [25] " [xy] , x[c] denote characters of the representation of Sg correspond- 
ing to the two-row Young shape defined in Eq.(23) and the sums over 
{i} and {j} extend to those combinations of the indices il, i 2 , . . . ,  in and 
j l , j 2 , . . . , j ~ ,  which result in permutations belonging to the appropriate 
class. In particular [66], 

1 u N 
M 1  - E ' 

~J 
N N N 

1 y[xy] ._..S-~/ v[xY] ~ Jij Jjk q- 1 v[xy] , M 2  - ~.~-[2~] JijJkt-4c- "~[31] 2"~[ 141 .~. j2.,  
ijkl ijk ~3 

N N 
_ 'J jJk J n ' JjkJzm 

543 g~'[2~] ijklmn ijklm 

+ ~'~-[214] ~z_., ~ "nt- (3j2 .J jk  + J i j J j k J k i ) +  3ijkl 
ij ijk 

3c-[xY] 
-t- .'~-[412] ijk 1 

where primes indicate that all the summation indices are different and 
classes [C] of SN are defined by the corresponding partitions in 82n. In 

. [~y ]  . [~y ]  the simplest case ~[1~] - f(S,  N). In a general case, the characters/r 
may be expressed in terms of binomial coefficients involving N, S and the 
partition numbers defining [C] using a recently developed method [67]. 

If all nearest-neighbor exchange parameters are equal to J and all the 
others vanish, then Jij /J is the N x N topological matrix of the molecule 
(its elements are 1 for neighboring atoms and 0 otherwise). In this case 
the summation over all exchange parameter combinations in Eq.(69) can 
be explicitly performed leading to 

Mn - J~ ~ ~'[c] W[c]. (71) 
C 

where the coefficients WIG] carry the information about the topology of the 
molecule. They may be determined from a knowledge of the topological 
matrix and are referred to as the topological invariants of the molecule. In 
particular, if a denotes the number of bonds in the molecule, bi the number 
of bonds connected to the i-th atom, 

N 1 N  

i=1 i,j 
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and n(A)  is the number of three-member cycles formed by the bonds, then 
[66] 

W[2] 
W[22 l 
W[31] 
W[.] 
W[23] 

W[321] 
W[4121 
W[21,1 

= 2a, 

= a ( a +  1 ) - ~ 2 ,  
= - 2 a  +/32, 
"-- a~ 

- -  a(a 2 + 3a + 4) - 3(a + 2)~2 + 3c~ + 2/33 - n (A) ,  

= - 6 a ( a  + 2) + 3(a + 5)~2 - 6c~ - 3~3 + 3n(A),  

= 10a - 9~2 + 3c~ + ~3 - 3n(A),  
= a ( 3 a -  2 ) +  n(A) .  

The normalized irreducible characters ~[zy] express the way in which these ~[c] 
specific features propagate when N and S change. Therefore they are 
called propagation coefficients [65]. 

In principle, having the complete set of spectral density distribution 
moments one has complete information about the Hamiltonian spectrum. 
The moments are not affected by the combinatorial explosion: they may be 
expressed in a closed form with the dimension of the model space, quantum 
numbers and topological characteristics of the system appearing as param- 
eters. The theory in which information about spectra is derived from the 
knowledge of spectral density distribution moments is known as the sta- 
tistical theory of spectra. In statistical spectroscopy densities of spectral 
distribution rather than locations of individual energy levels are studied. 
However, also individual eigenvalues may be approximated using several 
lowest moments [66]. A comparison of the real energy levels with those 
derived from the spectral density distribution moments leads to notions of 
the secular eigenvalue density and of fluctuations [65]. The secular density 
is defined by a small number of moments. Usually three or four moments 
are sufficient to obtain a correct secular density. If the secular density is 
accurate enough, then the fluctuations are small, energy-independent and 
insensitive to an increase in the number of moments used to describe the 
spectrum. Therefore only several (usually not more than four) moments 
are of some practical importance. 

6. F I N A L  R E M A R K S  

In this chapter we gave a brief review of several applications of SGA to 
a desription of spectra of the Heisenberg Hamiltonian. There are three 
topics in which using SGA is particularly useful" (I) establishing relations 



633 

between the Heisenberg model  and other semiempirical  methods,  par t icu-  
larly the Hubbard  and the Par iser -Parr -Pople  ones; (2) designing efficient 
algori thms for the exact solving of the Heisenberg Hami l ton ian  eigenvalue 
problem; (3) construct ion of the  stat ist ical  theory  of the Heisenberg Hamil-  
tonian spectra.  Several aspects of this formulation,  in par t icular  develop- 
ing an approach which combines the most  a t t rac t ive  features of the  RVB 
method and the SGA-based theory, or including the point-group symme-  
t ry  adap ta t ion  of the wavefunction to the SGA formalism, remain  to be 
interesting challenges for fur ther  developments of the theory. 
Acknowledgements. This work has been par t ly  suppor ted  by the Polish 
State Commi t t ee  for Scientific Research (KBN),  grant  No. 5 P03B 119 21. 
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In troduct ion  

The Hfickel Hamiltonian introduced in 1931 was probably the first quantum cell 

model in chemistry. Hfickel models approximate the electronic structure of conju- 

gated molecules with one 2pz orbital per carbon and take the Hamiltonian matrix 

elements from experiment. The same procedure is called tight-binding in the theory 

of metals, now with an ns orbital per alkali atom. Cell models based on a frontier or- 

bital per molecule are in the same spirit and confer great generality to such models. 

The 4n§ rule and countless Hfickel computations are classic examples of important 

results arrived at from a simple model. Tight-binding theory for simple metals pro- 

vides similar triumphs that are sometimes close to quantitative. The approximate 

nature of models is emphasized in theoretical chemistry, where a major goal has been 

the development of quantitative electronic-structure methods for molecules. The in- 

herent complexity of extended systems, on the other hand, provides challenges for 

correlated models of magnetic or optical properties, phase transitions and other col- 

lective phenomena. The wide scope and mathematical complexity of quantum cell 

models belies their humble origins as the simplest approximation to the problem at 

hand. 

Hiickel's familiar ansatz for ~r-electrons illustrates the phenomenological nature 

of models in general. The number of pz orbitals fixes the order of the Hamilto- 

nian matrix, H. Diagonal elements c~ correspond to orbital energies that can be 

estimated from ionization data. Off-diagonal elements ~ are restricted to r-bonded 

atoms, without distinguishing between partial single and double bonds. The re- 

maining elements are presumed to vanish. The eigenvalues and eigenfunctions of 

H are obtained and compared to experiment. The/~ integrals describe r electron 

transfer between bonded atoms and become t(R) in solid-state models. The de- 

pendence on bond-length is crucial in polymers such as polyacetylene and generates 

electron-vibrational coupling[l, 2]. The magnitude of ~ obtained from thermochem- 

istry or spectroscopy is so useful that different values are used in the two fields[3]. 

This underscores the limitations of non-interacting r electrons, as indeed has been 
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recognized all along. A larger basis is an obvious improvement and much work has 

been devoted to practical, accurate and flexible bases. Another improvement con- 

cerns electron- electron interactions, or correlations, that  are particularly important 

for excited states. Correlations can be added directly to quantum cell models and 

quickly raise the stakes for accurate solutions. 

Coulomb interactions dominate the electronic structure of molecules. The to- 

tal spin S 2 and Sz are nearly conserved for light atoms. We will consider spin- 

independent interactions in models with one orbital per site. In the context of iv 

electrons, the operators ~+~ and ~pa create and annihilate, respectively, an electron 

with spin a in orbital p. The Hfickel Hamiltonian is 

/'~/Hfickel----- ~ s "Jr" Z ~pq(atpaaqa -~- a~aap a) (1) 
pa <pq>a 

The sum is over all sites p and bonded sites < pq >; the orbital energy ep and 

transfer integrals tpq are used instead of ~ and/3. The Hfickel problem is to solve 

(1) for a given number of electrons, often one per orbital. Coulomb interactions 

between electrons are 

1 
/:/Coul. = -~ ~ ~q[kll(a~aq~atk~,al~ , -- 5qka~a~) (2) 

pqklaa ~ 

The two-electron integrals [pqlkl] are < Cp(1)r162162 > and may 

involve as many as four orbitals. The models of interest are restricted to one and 

two-center terms. Two electrons in the same orbital, [pp]pp], is 7 in Pariser-Parr- 

Pople (PPP) theory[4] or V in Hubbard models[5], while [PPlqq] are the two-center 

integrals kept in PPP. The zero-differential-overlap (ZDO) approximation[3] can 

be invoked to rationalize such simplification. In modern applications, however, and 

especially in the solid state, models are introduced phenomenologically. Particularly 

successful models are apt to be derived subsequently and their parameters computed 

separately. 

We have interacting r-electrons in the PPP  model and on-site repulsion in Hub- 
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bard models. Their relation to Hiickel models is[6] 

U 
I~Hub. = /~/Hiickel + "~- ~ hp (?~p -- 

P 
1) (3) 

f tppp = [-IH,~b. + ~ Vpq(%- zp)(hq-  Zq) (4) 
p>q 

The number operators hp - ~ ~+~ Spa indicate that the interactions do not depend 

on spin. The constant Vpq depends on the distance Rpq between the orbitals and is U 

at Rpq - 0; different interpolations have been proposed by Ohno[7] and by Mataga- 

Nishimoto[8]. The local chemical potential zp specifies the occupancy for a neutral 

site and is unity in hydrocarbons. Hubbard invoked strong shielding in d-electron 

metals for on-site only Coulomb interactions. Hubbard models are applied instead 

to high-To superconductors and generic systems[9] with interesting correlations of 

variable magnitude. The PPP model for hydrocarbons has no adjustable parameters, 

and hence has predictive capabilities[10]. Both models conserve spin. Their solutions 

require comparable effort and, with the notable exception of the one-dimensional 

Hubbard chain, are restricted to finite systems. The special case of one electron per 

orbital, or a half-filled band, is closely related to Heisenberg spin systems. Other 

modifications lead to the U -  V models, Kondo lattices, donor-acceptor crystals 

with valence instabilities, and ion-radical salts with diverse magnetic properties. 

The shared features of quantum cell models are specified orbitals, matrix ele- 

ments and spin conservation. As emphasized by Hubbard[5] for d-electron metals 

and by Soos and Klein[ll] for organic crystals of 7r-donors or 7r-acceptors, the oper- 

ators 5+ and ~p~ in (1), (3) and (4) can rigorously be identified with exact many- 

electron states of atoms or molecules. The provisos are to restrict the solid-state 

basis to four states per site (empty, doubly occupied, spin a and spin /~) and to 

stop associating the matrix elements with specific integrals. The relaxation of core 

electrons is formally taken into account. Such generalizations increase the plausibil- 

ity of the models and account for their successes, without affecting their solution or 

interpretation. 
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Correlated states are not easily visualized even when, for example, the appro- 

priate linear combination of Slater determinants is known. Here again, conjugated 

molecules and their ubiquitous representation as valence bond (VB) diagrams prove 

to be instructive. VB diagrams specify at a glance the location and pairing of all 

r-electrons and fully describe a particular many-electron state. Quite generally, VB 

diagrams with N sites (orbitals) and N~ r-electrons with total spin S form a com- 

plete basis for quantum cell models[12, 13]. The proof is based on writing diagrams 

as N~-fold products over 5+~. The intuitive reasoning is illustrated in Fig. 1 for 

benzene. The Kekul4 diagrams I1 > and 12 > are two possible singlets with paired 

1 2 3 4 5 6 
1 

2 0 6  / I1>= = ~ 3 5 10 10 01 10 O1 01 

12>= 0 

14> = + ~  = 

15> = ~ = 

10 01 10 01 10 01 

11=2661 

I2-2457 

10 10 01 01 10 01 I3=2649 

10 10 O0 11 O1 O1 

l0 l0 01 10 O1 10 

I4=2613 

15 = 2662 

Figure 1: Representative valence bond diagrams for benzene, their bit representation 
using two bits per site, and the integer Ik that encodes these correlated states with 
six r-electrons. The Kekuld diagrams I1 > and 12 > are covalent singlets, as is the 
Dewar diagram 13 >, with one electron at each site. Diagram 14 > is an ionic singlet, 
while 15 > is a covalent triplet. 
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spins at adjacent sites. They have np - 1 at all sites in molecules with N - N~. 

Such diagrams are called covalent and occur only in half-filled systems. The Dewar 

diagram 13 > is one of three singlets with spin-pairing between nonbonded carbons. 

Rumer and Pauling found the number of covalent singlets for even N = N~ and 

covalent doublets for odd N - N~. Diagrams such as 14 > with one or more empty 

(C +) or doubly-occupied (C-) sites are called ionic and are singlets by inspection 

when the np = 1 sites are spin-paired. The covalent triplet 15 > has parallel spins 

indicated by an arrow and has np = 1 for all n. Larger S can be represented by an 

arrow connecting 2S sites, and any number of np - 0 or 2 sites can be inserted[13]. 

The generalization of Rumer-Pauling rules for covalent singlets to arbitrary S and 

N r N~ is straightforward. 

These introductory remarks establish the connection between VB diagrams and 

quantum cell models. In principle, any eigenstate of (3) or (4) is a linear combination 

of spin-adapted diagrams. The order of the PPP, Hubbard and Hiickel Hamiltonian 

matrices are the same and they differ only in the diagonal matrix elements since 

the VB basis is diagonal both in the site energy terms and in the interaction terms. 

The many-electron basis increases a bit more slowly than 4 N for N orbitals, with 

significant but modest symmetry reductions. The large size of H is offset to some 

extent by the sparseness due to one-electron off-diagonal terms. The implementation 

of the VB basis for quantum cell models is summarized in the following sections, 

along with applications. The underlying idea of representing molecular states as 

linear combinations of VB diagrams dates back to Pauling and Eyring. So we are 

combining ideas from the dawn of quantum chemistry to discuss correlated states of 

molecular, polymeric and solid-state systems. Recent studies[14, 9] go beyond exci- 

tation energies to include nonlinear optical susceptibilities, magnetic susceptibilities, 

structural instabilities, charge and spin densities, and vibronic contributions. The 

necessary matrix elements over correlated states of quantum cell models can also be 

evaluated using VB methods. 

The Hfickel Hamiltonian matrix from (1) is of order N and its solution yield 
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N molecular orbitals that are linear combinations of the pz functions. The ground 

state is a Slater determinant obtained by assigning the N~ electrons in pairs to 

the lowest-energy M Os. Slater determinants are overwhelmingly used for molecu- 

lar computations. They describe independent electrons that, nowadays, move in 

self-consistent potentials. Slater determinants conserve Sz, but not S 2, and SCF 

potentials have well known limitations. The MO ground state of H2 yields H +, H- 

ions as well as neutral H atoms with increasing bond length or decreasing t(R). The 

Heitler-London function for H2 is surely the original covalent singlet, with paired 

electrons on two protons, and is a linear combination of two determinants. VB dia- 

grams with p spin-paired electrons at p pairs of different sites (each pair represented 

as a line), are linear combinations of 2 p Slater determinants with fixed phases. Such 

phase relations and the nonorthogonality of VB diagrams hindered early attempts 

in which diagrams were expanded as Slater determinants. We work instead directly 

in the Hilbert space of VB diagrams to obtain correlated states and only resort to 

determinants for computing matrix elements. As emphasized in textbooks for H2, 

the MO theory plus full configuration interaction (CI) is equivalent to VB theory 

with all covalent and all ionic diagrams. Quantum cell models with a large but finite 

basis can be solved exactly either way. 

The review is organized as follows. Given the scarcity of VB treatments, we 

start with their general applicability to quantum cell models such as (4). The 

VB basis in Section 2 is introduced for covalent diagrams that are appropriate for 

Heisenberg spin exchange in insulators and then generalized to ionic and covalent 

diagrams that apply to many-fermion problems. We comment on the dimensions 

of the basis and on symmetry adaptation. The eigenvalue problem is presented in 

Section 3 for sparse unsymmetric matrices and solved iteratively. Matrix elements 

over correlated states are found separately for observables that contain number 

and spin operators. The dynamical properties in Section 4 are based on correction 

vectors that are illustrated by linear and nonlinear responses to applied electric and 

magnetic fields. Section 5 summarizes VB results for 7r-Tr* excitations of conjugated 

hydrocarbons using P PP theory, including such familiar examples as naphthalene, 
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anthracene, polyenes, stilbene, and pyrene. Recent modeling of ring currents in 

annulenes illustrates the contrasting goal of molecular and extended systems. The 

electronic structure of conjugated polymers has been intensively studied over the 

past two decades. We comment in Section 6 of correlation effects such as spin- 

charge separation, fluorescence and vibronic coupling. In Section 7 we discuss VB 

applications to organic donors and acceptors whose lowest electronic excitation is 

a charge-transfer (CT) state. Neutral-ionic or valence transitions in CT salts are 

typically described by a modified Hubbard model with three state per site. Related 

models for chains of S - 1 spins or Kondo chains in Section 8 with localized spins 

and delocalized electrons are other examples of specialized VB bases. We comment 

in Section 9 on VB applications to organic ferromagnetism. Quantum cell models 

provide a flexible approach to correlated electronic states and extended systems, 

while VB diagrams provide for easy visualization. 

2 T h e  V B  bas i s  

The dimension of the Fock space grows as 4 N for a system with N orbitals, since 

each orbital can be empty, doubly occupied or singly occupied with spin a or/3. 

The Hilbert space of quantum cell models with N~ electrons, total spin S and z- 

component Ms is a projection of the Fock space. Slater determinants with a spin- 

orbital basis automatically conserve N~ and Ms. The construction of spin adapted 

functions (SAFs) with fixed S is a longstanding problem in theoretical chemistry[15, 

16, 17]. Working with SAFs has the advantages of reducing the size of the basis 

and of knowing the spin multiplicity for comparisons with experiment. Several 

methods for constructing SAFs have been proposed. LSwdin's approach[15] is based 

on projection operators to eliminate undesired spin states. Either the symmetric[16] 

or the unitary[17] group can be used to obtain SAFs. These techniques are equivalent 

and yield an orthonormal basis of SAFs. They share the drawback of functions whose 

chemical meaning is not transparent for nonspecialists. 

The VB technique[18] of constructing SAFs is simple in comparison and directly 
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based on familiar chemical structures. The main limitation is that VB diagrams 

are not orthogonal even for an orthonormal orbital basis. This technical problem 

turns out not to be serious, while the chemical transparency of VB diagrams and the 

sparseness of matrices in the nonorthogonal basis actually proves to be advantageous. 

We discuss first the VB basis of covalent diagrams for systems with N - N~. 

The physical situation is large U/It  I > 0 in (3), which gives a large energy cost 

for two electrons on any site. Low-energy states with n p -  1 for all p retain a 

spin degree of freedom. There are 2 N spin or covalent states with S ranging from 

0 to N/2 for even N. Antiferromagnetic (AF) Heisenberg exchange, J - 2t2/U, 

stabilizes singlets through admixture with virtual states with an empty and doubly- 

occupied site that are not accessible to parallel spins. There are many realizations of 

s = 1/2 systems[Ill: clusters, chains, ladders, or lattices in two or three dimensions 

with interactions Jgp- ~q between neighbors p and q. All spin states can rigorously 

be represented by covalent diagrams with fixed S. For N - 2n, we clearly have 

(2n)!/(n! n!) state with M s  - 0 and n spins ~, n spins ~. The number of S = 0 

diagrams is (n + 1) times smaller according to Rumer's formula[19], 

N! 
_ s ) , (  (5)  P s ( N )  -- (2S + 1)(V �9 Y + S + 1)! 

which gives the number of states with a given S from N spins. This formula is easily 

derived as the difference in number of states with Ms - S and M s  - (S + 1). The 

two Kekul~ and three Dewar diagrams in Fig. 1 are the covalent singlets for N - 6, 

and the other 15 covalent states with M s  = 0 have S > 0. 

To construct covalent singlets for N - 2n, we take a regular polygon with 2n 

vertices and draw n lines connecting any two vertices. Each diagram corresponds to 

spin-pairing the connected vertices. The Rumer-Pauling rules show that the number 

of diagrams without any intersecting lines (legal diagrams) gives the number of 

singlets and that diagrams with intersecting lines (illegal diagrams) can be expanded 

in terms of legal diagrams. These and related rules can readily be derived by using 

second quantization. Covalent diagrams contain N-fold products of h+a in which p 

is never repeated. 
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In practice, a computer generates, manipulates and stores VB diagrams[13]. The 

scheme for covalent singlets is very simple, thanks to the non-crossing rule. We as- 

sociate a bit with each of N = 2n vertices of the polygon, which are numbered 

consecutively. The n lines of a legal diagram are encoded by setting the state of the 

bits as "1" and "0" for the lower and higher-numbered vertex, respectively. Each 

covalent singlet becomes a 2n-digit binary integer with n bits "0" and n bits "1". 

The association is in fact unique if we decipher the bit pattern of the integer from 

the inside out, much like expanding an algebraic expression with multiple paren- 

theses. Covalent diagrams are generated on a computer by checking whether 2n-bit 

patterns satisfy the criteria for the desired S. Diagrams with S > 1 contain an arrow 

connecting 2S sites with parallel spins and ( n - S )  lines for paired spins. We take 2S 

more bits "1" than "0", draw lines as before for paired spins, and associate the arrow 

with the remaining vertices "1", which are not adjacent in general. The special case 

S = 1/2 is handled with a phantom site and (n + 1) lines. The non-crossing rule 

for legal diagrams thus yields the complete, linearly independent basis of covalent 

VB diagrams with any S. The phase information for 2 n Slater determinants for 

singlets is preserved by the 2n bits. Moreover, the association of diagrams with 

integers yields ordered sequences that greatly facilitate searching operation involved 

in setting up the Hamiltonian matrix as well as in manipulations of the eigenstates 

of the Hamiltonian. 

Covalent diagrams illustrate the salient features of the VB basis. The general- 

ization to fermionic systems with np = 0 or 2 sites is straightforward. When ionic 

diagrams are included, we first consider how many ways N~ electrons can be dis- 

tributed in N orbitals and then pair up np - 1 sites as before. Legal diagrams have 

no crossing lines. A bit representation is again possible, now with two bits for each 

of the N sites. We use "00" and "11" for empty and doubly-occupied sites, respec- 

tively, and "10" and "01" for the lower and higher-numbered vertex of lines that 

represent spin-paired sites. The bit representation of VB diagrams is illustrated in 

Fig. 1. The correspondence between VB diagrams with fixed S and 2N-bit binary 

integers is again unique. The integers Ik fully encode these six-electron functions. 
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With increasing basis size, VB diagrams are efficiently generated by manipulating 

the bits directly to generate only legal diagrams. Rapid generation of 10 s diagrams 

is now routine with a workstation. 

The Weyl formula gives the dimensions Ps(N, N~) of the basis for N orbitals 

with N~ electrons and total spin S, 

Ps(N, we) N -+- 1 �89 ~,N-�89 (6) 

in terms of binomial coefficients. This formula is also obtained in a manner similar 

to the Rumer's formula[19], as a difference in the number of Slater determinants 

with Ms - S and those with Ms - S + 1. This can be easily calculated since N 

spin-orbitals are made up of N a-spin orbitals and N fl-spin orbitals. The number 

of Slater determinants with Ms is then given by 

N! N! 
PMs(N, Ne) = ( N -  N~)!N~! " ( g -  N~)!N~!" (7) 

N~ (N~) are the number of ~ (fl) spin electrons that make up Ne - N~ + N~ and 

Ms=g~-g~.  

The general result provides a check on diagram generation. Ps(N, N~) is the 

order of H, the Hamiltonian matrix in the many-  electron basis, for any model that 

conserves S and has no additional symmetry. The eigenstates of H are consequently 

model exact and correspond formally to CI to all orders. We clearly require finite 

N and hence a large but finite active space. On the other hand, choices in (3) or 

(4) about transfer between bonded sites or two-center interactions are incidental. 

The order of H remains Ps(N, N~) in general, but approximations yield sparser 

matrices that are easier to generate. The Hiickel limit, for example, has the same 

order and constant diagonal elements for alternant hydrocarbons. The VB solution 

is enormously more complicated than the conventional MO treatment and the latter 

serves as a check on the VB method. But the VB solution does not become more 

difficult for interacting models (with diagonal interactions in real space as in the PPP 

model), where it is far more convenient than CI to all orders in a conventional Slater- 

determinantal basis with MOs as one-electron functions. The VB treatment that 
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will be discussed here is equally applicable to configuration interaction calculations 

that can be carried out in the MO basis with spin symmetry adaptation. In this 

case, however, we would lose the advantage of the interaction part of the models 

being diagonal in the basis[20]. 

We exploit the real space representation of VB diagrams to construct spatial 

symmetry adapted linear combination of VB diagrams. Linear combinations of two 

Kekul~ or three Dewar structures of benzene in Fig. 1 are readily found for D6h 
symmetry. The restriction to finite N implies that the system belongs to a point 

group. Spatial symmetry adaptation further reduce the dimensions Ps(N, N~) of the 

full basis. Although there is no general result, a group G of order g yields irreducible 

representations F whose dimensions satisfy 
g g 

Ps(N, g~) = ~ Dr(S, N, N~) ~, ~ D~(r). (8) 
F - - 1  m r = l  

The estimate Dr(S, N, N~) ..~ Ps(Y, N~)/g can be confirmed directly by generating 

the symmetry-adapted VB basis. The general problem of constructing symmetry 

adapted VB functions is that a group operation/~, often transforms a legal diagram 

into an illegal diagram. While the expansion of any illegal diagram in terms of legal 

diagrams is easy, visual symmetry relations are no longer self-evident. 

The first step in the general problem[18] of constructing spatial - symmetry 

adapted linear combinations of VB diagrams is to break up the total spin space 

for a given S, N, N~ into disjoint invariant subspaces D,~(S, N, N~). The subspace 

DIn(S, N, N~) contains [k > and all diagrams [k' > generated by repeated applica- 

tions of all symmetry operations Rj of the group on these diagrams. The symmetry 

operations of the group can now be expressed as matrices in the legal VB basis of 

the disjoint invariant subspace D,~(S,N, Ne). The subspaces Dm(S,Y, N~) in (8) 

are far smaller in general than Dr (S, N, N~). The order of D,~ (S, N, N~) is not fixed 

by G, however, but depends on which sites are interchanged by/~.. Hence systems 

with identical G, N and Ne may have different invariant subspaces[21]. Systems 

with the largest number of subspaces have the smallest matrices Dm (S, N, Ne) and 

are the easiest to symmetry adapt. The projection operator for a given irreducible 
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representation is 

g 

= (9)  
i = 1  

where X(F, R/) is the character under the group operation /~i in the irreducible 

representation F. The linearly independent set of symmetry adapted VB functions 

can be obtained from the projected states in the invariant space either by brute force 

using Gram-Schmidt orthonormalization or by devising rules[18, 21] for recognizing 

linear independence among a group of linear combinations of VB functions, which 

allow weeding out dependent states just by inspection. This procedure when applied 

to all disjoint invariant subspaces yields the symmetry adapted VB functions for the 

full space Ps ( N, N~ ) . 

Linear systems such as trans-polyenes in Fig. 2 are particularly simple, since 

inversion amounts to reading a legal diagram backwards and thus relates pairs of 

diagrams ]k > and 51k >= ]k' >. 

The inversion operation does not produce illegal VB diagrams. The electron- 

hole (e-h) symmetry[22] operator J of half-filled models of alternant ~r-conjugated 

hydrocarbons also relates pairs Ik > and JIk >= ein~lk' >, with n p =  0 and 2 sites 

in ]k > interchanged to obtain Ik' >. In the phase factor e in*, rl is the sum of the 

number of doubly occupied sites and the number of singly occupied sites on one 

of the two sublattices (starred or unstarred) of the bipartite system. Again, the 

operator J also does not produce illegal VB diagrams. 

The conjugated systems in Fig. 2 have inversion and e-h symmetry. The acenes 

are the prototypical systems of molecular exciton theory[23]. The photophysics of 

stilbene and polyparaphenylene vinylene (PPV) have been extensively studied[14], 

separately at first and together since the preparation[24] of light-emitting diodes 

based on PPV. Pyrene and perylene appear in many contexts, while the polydiacet- 
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acenes (n=0,1,2,3) polythiophc1~ (PT) 

1 
> 

rylenes, polyperinapthalene (PPN) 
polyparaphenylenevinylene (PPV) 

stilbene 

pyrene polysilanes 

Figure 2: Planar r-systems of representative conjugated molecules and polymers, 
and a-conjugated polysilanes. Polyenes, acenes and rylenes have variable length. 
Polydiacetylenes, polythiophenes, polyparaphenylenevinylenes and polysilanes give 
families with similar backbones and different nonconjugated side groups. 

ylenes (PDAs) are the only conjugated polymers available so far as single crystals[25]. 

Linear combinations of VB diagrams with inversion and e-h symmetry can be done 

by inspection. Additional symmetry in D2h requires invariant subspaces and careful 

analysis. VB diagrams and their bit representation provides a general approach 

to any quantum cell model with point-group symmetry, but symmetry adapted 

linear combination of VB functions have only been found for a few systems with 

more than inversion and e-h symmetry. The symmetry adapted many-electron basis 
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still increases rapidly with N and the eigenvalue problem sets the limit on what is 

possible. 

3 The eigenvalue problem 

The Hiickel or one-electron Hamiltonian (1) describes electron transfers without 

spin flips and thus connects VB diagrams with fixed total spin, S. The remaining 

terms in the quantum cell models (3) or (4) are otherwise diagonal in the VB basis. 

More generally, two-electron operators such as exchange Kij produce off-diagonal 

elements[26] in the VB basis that can be treated in a similar way as the transfer 

terms. As originally suggested by Pauling[27] for conjugated molecules, we expand 

the wavefunction of quantum cell models in terms of normalized VB diagrams 

ir = ~ Ck[k > (10) 
k 

The sum is over the" Ps(N,N~) diagrams and Ck is real. Normalization of 1r > 

requires care since the basis is nonorthogonal. Any two VB diagrams with different 

pairings or lines for identical charge distributions have nonzero overlaps that are 

found for any S by the island-counting method. 

Since the many-electron basis of quantum cell models is finite and complete, we 

have 

/:/[r > = ~ CkHkk, Ik' > = Er ~ C~[k > (11) 
kk' k 

The matrix elements Hkk, follow directly from (1) and correspond to directional 

cosines in a vector space. Transfers between adjacent sites < pq > are proportional 

to tpq. The local structure of VB diagrams limits the outcome to possibilities for H~k, 

that can readily be enumerated[13]. Spin problems in the covalent basis have even 

simpler[28] Hkk,. The matrix H is not symmetric when the basis is not orthogonal, 

but it is extremely sparse. This follows because N sites yield about N bonds and 

each transfer integral gives at most two diagrams. There are consequently ,,~ 2N 

off-diagonal Hkk, in matrices of order ~ Ps(N, N~)/4 for systems with inversion and 
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e-h symmetry. We exploit sparse-matrix methods to obtain the lowest eigenvalues 

in a given symmetry, as summarized below. 

The textbook approach to eigenvalue problems is to express Hij in an orthonor- 

mal basis. Linear equations such as (11) then yield secular determinants on multi- 

plying by I k t > from the left and integrating. The impulse to obtain a symmetric 

secular determinant must be resisted for the nonorthogonal VB basis since this leads 

to a generalized eigenvalue problem 7/X - ASX with overlap matrix S. Sparseness 

is completely lost in the case of covalent or spin problems for an orthogonal basis and 

is considerably reduced in general. The keys to solving (11) are to work with non- 

symmetric Hkk, and to avoid overlap while finding a specified number of eigenvalues. 

Rettrup[29] extended Davidson's efficient coordinate- relaxation algorithm[30] for 

the eigenvalues of sparse symmetric matrices to nonsymmetric ones. We summa- 

rize below Rettrup's small-matrix algorithm that we have extensively used for VB 

treatments of quantum cell models. 

The storage of large matrices such as H is a problem. We take advantage[31] of 

sparseness and of the small number of model parameters. Hubbard models usually 

have a single U/t. Site energies or interactions Vn,~ appear in PPP models, as 

indicated in (4). In practice, we have fewer than a thousand distinct elements, and 

this fact can be used to advantage from both accuracy and storage view points. We 

create a list of finite matrix elements and in the variable corresponding to the column 

address of the element, we reserve ten bits for storing the address of the value of 

the matrix element and the remaining bits for storing the column index. This way 

of storing both the value and the column index in a single 4-byte integer holds up 

to matrices of ~ 8 • 106 columns and ~ 103 distinct elements. We avoid storing the 

row index of each element by grouping the nonzero elements by their row index and 

keeping track of the number of nonzero elements in each row. Such compact storage 

methods are essential for solving large systems on modern workstations. 

We seldom need the full spectrum in CI calculations, since most experiments 

probe only a few electronic states. Rettrup's method[29] is well suited for the low- 



551 

est few (,.~ 5 to 10) eigenstates of nonsymmetric matrices and follows Davidson's 

approach to symmetric matrices[30]. They are similar in spirit to the Lanczos algo- 

rithm, which relies on a small matrix and iteration. The order of the small matrix 

that  represents the full problem is augmented in each iteration until convergence is 

achieved for the desired low-lying eigenstate. Davidson augments the subspace in 

which the small-matrix is set up, by using the component of the coordinate relax- 

ation vector which is orthogonal to the subspace of the small-matrix at the previous 

iteration. The coordinate relaxation vector is the steepest descent correction to the 

eigenvector at any given iteration. 

Ramasesha and coworkers[32] applied the Rettrup algorithm to solve (11) for ei- 

ther the ground state in each symmetry subspace or several of the lowest eigenstates. 

One starts with a set of m orthogonal vectors {Qi " i - 1, ..., m} and constructs a 

small matrix h such that, hij - ((~i, H(~j). This small matrix h is diagonalized 

using standard library routines for exact diagonalization (in core). The eigenvectors 

5'k (m) of h are arranged in ascending order of eigenvalues e (m). The corresponding 

approximate eigenvectors of the large matrix are given by, 
m 

i,t Q i  (12) 
i=1 

where ~(m) is the i th component of the 1 th eigenvector ~ (m) If we are interested in ~i,l 

the 1 th eigenvalue, we construct i th component of correction vector/~(m) as, 

R (-~) (la) 

Here R (m) is the i th component of the residue vector for the 1 th eigenvalue, i,l 

/~}m) _ (H - ~'~)I)6} "~) (14) 

The initial space is now augmented with a normalized vector Qm+l obtained from 

Gramm-Schmidt orthonormalization of/~(m) to the set of vectors {(~i" i --- 1, ..., m}, 

i.e., 

Q,~+I = IIQ~+~II ' Q'~+z = - k:~~(5('~) ( ~ ) 5 ~  (15) 
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This procedure is iterated until no component of the residue vector is greater than 

a certain threshold. When the augmented matrix h reaches a large dimension, M 

30, the procedure can be restarted by choosing m eigenvectors ~M), ~(2M).. ~(mM ) 
with lowest eigenvalues as the basis {Qi}. The initial choice {Qi } can be made on the 

basis of the diagonal elements of H. We could set the component of Q corresponding 

to the lowest diagonal element to unity, with other components being some small 

number ~ 10 -3 to obtain Q1. Choosing the second lowest diagonal element could 

give Q2 and so on. 

The iterative solution of (11) yields eigenvalues and eigenfunctions whose nor- 
i 

malization leads to 

1 = < r 1 6 2  = ~ CkCk, Skk, (16) 
k k  ~ 

The coefficients Ck are real and Skk' = <  k[k ~ > is the overlap of normalized VB 

diagrams with identical electron distributions {n j } .  Normalization illustrates the 

general problem of finding matrix elements between correlated states. We express 

an operator in second-quantized notation and consider exact eigenstates Ir > and 

IX > that may be in the same or different symmetry subspaces. The matrix elements 

Akk, of A are obtained as shown in (11) to give 

< XIA[r > =  ~ Cp Akk, Ck, Spk, (17) 
p , k , k  ~ 

where Cp are the coefficient in IX >. Normalization or matrix elements require 

a matrix multiplication that is prohibitive for large nonorthogonal bases in the 

millions. 

Fortunately, the VB basis is orthogonal in the charge variables for quantum cell 

models (3) or (4) in an orthonormal basis of Wannier functions [r >. The overlap 

matrix S is block diagonal, with each block containing diagrams with precisely the 

same electron distribution. We reorder[33] the diagrams so that the sums in (16) or 

(17) are confined to manageable blocks along the diagonal. The blocks are repeated 

many times, since each represents the covalent diagrams for 2p singly-occupied sites 
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for a distribution of N -  2p empty and doubly-occupied sites. Hence the Rumer- 

Pauling rules for covalent singlet diagrams suffice for S~:k,, 

s~, = ( -  1)~2 (~-~). (18) 

Here p is the number of lines in [k > or [k' >, 1 is the number of islands formed when 

the diagrams are superimposed as shown in Fig. 3, and m is the number of arrow 

reversals defined below. The overlap shown is between a Kekul~ diagram (dashed 

S 

2 

( - )  

3 "  % 

J 

8 

% 

4 5 

% 

" , 7  

( - )  

6 

Figure 3: Island counting for overlap integral of two valence bond diagrams. The 
superposition of two covalent singlets for N = N~ = 8 yields two islands. The 
associated phase factor ( -1 )  2 , since two arrows 2-3 and 6-7 need to be reversed. 

line) for N = N~ = 8 and a covalent singlet (solid line) with two long bonds; there 

are two islands. We associate an arrow with each singlet line [n n'] for spin-paired 

sites and take its direction to be from n to n' if n < n'. When [k > and [k' > are 

superimposed, two arrows appear at each site in an island. The phase m in (18) 

is the number of reversals needed so that  every site has either two heads or tails. 

Overlaps between triplet or other S > 0 diagrams require simple generalizations. 

Island counting is well suited for normalization or for matrix elements of spin- 

independent properties such as dipole moments, transition dipoles or charge-charge 
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correlation functions. Any operator that can be expressed exclusively through the 

number operators hp is diagonal in the VB basis and leads to simple overlaps. 

On the other hand, matrix elements for spin densities[34] or spin-spin correlation 

functions[35] are quite involved because the spin operators of sites connect VB di- 

agrams with different total S. New rules must consequently be developed[35] for 

determining the resultant when a combination of site-spin operators acts on VB 

diagrams. For example, when site j in a singlet Ik > has a line, the operation g~lk > 

yields a triplet Ik ~ > with parallel spins at j and the site to which it is connected. 
^ Z  ^ Z  Matrix elements of s js  i are frequently encountered and can be reduced to overlaps of 

^ Z  two triplets[36], one resulting from the operation of sj on the bra state and the other 

from the operation of g~ in the ket state. Nevertheless, the direct VB computation 

of spin dependent matrix elements is rather cumbersome. 

To circumvent this problem, we expand the eigenstate Ir > in terms of Slater 

determinants. As already noted, each spin-paired line in VB diagrams corresponds 

to two Slater determinants that, in turn, can be represented uniquely by binary 

integers and generated as an ordered sequence. A diagram with p lines yields 2 p 

determinants and, once converted to Slater determinants, matrix elements are simple 

because the basis is orthonormal. The procedure is general[37] and obviates the need 

for direct VB computation of matrix elements. It illustrates nicely the different 

priorities of the eigenvalue problem. VB diagrams I k > represented as an ordered 

sequence of binary integers allow one to set up, symmetry adapt and solve for 

the eigenstates of the sparse matrix H. A different ordering of diagrams yields 

matrix elements of spin-independent operators. Individual eigenstates in the VB 

basis are then transformed to the Slater determinant basis to obtain general matrix 

elements. Efficient computation of matrix elements of model-exact states has been 

as important as energies in diverse applications such as spin densities, polarization 

assignments, electroabsorption and nonlinear (NLO) optical spectra. 
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4 Dynamical properties of interacting models 

The dynamics of interacting electron systems pose major challenges. Linear re- 

sponses or susceptibilities must usually be approximated in extended systems of 

interacting fermions. In finite systems, responses are often estimated using a few 

low-lying eigenstates. The formal problem of applied electric or magnetic fields leads 

to a perturbation series and sums over states (SOS), as discussed extensively for 

NLO coefficients[38]. The complete spectrum of Hubbard, PPP or other correlated 

models is almost as inaccessible for large model systems as the exact wavefunctions 

of the corresponding molecules. As summarized below, model-exact responses for 

the ground state IG > can nevertheless be found using correction vectors. 

The Lanczos method has been widely applied to the dynamics in Hubbard and 

Heisenberg model Hamiltonians[39]. 

given by 

I(w) = - l I m [ <  GIO t 
7[ 

The spectral intensity for an operator O is 

1 OIG >] (19) 
(~ + go + i~-/ : / )  

where IG > is the ground state o f / t  with eigenvalue E0, w is the frequency of the 

response sought, and c is a life-time parameter. The Lanczos method for computing 

I(w) is through a continued fraction 

I(w) = -llm[ < GIOtOIG > b~ ] (2o1 

z - ao - h~ 
z - -  a l  - -  

Z -- a 2  --... 

where z = w + ie. The coefficients ai and bi are~ respectively~ the diagonal and off- 

diagonal elements of the L • L Lanczos small matrix that represents the Hamiltonian, 

/:/, of the system. The Lanczos scheme relies on the symmetric tridiagonal approx- 

imation to the Hamiltonian. Since L << Ps(N, N~), there is an implicit truncation 

of the Hilbert space that is akin to truncation in the SOS method. Approximate 

dynamic quantities are consequently obtained even for an exact IG >. 

Correction vectors[40], as introduced by Dirac[41], provide a model-exact ap- 

proach to dynamical NLO coefficients of Hubbard or PPP models with a large but 
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finite basis. The formal problem, given a known IG >, is to introduce the correction 

vector r through the inhomogeneous linear equation 

( / - t -  E o -  w -  ie)r (w) = -OIG > (21) 

The spectral function can be expressed as, 

I(w) = - l I m  < GlOtlr > (22) 
71" 

We regain SOS expressions by expanding r in the basis of the eigenstates of 

the Hamiltonian[40]. However, this difficult step is avoided by the direct solution 

of r from (21) in the VB basis. A single correction vector is inherently more 

accessible than many exact excited states, although it remains out of reach for 

extended interacting systems. The correction vector can be found in the same VB 

basis used for ]G >, since the dimensions of (21) with e = 0 are comparable to those 

of symmetry-adapted subspaces. Coordinate relaxation can be applied to (21) as 

shown below. 

In the context of NLO responses, we note that r and higher corrections 

provide a systematic analysis[40]. We choose (::) to be the jth component of the 

dipole displacement operator, /7- < GI~IG >, and solve (21) for r The 

frequency dependent polarizability tensor is 

a,j(w) = [< Glf~lr > + < a[ft, lr >1/4 

The correction vectors {r also suffices for the first hyperpolarizability, 

(23 )  

where the operator 15 permutes the pairs [-(wl + w2),i], [wl,j] and [w2, k]. The 

frequency-dependent responses of Hubbard or PPP models can be obtained rigor- 

ously this way. 

Higher-order NLO coefficients are given by higher-order correction vectors, start- 

ing with r w2). It satisfies the inhomogeneous linear equation 

_ S o  - = > (25) 

(24) 
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and can also be obtained in the large but finite VB basis. The second hyperpolar- 

izability is 

"Yijkl(wl,w2, wa) = t5 < r _ w2 -- wa)l/2jlr -- w2,--wl) > /24 (26) 

where now t5 is all permutations of [-(Wl +w2 +w3), i], [wl, j] and [w2, k],[w3, 1]. Suit- 

able choices of frequencies, in (26), including static fields, yield NLO coefficients for 

third harmonic generation, two-photon absorption, four-wave mixing and electroab- 

sorption. Linear polyenes and conjugated polymers frequently have large transition 

dipoles connecting ]G > to a few odd-parity singlets[42] that  in turn have strong 

dipole transitions to a small number of even-parity states. SOS expressions based 

on model-exact energies and transition moments of a few states and their vibron- 

ics are then more convenient for simulations of NLO spectral43]. Since correction 

vectors give the collective contribution of all excited states, we can readily assess 

the accuracy of using selected eigenstates. The correction vector technique is quite 

general and not limited to any particular method or model. It has been employed in 

obtaining NLO coefficients of semiempirical quantum chemical models as well as for 

correlated one-dimensional systems in different approximations such as the DMRG 

(density matrix renormalization group) method[44]. 

Aromatic ring currents[45, 46] or the charge stiffness[47] provide a related appli- 

cation of correction vectors, now associated with magnetic fields. Ring currents are 

the diamagnetic susceptibility of 4n+ 2 systems. The correction vector in monocycles 

is obtained from 

( t : / -  Eo)Ir (') > =   ,_lc > (27) 

ap+laapa ). The summation where t3_ is the velocity operator, i Epat(h+a a p + l a -  ^+ ^ 

is over all sites and cyclic boundary conditions are assumed. The susceptibility is 

proportional to the second-order correction to E0, 

E (2) = <  GI%lG > - 2  < G]~_]r (~) > (28) 

The first term is essentially the total 7r-electron bond order for bonded sites, since 

~)+ is the Hfickel model (1) for a ring with e = 0 and t - -1 between neighbors. 
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Correction vectors lead to inhomogeneous linear equations of the form As  - b' 

that involve sparse matrices in the VB representation. An iterative small ma- 

trix method gives rapid convergence using coordinate relaxation that resembles the 

Davidson algorithm for eigenvalues. We summarize the procedure here[48, 40]. We 

begin with a set of m orthonormal N-vectors {t~" i = 1 . . .  m} and construct ~0), 

the zeroth approximation to the true solution Z as, 

m 

= cj j. (29) 
j = l  

The matrix equation A~? = b can be rewritten, using the trial solution, as, 

m 

CjA j = (30) 
j = l  

From (30) we can construct a small matrix a such that, 

m 

a, i = (Q, ,AQj)  ; ~ C j  ( Q , , A Q i ) =  ( Q , , ~ .  (31) 
j = l  

Since the matrix a ('~) thus constructed is small enough to be inverted using con- 

ventional algorithms, the coefficients C~ and consequently x -'(~ can be obtained. 

Knowing ~0), the residue vector g0) defined as, 

go) = ~'_ Ax-.(o) (32) 

is determined. The vector ~0) is used as the trial solution in the Jacobi iteration 

scheme to obtain the correction vector ~(0) whose i th component is given by, 

~i = (r~~ (33) 

The correction vector c~ (~ is Schmidt orthogonalized with the basis set and the re- 

sultant is normalized. This new vector Q,~+I is used to augment the set {Qi}. The 

new basis, {Qi " i = 1 , . . . , m  + 1} is used to construct a new augmented small 

matrix a ('~+~). Inverting a ('~+~) gives x-<x) and this iterative procedure is continued 

until all components of the residue vector are found to be below a previously chosen 

threshold. If the set of vectors {Qi} becomes too large to handle, the procedure can 
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be restarted with m - 1 and taking (~1 as the most recent solution after normaliza- 

tion. The initial dimension m of the space of trial vectors {Q}, could also be just 

one with components Qi,1 proportional to bi/Aii, for nonzero Aii and zero otherwise. 

In contrast to the Lanczos method, correction vectors are not limited to tridiag- 

onal matrices and form a hierarchy for solving responses of any order. They make 

accessible the exact dynamics of finite models and within restricted configuration 

spaces, unlike techniques that rely on truncations over and above that imposed by 

the choice of configurations. In correction vector applications, it is important to 

exploit the system's full symmetry as this avoids spurious singularities in the lin- 

ear algebraic system of equations. Spin symmetry, for example, avoids singularities 

in (21) that would otherwise occur at frequencies corresponding to triplet excita- 

tions. VB theory in conjunction with correction vectors has afforded a powerful, 

efficient and exact way for computing the dynamic responses of systems with strong 

interactions that span a finite-dimensional Hilbert space. 

5 ~ - E l e c t r o n i c  s t r u c t u r e  o f  c o n j u g a t e d  m o l e c u l e s  

Conjugated hydrocarbons were synonymous with theoretical chemistry until advent 

of reliable all-electron computations, when molecules such as benzene became acces- 

sible to ab initio treatment. Pentacene and substituted perylenes are now considered 

to be "small molecules" in contrast to conjugated polymers. Direct analysis is pos- 

sible for most ground state and some excited state properties. Purely ~r -electronic 

models focus on quantities that are not easily calibrated, such as correlation effects, 

extended systems, and comparisons among conjugated systems. Since suitable mod- 

els must also reproduce ~r-lr* spectra, conjugated hydrocarbons provide a rich data 

base that, for example, unequivocally favors the Pariser-Parr-Pople (PPP) model 

over either Hfickel or Hubbard models. Molecular comparisons are an effective way 

to calibrate quantum cell models for extended systems, especially in conjugated sys- 

tems that evolve smoothly with size and typically saturate in the range of 50-100 

~r-electrons. 
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Conjugated hydrocarbons contain sp 2 carbons with similar bond lengths and 

occasionally some sp centers. A few phenomenological inputs then suffice in quantum 

cell models such as (4). "Standard" PPP parameters were obtained decades ago 

using bond lengths and linear absorption of small test molecules. Small (10%) 

parameter variations have been suggested since, but the robustness and predictive 

capabilities of a standard set far outweigh small improvements. These parameters 

have proved to be remarkably reliable[43, 13, 10] in entirely different contexts when 

combined with exact VB solutions. They hold for two-photon and NLO spectra of 

large hydrocarbons and conjugated polymers, as well as for oscillator strengths, spin 

densities, ring currents, electron-vibration coupling and other ~r-electronic features. 

Transferable PPP parameters for hydrocarbons stand in striking contrast to solid- 

state models. Hubbard, Heisenberg and related models are more broadly applicable, 

but parameters are chosen case by case. They address electronic correlations in 

narrow-band systems in general, while the PPP model describes a particular class 

of molecules in a predictive manner. 

The structure polycyclic hydrocarbons (eg. Fig. 2) is taken with benzene bond 

lengths R0 = 1.397A and bond angles 2~r/3. The Ohno formula[7] for Y(P~q) is 

7.1985 1 
V(P~q) = 14.397[ U2 + R~q] -~ (34) 

where distance is in A and energy in eV. V(P~q) interpolates between on-site re- 

pulsion U = l l.26eV, taken from atomic gas-phase data, and Coulomb interactions 

e2/R between distant carbon atoms. The PPP model (4) has Vpq = Y(P~q), transfer 

integrals t(R0) = -2.40eV between bonded sites in (1), and site energies ep = 0. 

Half-filled systems have electron-hole symmetry when there are no odd-membered 

rings. We typically find the lowest 2-5 eigenstates in each symmetry subspace, as 

this covers the available spectroscopic range. All eigenstates are explicitly given as 

linear combinations (10) of VB diagrams and can be used for calculating matrix 

elements. 

The naphthalene results[35] in Table 1 illustrate the scope and success of standard 

PPP parameters for a classic series of experiments[49, 50, 51]. N = Are = 10 



661 

yields 42 purely covalent singlet diagrams. There are about 20,000 singlets and 

30,000 triplets when ionic diagrams are included. The small oscillator strength 

of the 1B3u excitation, which is forbidden by electron-hole symmetry, is properly 

given for slightly different site energies at the fused carbons, e9 - el0 - -0.15eV. 

Although electron-hole symmetry is approximate for molecules, it has far reaching 

consequences that carry over into all-electron treatments. The location and large 

intensity of 1B2u are properly given, as are the fine structure constants and spin 

densities of the 3B2~ triplet. 

The VB basis for anthracene and pyrene is larger by two and three orders of 

magnitude, respectively. Linear 7r - 7r* spectra of these D2h molecules are polarized 

along the long (1B2~) and short (1B3~) axes. Two-photon transitions to XIAg and 

1Big differ in having parallel and perpendicular transition dipoles, respectively, to 

virtual odd-parity singlets. Assignment as lAg or 1Big is based on the relative inten- 

sities with parallel or circularly polarized light. The experimental[52] and PPP[21] 

excitation energies of pyrene in Table 2 reflect both energy and symmetry. The "+" 

superscript is the electron-hole index[22], which changes in dipole-allowed transi- 

tions to 1B~ or 1Ba~. The forbidden 1B+~ transition at 3.3 eV is in fact 400-fold 

weaker[53] than allowed transitions; as in the case of naphthalene, it becomes weakly 

allowed on breaking electron-hole symmetry by changing the site energies of fused 

carbons. The agreement in Table 2 is remarkable as it also reproduces the two- 

photon excitations in the lAg and 1Big subspaces. The only exception is the 4.535 

eV excitation that we assign as 1Big rather than lAg. These PPP excitations for 

pyrene are competitive with the state-of-the-art all-electron theory. 

Similarly good agreement with experiment is found for biphenyl[37], ith 12 pi 

electrons, anthracene[54] or trans-stilbene[55], with 14 7r-electrons. The even-parity 

singlets of anthracene are systematically reassigned to lower energy and show strong 

correlation effects. The bond order pr,~ of sites n and m in the model-exact eigen- 

state IX > is, 

1 0 E ( X )  = _ ~ < Xla~,,a~,, + a~,,an,~lX > (35) 
Or.,. 
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Table 1. Experimental and Pariser-Parr-Pople results tbr naphthalene[35]" AE is 

the 0-0 excitation energy, D and E are fine structure constants, p is the spin density, 

and f is the oscillator strength. 
State Property PPP Expt'. 

. . . .  

aB2~ , AE (eV) 2.522 2.64 

Fine Structure D (crn-') 0.1140 0.10121491 
E (cm-') -0.0063 -0.0141149] 

, Spin Density Pl 0.4060 0.438[49] 
P2 0.1164 0.125149] 
,,,J,~ -0.0451 -0.126[49] 

'B3,, AE (ev) 3.604 3.96[50] 
0.00063 o.ooo5[, o1 

' B:2t, AE (ev) 4.463 4.45151] 
f 0.2 29 0. 8[5 1 

t For site energy e = -0.1aeV at carbons 9 and 10. 

1 

9 2 

Table 2. Exact Pariser-Parr-Pople results[21] with standard parameters for the 

first three singlet excitations (in eV) of pyrene (Fig. 2) in D2h and electron-hole 

symmetry. In parenthesis, experimental excitations and assignments, from[52]. The 

ground state is 1 lAg. 

. q  . . . . . . . . . . .  

1 3.81 4.171 4 . 9 4 5  3 .755  3 .063  5.321 5 .396  4.524 
(3.468) (4.116) (4.550)(3.707)(3.339) (5.396) (4.535) 

2 4.911 4.239 6 . 9 4 3  5 .411 5 .180  6.282 --6.259 5.791 �9 
(5.155) (4.287) (5.145) 

3 5.551 5.412 7.324 6.379 5.503 6.789 6.977 6.584 
(5.777) (4.939) 
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Large Prim (1lAg) in the ground state indicate increased double-bond character and 

reduced bond lengths in the actual structure. Thus equal bond lengths and transfer 

integrals suffice for refinements that hardly change when t(R) is modulated according 

\ .  

Ap 
0.10 �9 Singlet 

# " ~ 
-Cherged 

: " Q04 
. . . . .  _ . 

o " " ; o , 

-0.04 ~ AR 

-0.10 

i i  

Figure 4: Correlation between Pariser-Parr-Pople bond orders (35), and Parameter 
Method 3 bond lengths of anthracene. AP is the bond-order change between the 
ground state and the singlet, triplet and charged states discussed in the text for the 
five distinct bonds of anthracene; AR is the corresponding bond-length change. The 
line has slope A P / A R  = -0.36[58]. 

to X-ray data. The bond orders for IX >=  l lB~,  13B+~ and llAg (diion) refer, 

respectively, to the lowest dipole-allowed singlet, the lowest triplet, and the ground 

state of the dianion or dication, whose bond orders are equal due to electron-hole 

symmetry. Since these are ground states in various subspaces, bond lengths can 

readily be calculated by conventional methods such as PM3 and changes AR from 

the I~Ag bond lengths are directly related to excited-state relaxation. The bond- 

order change, pn,~(X)-  pnm(l~Ag), are shown in Fig. 4 as a function of PM3 
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bond-length changes for the five distinct bonds of anthracene. 

The linear correlation with slope AR/Ap- --0.36 shows that PPP bond orders 

can be used for excited-state relaxation. The comparable graph of AR/Ap for 

trans-stilbene has a linear correlation with slope -0.25. Similarly, it is seen in 

biphenyl[37] that the lowest triplet state has a bond order pattern corresponding 

to the quinonoidal structure, implying a planar geometry in the triplet state in 

conformity with the prediction of Lewis and Kasha[56]. 

Planar hydrocarbons are certainly the most favorable applications of PPP mod- 

els. They highlight the fact that accurate excitation energies are possible using 

simple basis and exact solutions that correspond formally to CI to all order. Ta- 

ble 1 shows the range of accessible electronic properties, while Fig. 4 shows that 

1r-electrons account for excited-state relaxation in the conjugation plane. Polyenes 

have partial single and double bonds of 1.35 and 1.45/~, respectively, and transfer 

integrals of t 0 (1 -  5) and t0(1 + 5) with 5 = 0.07 in the PPP model. Gas-phase[57] 

and matrix[58] studies have provided accurate one and two-photon spectra up to 8 

double bonds, as given in Table 3. Contrary to the expectations of single-particle 

theory, even at the Hartree-Fock level, the even-parity 2 lAg state is below the intense 

odd-parity llB~ state. This paradigm of electron-electron correlations has conse- 

quently been extensively studied, notably by Kohler's group. As seen in Table 3, 

standard P PP parameters and exact correlated states account for these excitations. 

The constraints of standard structures and parameters based on small molecules 

are now evident. Slightly smaller alternation, bandwidth and Coulomb interactions 

would improve the description of large molecules. 

Hiickel theory confers special stability and diamagnetism to 4n + 2 systems, as 

recognized by London[59]. Half-filled systems have the largest ring currents, since 

all bonding orbitals are filled and antibonding orbitals are empty. Annulenes with 

4 _< n _< 6 are large enough to form tetraanions whose ring currents[60] are distinctly 

larger than in the neutral molecule. The observed ring currents are in accord with 

PPP theory[45, 46, 47] and reflect electron-electron correlations. As seen from (5), 
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the VB basis for N = Ne - 18 has over 108 singlets that contain more than 2.3 • 109 

Slater determinants with Sz - 0. 

Table 3. One and two-photon thresholds (in eV) of trans-polyenes, CnHn+2, in 

alkane matrices[58] and in the Pariser-Parr-Pople model[21]. The solid-state shift of 

0.40eV of the ionic lIB,- state yields gas-phase values up to n - 12; covalent 21A + 

shifts of ~ 0.05eV are neglected. 

matrix PPP m a t r i x + 0 . 4 0  PPP 
n 21A + 21A + llB~ - llB~ - 

.q 

16 2.216 2.835 3.223 3.698 
14 2.437 2.962 3.388 3.831 
12 2.683 3.137 3.677 4.001 
10 3.10 a 3.391 3.998 4.234 
8 3.541 3.775 4.380 4.561 

a Gas phase[57] 

The idealized DIs symmetry reduces the basis to manageable blocks of ~ 6 x 106 

symmetry-adapted diagrams[47]. The PPP model (4) has equal bonds of length 

R0, uniform transfer integrals t(Ro), and Ohno potential V(R) based on a regular 

polygon. Figure 5 shows exact ring currents of 4n + 2 annulenes as a function of 

z = U/4to, the ratio of on-site correlations to the bandwidth. The Hiickel (z = 

0) diamagnetism increases linearly with the ring size. The PPP result for U - 

ll .26eV is the doted line z - 1.17, where N -- 18 hardly exceeds N = 14. Stronger 

correlations (larger z) shows decreasing ring currents with increasing size. Covalent 

diagrams increasingly dominate in the ground state for U >> 4t0 and such diagrams 

cannot support charge flow. 

Experimental ring currents[60] are associated with the anisotropy of 1H shifts 

at protons pointing inside and outside the annulene. The virtually equal shifts of 

13.78 and 13.46 ppm in 14 and 18 annulenes clearly support the PPP results in Fig. 

5, which also rationalize the decreasing shifts of 10.03 and 6.41 ppm for 22 and 26 

annulenes. Moreover, the PPP ring current[47] of the anion [18] -4 is 1.49 times that 

of neutral [18], while the measured 1H shift increases 1.57 times[60]. In general, 

the identification of ring currents in conjugated molecules requires careful atten- 
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tion to contributions from all other sources to chemical shifts. Accurate molecular 

wavefunctions[61] are required for local contributions. 

In the context of solid-state models, on the other hand, ring currents correspond 

to the charge stiffness introduced by Kohn[62] to distinguish between conductors 

and insulators. Exact analysis[63] of the infinite Hubbard chain (only on-site inter- 

actions, U > 0), yields an insulator with vanishing ring current. Although there 

are no exact results for an infinite PPP chain, its electron-hole symmetry leads to 

the same conclusion. We expect that Fig. 5 becomes a delta function at z -- 0 as 

N ---+ c~. This counterintuitive result has its roots in Hiickel's 4n, 4n + 2 rule. 

The orbital degeneracy of 4n rings leads to paramagnetic ring currents flowing in 

the opposite direction. Although ring currents or stabilization that alternates be- 

tween 4n and 4n + 2 is perfectly sensible in small molecules, they cannot persist in 

extended systems that are insulators and Coulomb interactions suppress aromatic 

stabilization in large annulenes. Bond length alternation is a closely related prob- 

lem. The Jahn-Teller instability of 4n rings is due to orbital degeneracy, while 4n + 2 

rings have nondegenerate ground state. Thus cyclobutadiene distorts and benzene 

does not. The orbital spacing decreases with ring size, however, and bond-length 

alternation always wins at large N, as recognized by Longuet-Higgins and Salem[64] 

for polyenes and more generally by Peierls[65] for one-dimensional metals. In all- 

electron theory[66], the crossover from uniform bond lengths to partial single and 

double bonds in annulenes occurs in the same range of about 50 Iv-electrons found 

in simple models. 

6 Conjugated Polymers 

The synthesis and characterization of polyacetylene (PA) provided new incentive 

for understanding r-electronic spectra, electron-phonon interactions and electronic 

correlations[l, 2, 14]. The electrical conductivity of chemically doped PA rivals 

that of metals. Families in Fig. 2 such as polydiacetylenes (PDAs), polythiophenes 

(PTs), a-conjugated polysilane (PSs) and polyparaphenylene vinylene (PPVs), among 
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Figure 5: Diamagnetic rings currents, N x ( z ) ,  of half-filled Pariser-Parr-Pople models 
for regular polygons with DNh symmetry. The dashed line at z - U/4[to[ - 1.17 
corresponds to standard parameters; z - 0 is the H/ickel limit of free electrons, while 
z >> 1 is the strong-correlation limit of antiferromagnetic Heisenberg spin chain with 
vanishing ring currents[50]. 

others, have provided new opportunities based on large NLO responses, on appli- 

cations as thin-film transistors[67], and above all as organic light-emitting diodes 

(OLED). Molecules such as a-sexithiophene (a-6T), perylenetetracarboxylic acid 

dianhydride (PTCDA), or tris(8-hydroxy-quinoline)aluminum (Alq3), also make ex- 

cellent OLEDs[6S]. Recent studies on vapor-grown acenes[69], notably pentacene 

and tetracene, have produced an organic injection laser and high enough mobility 

at low temperature to observe superconductivity and the fractional quantum Hall 

effect. A great deal of work has been done and even more is in progress. Our interest 

here is limited to quantum cell models. 

Conjugated polymers and organic molecular crystals or thin films are extended 

systems whose electronic structure is beyond direct ab in i t io  theory, although many 

valuable treatments of oligomers have been reported. Simple models are advanta- 
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geous for extended systems for purely computational reasons. More importantly, 

however, models focus on key physical aspects and thus unite polymers, complexes, 

and crystals whose chemistry is entirely different. Molecular PPP parameters, for 

example, are quite suitable for conjugated polymers; this focuses attention to the 

relevant sector of parameter space and makes possible predictions for any backbone. 

Model-exact results for oligomers completely avoid the problem of size consistency 

in NLO applications, which currently limit the self-consistent treatment of large 

systems to first order. The price, of course, is the necessity of extrapolating from 

oligomers to infinite systems. 

The l lB~ and 2lAg excitation energies in Table 3 decrease as 1/N and extrapo- 

late sensibly to PA excitations whose widths are about ,,~ 0.2eV. The limited agree- 

ment for finite systems is sufficient for polymer spectra of amorphous films. These 

excitations of pristine chains clearly require correlations just to get the proper order 

of one and two-photon thresholds. The successes of the Su-Schrieffer-Heeger (SSH) 

model[70, 1] of electron-phonon coupling in Hiickel chains, on the other hand, are 

for chains in which chemical doping or photoexcitation produces new excitations 

below the optical gap (below llB~). Solitons, polarons and bipolarons account for 

the number and approximate energies of these gap states in many polymers. Their 

precise location or vibronic structure is not known accurately. Detailed comparisons 

consequently await both experimental and theoretical advances. 

Ring currents in Fig. 4 illustrate extrapolations whose convergence is far from 

obvious. Many simple models such as 4n and 4n + 2 Hfickel rings or various spin 

chains can be used to demonstrate slow or problematic convergence with increasing 

length. These are mathematical challenges for models. Physical considerations of- 

ten provide guidance that, however, need not be decisive. Recent debates[71] about 

band or exciton theory or binding energies or the roles of interchain interactions or 

electron-phonon versus electron-electron models reflect the difficulties of extended 

systems and of low-resolution spectra. Such discussions rely on quantum cell mod- 

els to pose questions precisely and to illustrate specific consequences of extended 
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interacting systems. 

As noted above, exact solution[72] of the infinite Hubbard chain with uniform 

transfer integrals shows the ground state to be an insulator for any U > 0. Hence 

we have E(llB~) :> 0 for arbitrarily small on-site repulsion. But the excitation 

threshold of triplets or of even-parity singlets, E(21Ag), rigorously vanishes[72] for 

arbitrarily large U. The electron-hole symmetry of Hubbard and PPP models en- 

sures similar thresholds[73] in regular PPP chains, although E(llB~) > 0 is not 

known for the infinite chain. The conjugated backbones of polymers have unequal 

bond lengths. PA has alternating single and double bonds, as in polyenes (5 = 

0.07), while PDAs and PTs have four t's per unit cell. The a-conjugated backbone 

of PS (Fig. 2) is alternating with larger ~ due to inter and intra-atomic overlaps. A 

PPP model with U for Si in (34) now accounts[74] for low-energy excitations and 

illustrates similarities between polymer families that at chemically quite different. 

The PPV backbone requires at least six t's per repeat unit; there is increased al- 

ternation at bridgehead carbons, where tv/2 follows from the topology[75]. In all 

these polymers, alternation opens gaps in the spectrum of triplets and even-parity 

singlets. The gaps are tiny for U :>>to, when these states correspond to spin excita- 

tions of Heisenberg antiferromagnetic chains, and substantial for U < to, where the 

single-particle gap of 4to5 is the threshold for all excitations. 

Spin-charge separation with increasing U has been extensively discussed in Hub- 

bard models, which indeed were introduced to study the formation of local moments 

with increasing U/to. The infinite chain with equal transfer integrals is strongly cor- 

related for U > 0 and such reasoning has been applied to conjugated polymers. 

Alternation produces a qualitative change, since finite U is now required for strong 

correlations. We have comparable correlations in polymers with variable backbones 

and single-particle gaps[73]. Theorists usually turn on correlations in noninteract- 

ing models rather than vary 4t0~ at fixed U, but the two procedures are completely 

equivalent and ~-conjugated polymers illustrate variable 5 at fixed U and to. 
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Figure 6: Band-to-correlated crossover based on E(11B~) = 2E(13B~) of N-site 
Hubbard chains with alternating transfer integrals t+ - t0(1 + 5). The U - 0 and 
2t+ points are exact for the infinite chain and dimers, respectively. The dashed 
Uc(5) line is based on perturbation theory at large 5 and (inset) separate estimates 
of the singlet and triplet thresholds at small 5[80]. 

We can estimate correlations in polymers with centrosymmetric backbones by 

comparing the relative energies of E(llB~) and E(21A9) ,,~ 2E(13B~). The one- 

photon excitation is lower for weak correlations. The two-photon excitation is lower 

for strong correlations and 21Aa can be viewed as two odd-parity triplets with to- 

tal spin zero. Fig. 6 shows the (U/to, 5) values for Hubbard chains[76] at which 

E(llB~) = 2 E(13B~). The dashed line is the extrapolation to infinite chains. 

It necessarily passes through the origin, where it can be estimated analytically as 

shown in the inset. All low-energy excitations of the infinite chain can be obtained 

near 5 - 1 by perturbation theory in dimers[77] and rapid convergence with N is 
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both expected and seen at large alternation. The line E(llB~) - 2E(13B~) and a 

similar line E(llB~) -- E(21Aa) represent excited-state crossovers in models with 

centrosymmetric backbones. An excited-state crossover is a simple general result 

with direct physical implications: Since l lB~ is dipole allowed and fluorescence is 

usually from the lowest singlet, fluorescent polymers[75] have E(llB~) < E(21Ag) 

and exhibit intermediate correlations. This has proved to be the case. PS, PPV 

and PT in Fig. 2 are families whose fluorescence can be modulated by the choice 

substituents or morphology, while PA, polyenes and PDAs emit orders of magnitude 

more weakly (from 2lAg in the case of polyenes[78]) at cryogenic temperatures. 

The PPP model yields E(llB~) - 2E(13B~) curves and extrapolations similar 

to Fig. 5. Since there are no new parameters, the model predicts fluorescence 

and agrees with experiment. In oligomers[79], the relative energies of E(llB~) and 

E(21Ag) are almost independent of N at alternation 6 --- 0.20, which in fact is 

a typical value in polymers. The two-photon state is slightly lower in P DAs and 

slightly higher in PTs or P PVs. The weak N dependence is clearly fortuitous for 

extrapolations. 

The Taylor expansion of t(R) about R0, the benzene bond length, gives the lin- 

ear coupling ~ - t'(Ro) in first order and t"(R0) in second order. Solid-state models 

for polarons or excitons typically consider linear coupling, which in harmonic lat- 

tices leads to displaced harmonic oscillators with unchanged frequencies. The SSH 

model[l] has a ~ 5eV/74. The t"(R0) term is clearly required[80] to interpret the 

Raman spectra of PA and follows for wavefunctions that decay exponentially, but 

is difficult to incorporate into models. An accurate force field is required and has 

been obtained for PA and its isotopes [43]. The effective conjugation coordinate[S1] 

of conjugated polymers and infrared active vibrational (IRAV) modes[S2] have been 

extensively studied using quantum cell models. The P PP potential also has correc- 

tions in V'(R0) for the distance dependence of Coulomb interactions[83]. Vibronic 

contributions[43] improve markedly the modeling of NLO spectra even at the level 

of the Condon approximation[84]. 
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To conclude these comments about modeling polymers, we mention rylenes (Fig. 

2) and other D2h systems whose ~r-electrons can be separated into two subsystems. 

The Hiickel MOs of acenes in Fig. 2 or pyrene in Table 2 are even and odd with 

respect to reflection about the plane normal to the conjugation and containing the 

long axis. Rylenes are peri-linked naphthalenes that start with perylene (n - 0 in 

Fig. 2, C20H12), terrylene (n - 1) and quatterylene (n - 2) and extend to a poorly 

characterized polymer, polyperinaphthalene (PPN), with a very small calculated 

optical gap[85]. The repeat unit is the 10 Iv-electrons of naphthalene and rylenes 

have electron-hole symmetry. A simple canonical transformation[86] of/~/Hiickel leads 

to 5(n + 2) filled bonding orbitals, of which n + 2 are localized on individual naph- 

thalenes, 2n + 4 are even under reflection and 2n + 4 are odd under reflection. Since 

both the HOMO and LUMO are odd under reflection, the optical gap of rylenes or 

pyrenes depends on a subset of ~r-electrons in precisely the same sense that ~r - r* 

excitations involve a subset of all electrons. In the spirit of a -  lr separation, we keep 

the subset of odd MOs and introduce Coulomb interactions in the zero-differential 

approximation. The odd subspace of perylene becomes a conjugated chain similar 

to octatetraene, and longer rylenes or pyrenes map into longer polyenes[86]. 

Since the Hfickel model in the odd subspace is precisely that of a polyene, we 

can immediately understand strong coupling[87] in Table 4 of rylenes or pyrenes to 

the characteristic 0.18eV vibration of polyenes or PA. This out-of-phase stretch of 

single and double bonds is excited on promoting an electron from the HOMO, which 

is weakly bonding for double bonds and weakly antibonding for single bonds, to the 

LUMO, which is just the opposite. The electronic excitation is delocalized over two 

strands in rylenes, one strand in polyenes. Linear coupling and harmonic oscilla- 

tors then imply excited-state (llB~) displacements that are factor ~ vf2 smaller in 

rylenes. The 0 - p  intensity for displaced harmonic oscillators goes as g2,'/p! and 

comparable 0-0, 0-1 intensities in polyenes corresponds to g ~ 1. The expected 

intensities[S6] for g' - g /v f2  are then 10:5:1.25 and rationalize at once the measured 

patterns in Table 4. The lower optical gap of rylenes requires going beyond the 
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Table 4. Excitation energy to 1 ~ B~, vibronic spacing and relative intensities of poly- 

cyclic aromatics in solution[S7]; I~B~ threshold for polyenes in alkane matrices[S6]. 

Value of n in the tables refers to Fig. 2. 

Molecule DE(0-0) (eV) hn (eV) 10 In/IO Polyenes, (eV) 
perylene (n = O) 2.86 0.17 10/7.2/3.3/1.3 3.98 
terrylene (n = 1) 2.21 0.18 10/5.0/1.7 3.28 

quaterrylene ( n -  2) 1.85 0.19 10/5.0/2.0 2.82 
pyrene (C16H10) a 3.72 0.18 10/5.7/2.2/0.08 4.67 

peropyrene (C26H~4) 2.80 0.18 10/5.7/1.5/0.06 3.60 

p-band, 18 ~ C 

Hiickel model, which gives equal E(11B=). Since the transformation leads to ex- 

panded sites that contain two or three carbons, we expect smaller reduced Coulomb 

interactions in the P PP model. Standard parameters for expanded sites account for 

reduced E(l lB=) in Table 4 for rylenes and places their E(21Ag) at higher energy, 

consistent with their strong fluorescence[86]. Although reduced in rylenes, corre- 

lations lead to E(21Ag) < E(l lB~) in longer rylenes or PPN and to an insulating 

ground state. The sharply reduced fluorescence[88] of a substituted quatterylene 

may signal the crossover to be at n - 4. 

7 N e u t r a l -  ionic transition 
transfer salts 

in organic c h a r g e -  

Diagrammatic VB theory[12] was introduced to model organic charge-transfer (CT) 

and ion-radical salts instead of conjugated molecules. Organic 1r-donors (D) and ac- 

ceptors (A) often crystallize as face-to-face stacks[ll]. Solid CT complexes contain 

mixed . . .  DADA-.-  stacks, while ion-radical salts form segregated . . -D+D+D +. - -  

or �9 -. A-A-A- . . .  stacks with counterions between the stacks. The relevant orbitals 

for quantum cell models (4) are now the HOMO of D and LUMO of A. Segregated 

stacks yield Hubbard or PPP models[Ill that are half-filled in the case of simple 

1:1 salts and have other filling in complex salts. Double occupancy in delocalized 
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orbitals leads to U ~ l e V ,  which is an order of magnitude smaller than in con- 

jugated molecules, but lr-lr overlap around 3.3/~ reduces transfer integrals, t to 

0.2eV. So correlations are comparable or stronger in these crystals. Radical 

ions lead to magnetic properties that are described by linear Heisenberg antiferro- 

magnetic chains with exchange J -- 2t2/U between neighbors. The lowest optical 

features are CT transitions polarized along the stack; both simple and complex salts 

have self-exchange leading to a doubly-occupied site around energy U; the latter have 

even lower energy CT bands that involve singly-occupied and empty sites. Organic 

conductors have segregated stacks with uniform or nearly uniform transfer integrals 

and nonintegral oxidation states, while half-filled systems are Mott insulators. 

The combination of mixed or segregated stacks, of simple or complex stoi- 

chiometry, and of regular, dimerized or tetramerized stacks offers many possibil- 

ities that have all been realized[Ill. Indeed, a few key acceptors such a TCNQ 

(tetracyanoquinodimethane) or CA (chloranil) and donors such as TTF (tetrathio- 

fulvalene) or TMPD (tetramethyl-p-phenylene-diamine) are sufficient. TTF-TCNQ 

is a conductor[89] with two segregated stacks, ionicity p = 0.59, and separate metal- 

insulator transitions on each stack at low temperature. Organic superconductors[90] 

are 2:1 salts based on substituted TTFs. TMPD-C104 and alkali-TCNQ salts with 

dimerized stacks show triplet spin excitons[91] with resolved fine structure in electron 

paramagnetic resonance spectra. TTF-CA is a special CT salt[92] that undergoes a 

valence transition at 81 K or under pressure between a largely neutral and a largely 

ionic ground states. The ionic phase corresponds to a dimerized . . .  D+A-D+A - . . .  

stack, while the neutral phase is a regular . . .  DADA.. .  stack. 

The generalization of the Hfickel model (1) to a donor-acceptor stack is through 

a site energy, ep - (-1)PA, that lowers the energy of electrons on odd-numbered 

D sites for A > 0. In principle we have different on-site U in (3) for donors and 

acceptors, but a single U is usually assumed. The Coulomb terms in (4) now have 

zp - 2 and 0 at odd and even sites, respectively, because neutral D and A require 

two and no electrons. The complete basis for a stack is identical to the PPP basis 
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and has recently been studied up to 16 sites[93]. Since electron transfer is from D 

to A, it is an excellent approximation to discard VB diagrams containing D 2+ sites 

with two holes or A 2- sites with two electrons. The reduced basis has three states 

per sites and makes exact results for 22 sites accessible[93]. Spin-pairing is now 

between singly-occupied sites that correspond to ion radicals and doubly-occupied 

or empty sites are neutral. 

The neutral-ionic transition (NIT) at t - 0 occurs abruptly[94] when the Madelung 

energy M of the ionic lattice exceeds the energy I -  A to transfer an electron form 

D to A. Long-range Coulomb interactions are treated self-consistently as part of A 

in the modified Hubbard model[95], 

^ " t  ^ 
= - + + Z :  - ( 3 6 )  

p(r p 

We take the parameters A and U in units of t, which sets the energy scale. Long- 

range Coulomb interactions can also be included explicitly, at least for single chains[96]. 

The NIT of modified Hubbard model (36) is continuous[97, 98, 99] as a function of A; 

it occurs around U - 2A when DA and D+A - become degenerate. A discontinuous 

change of ionicity requires long-range interactions or strong coupling to molecular 

vibrations. There are marked 4n / 4n + 2 variations here also. The ground state of 

(36) for U << 2A is totally symmetric (k = 0) on the neutral side, but transforms 

as k - ~r in 4n rings with periodic boundary conditions for U >> A. The degener- 

acy at the symmetry crossover marks the NIT as At(U) for 4n rings. There is no 

crossover in 4n + 2 rings with periodic boundary conditions. Antiperiodic or MSbius 

boundary conditions in which N-fold rotation changes the sign of the wavefunction 

are achieved by changing the sign of tiN. Now 4n + 2 rings have degenerate ground 

states at Ac(U ) that mark the NIT and there is no crossover in 4n rings. 

As seen in Fig. 7, crossovers[93] for periodic and antiperiodic boundary condi- 

tions separate the neutral and ionic regimes. The dashed line is the extrapolated 

behavior of the infinite chain. The narrow ionic region at small U becomes a point 

at U = 0 for the noninteracting system that can readily be solved exactly. Finite 
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Figure 7: Ground-state crossover, U(Ac, N), of the modified Hubbard model (36), 
with periodic and antiperiodic boundary conditions for N - 4n and 4n + 2, re- 
spectively. The dashed lines are extrapolations to the infinite chain and rigorously 
passes through the origin. The inset shows the behavior at large site-energy A; the 
limit A > c~ corresponds to the restricted basis in which D +2 and A -2 sites are 
excluded[97]. 

U > 1 is needed to stabilize an ionic ground state. Although slightly on the ionic side 

for finite U >> 1, the NIT for U > 2 is almost independent of A, with U -  2Ac 

1.5. The inset shows the crossovers at large A. The restricted basis gives the 

NIT in the limit[100] that both U and A diverge such that F = A -  U/2 remains 

finite. The ground-state charge density p of (36) is the partial derivative of the 

energy with respect to A, or the expectation value of electrons on A sites. It 

changes discontinuously at symmetry crossover; Ap decreases with increasing N 

and is continuous in this infinite chain. As noted above, finite Ap at the NIT is 

found in models with long-range interactions or mean-field contributions that yield 

A(p) and nonlinearities. There are systems with both continuous and discontinuous 

valence transitions. Organic CT salts have small U > 1, while inorganic oxides[101] 
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have U ~ 1 and NITs close to the origin in Fig. 7. 

Having identified the NIT in terms of a symmetry crossover, we can study excita- 

tions at that  transition. The lowest singlet excitation is a CT between the k = 0 and 

~r ground states[102]. The lowest triplet[103] is finite in a band insulator, the simple 

U = 0, A > 0 case of (6.1), and vanishes in a Mott insulator, the U > 0, A = 0 case 

of a Hubbard model or Heisenberg spin chain for large U. The exact singlet-triplet 

gaps[93] in Fig. 8 are in the restricted basis and show the gap to open at, or very 

near, the crossover. At each N, periodic and antiperiodic boundary conditions yield 

a system with a crossover whose singlet-triplet gap is shown with open symbols and 

a system without a crossover whose singlet-triplet gap is shown with close symbols. 

The two sets are extrapolated separately. The singlet-triplet gap opens with 0.1t of 

the NIT. Similar analysis of CT gaps up to N = 22 gives a tighter bound of 0.05t. 

The charge gap, I(N)- A(N), is the energy for transferring an electron between two 

noninteracting rings. It is finite on the neutral or ionic side and vanishes precisely at 

the NIT. Ionization potentials and electron affinities up to N = 18 in the restricted 

basis shows vanishing charge gaps at the NIT with a 0.2t bound[93]. Moreover, the 

charge stiffness at the NIT of (36) indicates a metal with correlations reduced by 

40% from free electrons (U - A - 0). 

Experimental and theoretical studies of valence transitions are current topics 

with many open points. Different roles are expected for Coulomb or interchain 

interactions and coupling to molecular or lattice phonon in various systems. Direct 

solutions of models are one of several methods for studying the NIT. Magnetic, 

dielectric and thermal properties can be obtained exactly, albeit for finite systems 

of increasing size. Extrapolations to infinite chains require care and guidance from 

related analytical results. 

The exclusion of D +2 and A -2 sites on physical grounds leads to three possible 

states per site in the restricted basis. It exceeds the basis of covalent diagrams used 

for s = 1/2 sites, but is far smaller than the fermion basis for one orbital per site. 

S = 1 sites also have three states that may be considered as a pair of s = 1/2 sites 
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Figure 8: The singlet-triplet gap, EST, near the neutral-ionic transition of (36) in 
the restricted basis as a function of F = A - / . / / 2 .  Open and closed symbols refer 
to boundary conditions with and without crossovers, respectively, and the stars as 
joint N > c~ extrapolations based on both[97]. 

in which spin pairing, or a line connecting the sites, is excluded. Although nearest- 

neighbor exchange in a chain of S = 1 spins leads to exchange between first, second 

and third neighbors of the s = 1/2 spins, the necessary transformation rules for 

VB diagrams can readily be found. Large reductions in basis size are achieved by 

conserving total spin[ll3]: the Hamiltonian is ,,, 100 times smaller for a chain of 

15 S = 1 spins. Thus N sites with S = 1 correspond to the covalent subspace of 

2N sites with s -- 1/2. The s = 1//2 sites are labeled such that 2 n -  1 and 2n 

correspond to S~ = 1. We generate the covalent VB basis as indicated in Section 2 

and obtain the S = 1 basis by discarding all VB diagrams that  contain one or more 

lines between 2 n -  1 and 2n, with n = 1, 2 , . . .  N. In these examples, the simplest 
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way to find the appropriate VB basis is to generate a larger set and discard the 

unwanted diagrams. 

8 Kondo Chains and Magnet ic  Clusters  

One of the puzzling features of dilute magnetic impurities in nonmagnetic hosts 

was the vanishing of the magnetic moment of the guest in some cases such as iron 

dissolved in aluminum[104, 105]. The Anderson model[106] introduced to study 

such systems, consists of a tight-binding s-band of the host hybridizing with the 

correlated d-orbital of the guest atom. In the limit of strong d-electron correlation, 

the interaction between the electron in the d-orbital and the electron in the s-band 

is given by J S .  ~, where S is the spin of the electron in the d orbital, g is the spin 

of the conduction electron at the guest site and J is an antiferromagnetic exchange 

constant[107, 108]. The model for studying stoichiometric alloys of magnetic and 

non-magnetic metals involves a lattice of the magnetic spins immersed in a bath 

of conduction electrons of the nonmagnetic metal. The magnetic moment has an 

antiferromagnetic interaction with the electron in the itinerant orbital, whenever it 

is singly occupied. The Hamiltonian of this system can be written as, 

H = - t  ~ (5~,~&j,~ + H.C.) 
<ij>,a 

+J[(&~,-~&i,~S+ + &~,~ai,-~Si-) + (&~,~&i,~ - &~,_~&i,-~)S~] (37) 

There also exist molecular systems involving transition metal phthalocyanine com- 

plexes which behave like Kondo chains away from half-filling[109]. The conducting 

electrons reside in the 7r-subsystem while the spins are localized on the transition 

metal ions. The band-filling of the conduction band is controlled by using varying 

composition of bromine which acts as an oxidizing agent. 

The Kondo-lattice Hamiltonian conserves total spin and being an interacting 

model is nontrivial to solve. However, as with the conjugated systems, it is possible 

to solve finite Kondo chains efficiently by employing the VB method. The VB 
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basis now requires three bits per site: two for the fermionic subsystem and one for 

the subsystem spanned by the localized spins, assumed to be spin-l/2 objects. It 

is straightforward to obtain rules for operating by individual terms on the Kondo 

chain VB diagrams, necessary to set up the Hamiltonian matrix[ll0]. The VB 

studies on Kondo chains show that the spin quenching of the site spins by the 

conduction electrons occurs for any finite J/t. Introduction of electron correlations 

in the conduction band promotes singlet pairing by increasing the probability for 

single occupancy of the conduction orbital. 

The VB basis can also be constructed using Rumer-Pauling rules for systems in 

which the on-site spin is greater than 1/2 and there is on-site spin-spin interaction 

between singly occupied itinerant orbitals on the site and the site spin. This situation 

arises in manganites which exhibit giant magnetoresistance[111]. High-spin sites are 

also encountered in the study of Haldane gap in integer and half-odd integer spin 

chains[ll2]. 

We can extend the VB rules to spin clusters containing sites with different spins. 

If the spin at a site is si, then we replace this site by a set of 2si sites, each with 

spin-half. We then proceed with constructing the VB basis[ll3, 114], as though 

the system is made up entirely of spin-half objects, with one difference, namely, 

we impose the additional constraint that there should be no singlet lines within 

the subset of 2si sites which replace the spin si at site i. The VB diagrams with 

total spin S _ 1/2 are constructed as before with the help of phantom sites. Some 

examples of the legal VB diagrams involving higher site spins are shown in Fig. 9. 

While computing properties such as spin densities and spin-spin correlations, the 

VB diagrams can be expanded in the constant Ms basis using appropriate Clebsch- 

Gordon coefficients. 

We see that additional orbitals or spins can readily be introduced in quantum 

cell models. The real constraint is the total number of orbitals, which governs the 
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exponential growth of the many-electron basis as discussed in Section 2. What 

distinguishes one situation from another is the model that is employed. In models 

which employ the ZDO approximation, the VB basis is diagonal in the interaction 

part and the Hamiltonian is sparse. In cases where the VB basis is off-diagonal in 

the interaction part, or the noninteracting part involves electron transfer between 

nonsequential orbitals in the VB diagram, the sparseness of the matrix reduces 

dramatically and this could decide the size of the problem that can be managed. 

I=3724 

~ ~ 0  0 1 ~1 ~ . ~  

S=3/2 S=I S=5/2 S=l 

I=3740 

$=3/2 S--1 $=5/2 S=1 

1=3981 

~ot =2 

~ ~ . 0  0 1~1 0 ~ ~  

S=312 S=I S=5/2 S=I 

Figure 9: VB diagrams for site spins > 1/2. The four site system has site spins 
of 3/2, 1, 5/2 and 1. The VB diagrams and their bit-representation are for three 
different total spins (Sto t - -0 ,  1, and 2). 
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9 Ferromagnetism in Organic Systems 

One of the challenges for organic chemistry is the synthesis of a fully organic fer- 

romagnet. Several models of conjugated organic systems have been proposed in 

which the high-spin state of the conjugated system is expected to be the ground 

state. McConnell proposed two early schemes[ll5, 116]. In one he suggested that 

the existence of a high-spin virtual state below a low-spin virtual state would stabi- 

lize the high-spin ground state resulting in an effective exchange constant which is 

ferromagnetic[115] (Fig. 10). In the other, ferromagnetic exchange involved stacking 

SINGLET TRIPLET 

A~ 4_ 
A o 

-4 -4- 4- 
D + A - -  A 

s=0 

A s 

S---0 

S--1 

A T 

S--1 
tz0 t=0 

Figure 10: McConnell's mechanism for ferromagnetic exchange between ion- 
radicals[ll5]. /kT is less than As because of direct exchange involving the degenerate 
donor orbitals. This results in greater stabilization of the lowest triplet state com- 
pared to lowest singlet state upon turning on electron transfer between the donor 
and acceptor orbitals. 

organic radicals such that negative spin density sites are directly above those of the 

positive spin density sites[ll6]. Such stacking allows delocalization of the electrons 

via the intervening singlet bonds while retaining parallel alignment of the spins on 

the radical. Mataga[117] proposed several alternant conjugated structures (Fig. 11) 

in which the nonbonding M Os are nondisjoint. In this situation, introducing electron 
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correlations results in parallel alignment of spins in the nonbonding MOs as this 

! IV 

II 

�9 �9 �9 �9 

Ill  

Y 

o 

o 

Figure 11" Examples of Mataga[117] systems involving radicals and diradicals ex- 
pected to be in the high-spin ground state. 

would avoid two electrons coming together on the same site. Ovchinnikov[118] also 

suggested alternant systems in which the number of starred and unstarred sites are 

unequal. Antiferromagnetic exchange interactions along the bonds leads to a spin 

arrangement which is reminiscent of ferrimagnetism in solids. The spin in the ground 

state of such a system is S c  = ]No - N,[/2, where No and N, are the number of 

unstarred and starred sites in the alternant system. 

The above models are based on physical insights gained from analysis of typically 

two site problems under simplified assumptions. To provide a quantitative basis for 

these models, it becomes necessary to deal with larger and more realistic systems. In 

this context, VB method becomes an invaluable tool, being a spin adapted method. 

Exact solution of large model systems afforded by the VB method allows introducing 

parameters that make the models more realistic. 

We have studied McConnell's kinetic exchange mechanism by dealing with a one- 
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dimensional mixed stack of donors and acceptors[119], with the active donor orbital 

being doubly degenerate while the active acceptor orbital is nondegenerate. The 

noninteracting ground state of a donor-acceptor dimer would correspond to their 

ion-radicals D+A -.  The direct exchange interaction among the degenerate donor 

orbitals implies that virtual triplet intermediate state corresponding to D~ ~ would 

be lower in energy compared to the corresponding singlet state. The Hamiltonian 

which captures the essentials of the model thus involves besides the Hubbard and 

site energy parameters for the donors and acceptors UD, eD, UA, eA, the direct 

exchange integral for the degenerate donor orbitals KD as well as the repulsion 

between electrons in separate donor orbitals on the same site, UDD. The magnitude 

of UDD is comparable to UD and it is not necessary to treat it as an additional 

parameter. In the mixed stack, the transfer parameters connect the donor orbitals 

to the acceptor orbital on the neighboring sites. Hitherto, the interaction part of 

the model Hamiltonians we encountered were diagonal in the real space VB basis. 

The direct exchange term associated with KD leads to off-diagonal terms resulting 

from two types of processes; (i) a double hop of electrons from one donor orbital to 

the other and (ii) a hop from one donor orbital to the other followed by a reverse 

hop. These terms can be easily handled within the VB framework. 

The VB calculations of the model described above on two, three and four DA 

units leads to some interesting conclusions[ll9]. When all the Hubbard on-site 

correlations are taken to be equal UA = UD = UDD then, for weak (U/t <_ 2, 

KD/t <_ 0.4), the ground state is low-spin state in all the cases. For (2 < U/t <_ 6, 

Km/t <_ 0.4), the ground state is an intermediate spin state and for the high- 

spin state to be the ground state, the on-site correlations have to be very strong 

(U/t > 10). We also find that as the system size increases, stronger on-site repulsion 

is required for stabilizing the high-spin state relative to the low-spin state. It can be 

argued that with increase in system size, the phase space for singlet delocalization 

increases more rapidly than that of the high-spin state, with S = N, where N is the 

number of DA units. When we vary VDD/t independently, we find that the high-spin 

state is favored for smaller values of UDD/t, since this favors single occupancy of the 
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doubly degenerate orbitals over an empty and a doubly occupied degenerate donor 

orbital configuration. 

The Mataga-Ovchinnikov systems can also be modeled using quantum cell mod- 

els. The prediction of the high-spin ground state in these systems revolves around 

a few idealizations such as uniform bond lengths and identical carbon site energies 

implied by electron-hole symmetry. What is important from a practical standpoint 

is the stability of the high spin ground state when these symmetries are broken. VB 

theory is well suited for such studies[37]. Numerically also, it is seen that the state 

with spin Sc is the ground state in the idealized cases. The lowest excitation is to 

the state with spin S c -  1 and the gap extrapolates to zero in the thermodynamic 

limit. The excitation gap between the ground state and the lowest energy state 

with spin Sc + 1 remains finite in the thermodynamic limit and so does the gap 

between the ground state and the nonmagnetic state with spin S -- 0. For Hubbard 

models, the magnetic gap peaks near U/t = 4. Electron-hole symmetry is broken 

by introducing different nonzero site energies at the dangling carbon sites and the 

nodal carbon sites. Even when the site energy difference between these sites is a few 

eV, the magnetic gap hardly changes. The Mataga-Ovchinnikov systems are stable 

with respect to electron-hole symmetry breaking. It is also observed that the bond 

orders vary substantially from the uniform limit. When the transfer integrals for 

the bonds are changed so that the computed bond-orders are in the same ratio as 

the transfer parameters, the nonmagnetic state becomes the ground state for larger 

system sizes. Thus, it is unlikely (at least in quasi-one-dimensional systems which 

are more prone to lattice distortions), that in real systems one would succeed in 

synthesizing a ferromagnet or ferrimagnet based on the Mataga polymers. 

Substituted cyclophanes are the simplest systems in which opposite pin densities 

are stacked at sites directly above each. The spin resonance of several cyclophanes 

have been studied to test the McConnell[120] idea. Introducing a dicarbene substitu- 

tion at each of the phenyl rings leads to unpaired electrons in the molecule. Following 

McConnell, we should expect the carbene spins to be aligned parallel if the substi- 
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tution is pseudo-ortho or pseudo-para. The ground state will be nonmagnetic, if 

the substitution is pseudo-meta. This system can be easily modeled using quantum 

cell models. Indeed, one obtains a robust quintet ground state for pseudo-ortho and 

pseudo-para isomers and a singlet ground state for the pseudo-meta isomer[121]. 

The exchange interactions between nonbonded sites governs the magnetic gap and 

this could be rather small in organic systems. Thus, while this model does have a 

robust magnetic ground state we should expect the Curie temperature for magnets 

based on this mechanism to be rather low. 

10 Concluding remarks 

Quantum cell models are idealizations that capture some fundamental features of 

molecular, polymeric or solid-state systems at a phenomenological level. While 

quantitative descriptions are occasionally realized, models are typically semiquan- 

titative and aim at understanding large or extended systems. We have shown that 

Hubbard, Pariser-Parr-Pople, Heisenberg models and their variants are widely used 

in chemistry and physics for diverse magnetic, optical and electrical properties. Most 

current models conserve total spin, except for anisotropic spin systems. The valence 

bond basis then provides an attractive and efficient real-space representation of cor- 

related many-electron states. We have summarized VB procedures and applications 

that over the past two decades have yielded model-exact solutions to quantum cell 

models, including dynamic responses and matrix elements between correlated states. 

Modern workstations can now handle, in a matter of hours, systems of 30 spins or 

16-18 electrons or an intermediate number of sites in models with three states per 

site. Exact analysis of large active spaces avoids entirely difficulties encountered in 

conventional single-particle schemes, but introduces finite-size considerations that 

can be problematic. The VB method is limited by the basis set size which is dic- 

tated by the number of active orbitals or sites. Given this, the number of unit cells 

with a few orbitals per site that can be treated exactly is larger in one dimension 

than in higher dimensions. Thus, it is no accident that we have focused on conju- 
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gated polymers, on polyenes, annulenes, and polycyclic hydrocarbons, on CT and 

ion-radical solids with one-dimensional stacks, and on spin chains. Linear systems 

and low-lying states are the simplest to extrapolate. They have considerable scope, 

as we have illustrated in this review. 

Simply by changing hopping integrals or correlations, we can apply quantum cell 

models such as (3) or (4) to entirely different kinds of systems or phenomena and 

make contact with exact results for extended systems. Models provide a unification 

that is both pleasing and important, and that for many purposes outweighs their 

approximate nature. Solid-state models have in fact become objects of extensive 

research in several fields, notably in statistical physics, and this will continue in the 

future. In a wider context, we have classical and quantum models, discrete and 

continuum models, and many other possibilities than the mainly electronic models 

considered here. We anticipate improvements in VB methodology along with greater 

computational power. Model-exact results provide calibration for approximations 

such as the quantum Monte Carlo or the DMRG methods that can be applied 

to larger systems and should remain one of the tools for investigating correlated 

electronic or spin systems. 
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Chapter 21 

Spin permutation technique in the theory of strongly 

correlated electron systems 

V.O.Cheranovski i  

Institute of Chemistry, Kharkov National University 61077 Kharkov, The 
Ukraine 

1. INTRODUCTION 

The theoretical description of electron correlations in the strong coupling 
regime is a long standing problem. This is of great importance for adequate 
study of electron properties of quasi-lD systems like organic polymers with 
conjugated bonds and stacked charge-transfer salts (e.g. tetracyanquinodi- 
methane complexes) [1-4]. The unexpected discovery of high-temperature 
superconductivity in lightly doped antiferromagnets (cuprate oxides) has 
sparked renewed interest in the theory of strongly correlated electron systems. 
Many scientists believe that the Hubbard model with strong electron repulsion 
already contains at least some of the important physics governing the properties 
ofhigh-Tc materials [5,6]. Unfortunately, there are only a few exact solutions for 
the theoretical models used to describe the above systems [7]. Therefore the 
corresponding description is rather incomplete even in the zero temperature case 
and there are many unsolved important physical questions despite the huge 
number of different theoretical approaches that have been applied. 

One of the simplest models describing a system of strongly correlated 
electrons on a crystal lattice is the Hubbard Hamiltonian [8]: 

H =  Z t / j  (a+aaja + a~.aaia)+ g~a+aaiaa+_aai_ a (1) 

i , j ,a i 

where t O. is a matrix element of the electron transfer between the states of i-th 

and j-th sites, U is the one-site repulsive potential as a simple approximation to 

+ is a creation operator for an the Coulomb interaction between the electrons, aia 
electron with spin cr on the i-th site. 

At infinite electron repulsion, if the total numbers of electrons and lattice 
sites are coincident (half-filled band), each site is occupied by one electron only. 
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Thus no hopping processes are allowed and the ground state energy is highly 
degenerate and independent of the orientation of the individual spins. For 
U >> max(t/j), as in the case of compounds of transition metals, perturbation 

theory (PT) can be applied and in the second PT order in t 0. the Hamiltonian (1) 

is reduced to a Heisenberg spin Hamiltonian [9] which is formally identical to 
the covalent-space Pauling-Wheland VB model [ 10,11 ]. 

H = JijSi .S j ,  Jo" = > 0 (2) 
U 

i<J  

where S i is the one-electron spin operator and Jo is an exchange parameter. 

Note, that the Hamiltonian (2) can be written in terms of permutations of spin 
variables P0 if the Dirac identity PU = 2S i ' S )  + 1/2 is taken into account. If 

U ~ maxtt 0. ), as in the case of conjugated hydrocarbons, higher order PT terms 

and convergence of the perturbation expansion should be considered. The 
corresponding generalized effective VB Hamiltonian acting in covalent space 
contains renormalized exchange parameters and additional terms having a form 
of products of transposition permutations PU [ 12-15]. For lattice systems, which 

contain even member rings, the most important additional terms can be 
expressed in the form of cyclic permutations of spin variables. Covalent VB 
Hamiltonians with additional cyclic spin permutations were successfully applied 
to the study of the aromaticity problem [ 13,16]. 

The dimensionality of the space spanned by covalent states is much less than 
the full number of basis states of the Hubbard model. This is one of the reasons 
of the success in the application of the above VB Hamiltonians to the study of 
low-lying energy levels of the transition metal compounds and organic 
molecules with conjugated bonds. The covalent VB approach is very useful 
especially for predictions as to ground state spin multiplicity and spin ordering 
[14, 17-20]. 

For strongly correlated electron systems with non half-filled bands there are 
electron hops between occupied and unoccupied lattice sites. In the general case 
these hops lift spin degeneracy in first PT order in to.. This leads to more 

complicated structures of perturbative Hamiltonians in comparison with the 
half-filled case. One of the simplest representatives of such Hamiltonians is a 
well-known t-J model for a one-dimensional lattice [21 ]. Nevertheless in certain 
cases it is possible to reduce the initial Hubbard model to a spin model and carry 
out the study of low-lying energy states similarly to the covalent case [22-26]. 

The purpose of these notes is to show how some strongly correlated electron 
models like the one-band Hubbard model with infinite electron repulsion on 
rectangular and triangular lattices can be described in terms of spinless fermions 
and the operators of cyclic spin permutations. We will consider in detail the 
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properties of corresponding effective Hamiltonians. Special attention will be 
paid to the description of the ground state spin and lowest excitations of the 
lattices formed by weakly interacting segments (e.g. ladder compounds). 
Because of quasi-degenerate energy spectra of these lattices, approximate 
methods can give inaccurate conclusions about their ground state spin. We will 
show how a simple physical idea about the appearance of magnetic polarons in 
such systems due to competition of different types of the interactions of 
neighboring segments may be used for an accurate description of the 
dependence of the ground state spin on the Hamiltonian parameters. 

2. CYCLIC SPIN PERMUTATION FORMALISM FOR HUBBARD 
MODEL WITH INFINITE REPULSION 

The Hubbard model with infinite electron repulsion represents restricted 
hopping in a space with no doubly occupied sites. For the N-electron system on 
the lattice formed by L sites the model Hamiltonian has the form [27] 

Z a i  a~aaia (1 - a+ ~ai_~ ) H 

/,0" 
, (3) 

+ ~2to.(a+aaja + a ~ . a a / a ) ( l  + + - a i _ o . a / _ o .  )(1 a j  ) - a j-or -or 
i,j,cr 

where a, is the one-site energy. Because of particle-hole symmetry we may 
restrict our consideration to electron systems with N < L. The wave function of 
this lattice system can be written as 

D N 

trtJr(L,N,M)=ZA~(nl,n2,...,nN[O'l,~2,...,CYN)Ha+n,,~lO ) 
l=1 i=1 

D 

-ZA[(nl,n2,...,nwlcrl,a2,...,crN)O(nl,n2,...,nw)x[al,a2,...,crw). (4) 
l=1 

O ~  
L! 

(L-  N)I(N/ 2 -  M)!(N/ 2 + M)! 

Here ~(nl,n2, . . . ,n N ) is a coordinate function that describes the distribution of N 
electrons over the L lattice sites; n~ labels the i-th singly occupied lattice site; M 
is the z-projection of total spin of a lattice; D is the dimensionality of the space 
spanned by the eigenvectors of (3); and lal,Cr2,...,aU) is a function of spin 

variables or i, describing the spin configuration of the electrons 

S~ I ~ ~ ""O-N >-O'i lal,am,...,au), or, =+1/2, 
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z is an operator of the z projection of the spin for the i-th electron. where S i 
Despite the simple algebraic structure of the model, the study of its spectrum 

is a complicated task. The simplest case is a linear lattice fragment with free 
ends (segment). Let us enumerate its electrons in succession along the segment. 
It is easily seen that any electron hop does not change this numeration. In other 
words the Hamiltonian (1) does not act o n  [O'l,O'2,...,O'N) and we have spin 

degeneracy of the exact energy spectrum of the segment. If all a i = a ,  t i i+ l  = t 
(one-site unit cell) the spectrum of the segment has a very simple structure for 
arbitrary values of L and N: 

N 

Er(N,L)=2t  cos + N a ,  l < r  l < r  2 < . . . < r  N<L (5) 
L + I  

i=1 

D N 

Z 11 + Vr(L,N,M)= A;(nl,n2,...,nN) a...=.10 ), l < n  l < n  2<. . .<n N<L, 
l=l i=1 

A~ (n I ,nz,...,n s ) = det[f(rl n I )f(r2n 2 )...f(rsn s )], (6) 

f (ri,nj ) = ~ 2 ( zrrinj ) 
n + l  sin n + l  

where the index r enumerates all the orderings of numbers r i . For t < 0 the set 

of numbers r i = i corresponds to the ground state of the segment. 

In the case of nonlinear lattice topology, electron hops mix different spin 
configurations and the corresponding eigenvalue problem becomes much more 
complicated. A complete analytical solution of this problem is known only for 
some special cases (e.g. for the linear chain with periodic boundary conditions 
[22]). In the absence of exact results a reliable way to describe the properties of 
nonlinear systems is to perform a numerical study of the electron structure for 
finite lattice clusters. 
2.1. Rectangular lattice 

Our approach to the study of the Hamiltonian (3) is based on the direct 
consideration of the processes of electron hopping between neighboring lattice 
sites with the restriction to the states without doubly occupied lattice sites [23]. 
Let us consider a rectangular lattice strip with 8 sites and 5 electrons and 
enumerate all the variables of the lattice wave function in succession along the 
lattice rows beginning from the upper one. 

When the Hamiltonian (3) acts upon the function ~F~, the electrons hop to 

neighboring unfilled lattice sites. For example, the first electron can hop to the 
second site along the lattice or to the fifth site. With our enumeration over the 
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5 3 4 5 

A B 

Fig. 1. Electron hopping between neighboring lattice sites (shaded sites specify the positions 
of electrons). 

lattice rows, two new electron configurations A and B appear as a result of these 
processes (Fig. 1). It is easily shown that all the electron numbers are fixed in the 
case of electron transfer between the states at the first and second sites. 
Therefore, this process leads to a change of the variable n i in the coordinate 

function only. If the electron hops to the fifth site, the first electron becomes the 
third one, the second electron becomes the first one, and the third electron 
becomes the second one. Thus, to retain the chosen numeration, we need to 
perform the cyclic permutation of numbers of electrons, which are situated 
between the first and fifth lattice sites. This process leads to the cyclic 
permutation of the three spin variables in the func t ion  [O'l,O'2,...,O'u> and to an 

obvious change of the coordinate function. 
The considered spin permutation can be written in the following form: 

/ Q1,3 = 1 ' QI,3 I~  0 - 2 , 0 - 3 > - [ 0 - 3 , 0 1 , 0 2 > ,  

where the upper row determines the initial spin configuration while the lower 
row corresponds to the final one (P0. transposes only two spin variables). 

Making use of this treatment for all electrons and sites, one obtains that the 
Hubbard Hamiltonian with infinite repulsion can be written in the form 

L L 

H = aib+bi  + to.(b i b j Q m ,  n + b j b i Q m , n )  (7) 
i=1 i<J 

Here bi is a spinless Fermi operator which acts only on the coordinate part of (4), 
Qm, n is the cyclic permutation of spin variables of electrons, located on the 
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lattice sites from the interval (i, j), where i-th and j-th sites are neighbors 
(to.,o). 

All cyclic permutations can be rewritten in the form of a product of spin 
transpositions P/j. Therefore, using the Dirac identity, the cyclic permutation of 

n spin variables can be expressed in the form of a scalar product of one-electron 
spin operators S 

( 12 3... n ) n 1 2... n - 1  = l/ll(2Si.= " Sn _ t _ 2 / =  i=1 2Sn-i " Sn - i+ l  + (8) 

The Eq.(7) is an exact representation of the Hamiltonian (3). Because of the 
scalar character of (7) we can exploit the conservation of the value of total spin 
S and its z-component M and consider separately different spin-symmetry 
subspaces. Therefore one can substitute spin-symmetry-adapted basis functions 
| for a set of functions Icrl,cr2,...,crN) in (4) and construct the matrix 

elements of (7) by means of the branching diagram technique [23, 28] or VB 
spin-pairing (Rumer) diagrams [29]. This simplifies calculations of the exact 
spectra of small lattice clusters because of the reduction of the dimensionality D 
of the corresponding eigenvalue problem. It is also useful for the analytical 
study of some special type of lattices. It should be noted that Fermi operators 
and cyclic spin permutations act simultaneously on the basis functions. 
Therefore we cannot obtain "separation" of charge and spin variables in our 
representation of the Hubbard model excepting some special cases [22-26]. Note 
also that the representation (3) is valid for other types of lattices, say the 
triangular one. A similar representation as an extension of the Jordan-Wigner 
transformation for U=oo one-dimensional Hubbard model has been proposed by 
Long and Zotos [30]. 
2.2. U=~ Hubbard model for polyailyl chain 

One of the simplest ~-electron models of a conjugated polymer with a 
macroscopic ground state spin is a polyallyl chain (Fig.2) described by the 
Hubbard Hamiltonian [20]: 

L 

Z ( , +  + + ) O = 1 a3i-2,o- + t2 a3i,er + t3 a3i+l,o- a3i-l,o- + g .c .  
i=l 

3L (9) 

+UZa~,~aj,~a~,-~aj,-~ 
j=l 

where index i labels 3-site unit cell (allyl), + a3L+l = 0 .  

According to Lieb's theorem [31 ], the ground state spin of this Hamiltonian 
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Fig.2. Fragment of polyallyl chain. 

equals half the number of unit cells if the half-filled band is considered. For real 
materials, a filling of the band may be less than half as the result of the influence 
of acceptor admixtures. Therefore the question arises as to how the holes in the 
half-filled band of the model influence the energy spectrum. Here we will 
consider only the strongly correlated limit of (9) - the U=oo Hubbard model for 
polyallyl chain. The case of big finite values of U (t-J model for polyallyl chain) 
is described in [24]. 

Let us enumerate all the electrons of the chain in succession along the cells 
of the chain. Making use of the spin permutations, one can obtain the 
Hamiltonian (8) with U = oo in the form 

H:Z{tlb3+._z+tzb3++t3[1-b3+b3i(1-Ql,l+lb3+.+l)l}b3i_l+H.c. (10) 

For one hole in the half-filled band, the exact energy spectrum of the chain 
with free ends formed by L unit cells is spin-degenerate, similar to the spectrum 
of the uniform Hubbard chain with U = ~ .  In the case of periodic boundary 
conditions an electron hopping between the first and the last unit cells of the 
chain leads to the additional term to the Hamiltonian (9). For one hole in the 
half-filled band this term has the following form: 

+ lblQ + + Q+ b3L- 1,3L-1 bl b3L-1 , 1,3L-1 

In the case of periodic boundary conditions the chain Hamiltonian 
commutes with the operator that displaces all electrons by one unit cell 
cyclically. Therefore, its eigenfunctions must be characterized by the hole quasi- 

2rcm 
impulse k - ~  (m=l,2,...L). The symmetry-adapted basis functions 

L 
corresponding to a fixed value of k have the form 

L-1 

~g TM ( k ) :  Z e x p ( - i k l ) Q  -3' (c + + + ) ,,3L-1 1 b + + [0)| sg  (11) 31+1 c2b31+2 c3b31+3 
l=1 

where I 0) is a vacuum state for holes, and the ci are arbitrary numbers. 

After simple manipulations with the cyclic permutations, one obtains the 
following Hamiltonian: 
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0 0 

H -  h 1 0 h 2 , 

0 h 2 0 

h 1 : qI  + t 3 exp(ik)Q~L_lQ2, 3 , h 2 =t21 (12) 

It is easily shown that h~ is a normal operator (h~h~ = hlh ~ ). Therefore, the 

spectrum of H is determined by the following expression: 

~'i =+  +~ , O, (13) 

where co i is an i-th singular value of matrix h~. 

For t 2 - 0  the Hamiltonian H describes a one-dimensional Hubbard lattice 

(chain) with the alternating values of hopping integrals. Evidently, the spectrum 
of such a system must coincide with the set of singular values co i- This 

spectrum is known for arbitrary values of L. Consequently, the exact spectrum 
of (12) is determined by Eq.(13), where (_D i are the energies of a dimerized 

Hubbard chain containing 2L sites and 2L-1 electrons. The full spin of the state 
with the energy '~'i is determined by 

S =lSo,+__m l, (14) 

where So, is the spin of the state of a dimerized chain with energy co i, m=l/2, 

3/2, ... L/2 for odd L and m=0,1, ... L/2 for even L. 
The ground state of the polyallyl chain is spin degenerate and has the energy 

E 0 - - [ ( t l  + t3)2+ t2] '/2 (15) 

Some excited states are partially spin-degenerate because of partial spin 
degeneracy of corresponding states of the dimerized chain. 

For several holes, spin permutations Qt,t+l occuring in (9) lead to the mixing 

of different spin configurations, even in the case of the polyallyl chain with free 
ends (in contrast to the uniform chain). 

3. E F F E C T I V E  H A M I L T O N I A N S  F O R  T H E  L A T T I C E S  F O R M E D  B Y  
WEAKLY INTERACTED SEGMENTS 

As has been shown by Nagaoka [32] and Thouless [33], for some types of 
lattices, the ground state of the U = ~  Hubbard model with one hole in a half- 
filled band, has a maximal value of total spin. The generalization of this result 
was given by Tasaki [34]. The possibility of saturated ferromagnetism for some 
holes in the band is a delicate issue depending on the lattice structure and the 
density of electrons. Thus, for the U=~ Hubbard model on the rectangular 
lattices consisting of weakly interacted n-site segments, there is a cascade of 
concentration transitions with regular oscillation of the ground state multiplicity 
between minimal and maximal values [23,3 5]. In other words a multiband 
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Fig.3. Triangular lattice strip formed by weakly imeracting 3-site segments. 

anisotropic model shows ferromagnetism for finite concentrations of holes. A 
similar result has been proved for the case n=2 in the limit of the large interchain 
hopping [36]. The consideration of anisotropic triangular lattice strips is more 
complicated but is of interest because some new lattice models with the 
ferromagnetic ground state contain triangles, the importance of which for the 
stabilization of ferromagnetism has been widely recognized [37, 38]. 

Let us consider a triangular lattice strip formed by weakly interacting linear 
n-site segments (Fig.3), the energy spectrum of which is described by the 
Hubbard Hamiltonian (3) with a i = 0. In the absence of interaction between 

segments (t2, t3=0) all states of the strip are spin degenerate and corresponding 
energies are sums of quantities (4). The interaction between segments leads to 
electron hops. If electrons are numbered in succession over the segments, these 
hops lead to cyclic spin permutations similarly as in the above consideration. As 
a result of these permutations, mixing of spin configurations and splittings of the 

spin-degenerate energy levels take place. For It21, I, l << I,,I this splitting can be 
considered by means of perturbation theory (PT). In the absence of interaction 
between segments the most regular distribution of electrons through the 
segments corresponds to the lowest energy (naturally, in general we have several 
different distributions with the same energy). Therefore, for the lowest energy 
states the filling of the neighbor segments cannot differ by more than one 
electron, and there are two different cases: interaction of neighbor segments with 
different numbers of electrons and the interaction of the segments with equal 
fillings. 
3.1 Two neighbor segments with different filling 

It is easily seen that for the lattice formed by two neighbor segments with s 
and s+l electrons the spin degeneracy is resolved in the first PT order in t2, t3. 
By making use of the cyclic spin permutations similar to the above consideration 
of rectangular lattice strips, one can construct the corresponding effective 
Hamiltonians describing low energy states of the lattice. 

For simplicity, let us first consider the case of two-site segments with 3 
electrons and t3=0. Because of infinite electron repulsion there are only two 
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Fig.4. Electron hops in the system of two weakly interacted segments with three electrons 

different distributions of electrons through the segments (two electrons may be 
situated on the first or the second segments). The corresponding wave functions 
of the segments are specified by Eq.(6). If two electrons are on the first 
segments only the electron transfer from the first one to the second segment is 
possible (Figure 4). Carrying out summation over the lattice variables ni one can 
obtain the following first PT order Hamiltonian 

H1,3 =-~(Q1 ,2  + Q2,3Xal"a2 + a~al), (16) 

+ 
where the spin-free Fermi operator a i creates the two-electron state on the i-th 

segment. 
The Hamiltonian (8) can also be rewritten in a "pure" spin form if the spin 

space of double dimensionality is taken into account 

~-t2 ( 0 QI,2 +Q2,3) 
H ( 1 , 3 ) = - , .  QI,2 +Q2,3 0 (17) 

For t 3 ~ 0 the Hamiltonian describing the interaction of two neighbor two- 

site segments with one and two electrons has the form 

H(1,3)- A = - - - _ _ 1 , 2  + Q2,3 +/~ Q1,3 _ At= (18) 
A + 2 Itllt2 

It is easily seen, that to change the numeration of electrons we can obtain 

similar Hamiltonian H* with Hermitian matrix A* 

A* = - t2 {QI,2 + Q23 +/zl} 
2 

This Hamiltonian has the same spectrum because of the identity 

, 0) 
H = R + H R ,  w h e r e R =  ,3 , (19) 

Q1,3 
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and there is a simple relation between eigenvalues A i of I-I* and eigenvalues ~:j 

of the matrix A*" A, i = +e j ,  i = 1,2...6; j = 1,2,3. To use this relation it can be 

shown that Hamiltonian I-I* has the ground state spin S0=3/2 only if~ >_-0.5. 
Therefore for positive values of all hopping integrals I-I* gives a ferromagnetic 
spin alignment of interacting neighbor segments. 

For n=3 the same consideration after simple manipulations gives the 
effective Hamiltonian: 

/ 0 0 H(1,3) = 
A+ 

A = - t-2 {9(Q1,2 + Q 2 , 3 ) -  Q1,3 - I  - ~ 2~ff-2(Q1, 2 + Q2,3 - 2Q1,3 )}" 
16 

(20) 

For two neighbor n-site segments with s and s+l electrons a similar 
consideration gives the Hamiltonian" 

H(1,2s + 1)= A = J(k,l)(Qt,k+s + Qk,t+s) (21) 
A + 

k,l=l 

fZ o J ( k , l ) -  t 2 o(i ,k,s + 1)Goo(i,l,s + 1) 

i=1 

n-1 t + t 3 E G o o ( i  + 1,k,s + 1)Goo(i,l,s + 1) (-1) k+/+s 

i=1 

Grp (i,m,s ) - E A  r (n 1 ,r/1 ,...rtm_ 1 ,i, nm+ 1 ,...n s )Ap  (n 1 ,r/1 ,...r/m_ 1 ,nm+ 1 ,...n s ) 
l<n, <n 2 ...<n~ <n 

Here each ordering set of integer number ri corresponds to a possible eigenstate 
of isolated linear n-site segments, described by the Hamiltonian (1). All these 
states are spin-degenerated and are specified by Eq.(5). Index 0 corresponds to 
the ground state of the segment with the energy 

sin(fl s) 
Eo( ) = -2[t, lcos(/ (  + I)) si-~(fl)- ' 13 = 2(n + i) 
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In the case of the anisotropic rectangular lattice formed by two weakly 
interacted segments (t3=O), there arise effective exchange integrals J(k,l) 
subject to the condition [23] 

s+l  

Z J ( k , l ) = ( - 1 ) s t 2  (22) 

k , l= l  

Because of the symmetric form of the state with the maximal value of total 
spin all the spin permutations give the same contributions to the ferromagnetic 
energy. Therefore the energy of the lowest ferromagnetic state of the rectangular 
lattice formed by two weakly interacting segments with 2s+l electrons, equals 
-It21 independently of s and n. Obviously, this is a minimal possible eigenvalue 

of (21). Therefore, among the ground states of (21) there is one with the 
maximum value of total spin. The exact diagonalization study of the spectra of 
the Hamiltonian (21) at different values of s and n (2 < n < 7 ) shows that all the 
ground states are unique (apart from the trivial (2S+l)-fold degeneracy) and 
have maximal values of total spin [28]. 
3.2 Two neighbor segments with equal filling 

Let us now consider the interaction of two n-site segments with s electrons 
per segment. Single electron hopping between neighboring segments leads to an 
inhomogeneous distribution of electrons through the segments. Therefore the 
splitting of spin-degenerate energy levels appears only in the second PT order in 
t2, t3. Using the proposed spin permutation technique, one may sum over the 
lattice variables to obtain the lattice Hamiltonian in a "pure" spin form: 

s s+l  

H ( 1 , 2 s ) = Z Z J l ( k , l , p , q ) Q +  Q+ k , l + s - l Q p , q + s - I  + Jz(klpq)Ql,k+s q , p + s  

kp=l tq=l 

(23) 

ss + 1 ss + 1 Z B n (k,l,a)B n (p,q,a) 
Ja (k,l,p,q)= 2-EooiS i - ? ; - ( s - ~ - f - ~ ( s  + 1)' 

rt 

a = 1,2 

BrSt u (k,/,1) - t 2 Gor (i,k,s)Gto (i,l,u) + t 3 Gor (i,k,s)@ o (i + 1,l,u) (-1) k+l 

i=1 i=1 

f 2 t BrStU(k,l,2) - t 2 Gor(i,k,s)Gto(i,l,u)+t3 aor(i+l,k,s)Gto(i,l,u) (-1) k+/ 

i=1 i=1 

For the case s=l and n=2 this Hamiltonian has the following form: 
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H(1,2) - !! ,  (2(1 -/.~) Q1,2 
4[tll 

- (1 - / z )  2 -1)  (24) 

Rewriting the spin permutation with the help of the Dirac identity, one can 
obtain the following spin Hamiltonian: 

t 2 
(1 - ft), J2 = t2 [(1 -/z)2 _ (1 - /z )  + 1] H = J ,  S, .S 2 - J 2 ,  J1-~7[  

I x l  

When n is increased, the form of the exchange integrals Jl and J2 is changed 

-/2 7~/~ t22 
only. For example in the case of n=3 and/z = 0 J1 = . . . .  �9 

4 6 It, I 
The increase in s leads to more complicated spin Hamiltonians. Thus, in the 

case of s=2, n=3 and # = 0, this Hamiltonian is of the form 

6 241)  

H1,2 = 2J(P13 + P24 )+-~-(Q1,2 + Q3,4 ) 9 ~,2 41 

3 43)] 3'2 + + + + H.c . ,  J = ~  
1 4 1 16-,/21tl 

(25) 

For/~ : 0  effective exchange integrals J l ( k , l , p , q ) =  J 2 ( k , l , p , q ) :  J ( k , l , p , q )  

obey the condition [23] 
s s+l 

Z Z J ( k , l , p , q )  : O . (26) 

kp:l lq=l 

Therefore, the ferromagnetic state energy of the rectangular lattice formed by 
weakly interacting segments with equal filling should be equal to zero in the 
second PT order in t2. 

According to the results of the exact diagonalization study of the lattice 
Hamiltonian (23), it has a singlet ground state for 2 < n < 5 and 1 < s < 3 [28]. 
For n=5, s=4 and n=6, s=5 the ground state spin So has the values 3 and 4 
respectively. For the case n=6 and s=4, S0=0. Therefore we can suppose that 

0 , s / n < 0 . 8  
S O = 

Sma x - 1, s / n  > 0.8 

3.3 Anisotropic lattice strips and magnetic polarons 

Let us consider triangular lattice strips formed by L two-site weakly 

interacted segments at electron density p < 0.5 p = . The total lattice 

Hamiltonian has a form of a sum of Hamiltonians that describe the interaction of 
neighboring segments" 
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H = H 1 + H 2 , 

L-1 

H 1 = ( 2 - ~ / . / ) t 2 Z ( a + a i + l  +a++lai)-Nt~~tl 2 
i=1 [ ' 

t2~{(Sj.Sj+l-1)(2a+ + )ai  + ) ( 2 7 )  i ai  - a+a i+2 - a i+2ai  lai+l , H 2 = (1-/.t) itl[ i=1 

where a + is a spinless Fermi operator describing the creation of a one-electron 
state on the i-th lattice segment (this state corresponds to the j-th electron of the 
lattice). 

Making use of the consideration proposed by Klein and Seitz [39] for the 
atomic limit of the linear Hubbard chain one performs averaging over the 
ground state of H1 and obtains the following effective Hamiltonian that 
describes low-lying states of (27): 

( sin(4rcP))~'~(Si Si+, _ 2 t 2 1 _ / ~  _ (  ) p -  �9 H : L[t2rc 1(2 - ~) sin(27rp) + - ~  4zr ) /Z~l  1)-Nt2~2 (28) 

It is easily seen that (28) has a form of uniform one-dimensional Heisenberg 
spin Hamiltonian with a well-known spectrum. Therefore the ground state spin 
of our lattice has a minimal value at bt < 1 and a maximal value at ~ > 1. 

The above consideration can be generalized to systems of n-site segments. 
Thus, for the rectangular lattice strip (bt = 0) there is an analytical formula for 

the exchange integrals of the Heisenberg spin Hamiltonian describing the 
interaction of neighboring segments with s=l at arbitrary n [23]. An effective 
Heisenberg spin Hamiltonian which is similar to (28) can be derived. Obviously, 
the ground state of this Hamiltonian has a minimal value of total spin and a 
gapless excitation spectrum. 

For t 2 = t 3 

n ( 1 , 2 ) -  _ 

tl 

- t--~-22, q > O  

4t 1 

S1 .S  2 3 ) ,  tl < 0  

(29) 

Total lattice Hamiltonian is the sum of the Hamiltonians describing the 
interaction of neighbor segments. Therefore in the second PT order in t2 for 
positive values of tl the lattice with one electron per segment has a degenerate 
energy spectrum (because of hole-particle symmetry, positive values of ti 
correspond to the model with more than one electron per site). This degeneracy 
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is resolved in 4-th PT order in t~ and the corresponding effective 
Hamiltonian for two interacting segments has the form 

- 6t-------~ Q12  + , 

spin 

with a triplet ground state. If we have lattice strips with more than two segments, 
there are 4-th order processes, which include three segments. For example for 
the lattice formed by three segments we have the following effective 
Hamiltonian" 

+ 0,3)+ 3(Q,  + Q 3) 6.,3 40} It(1,3) = 128t 3 1 , 3  - -  - -  

This Hamiltonian has a ground state with S0=1/2. Therefore, if for the strip 
we take into account only interactions between nearest segments (i.e., a two- 
particle approximation) we obtain the ferromagnetic ground state. Only the 
inclusion of three-segment interactions leads to the correct ground state spin of 
the lattice strip. 

For negative values of t~ we obtain the uniform Heisenberg spin chain with 
antiferromagnetic coupling which has a nondegenerate singlet ground state. 

Unfortunately, for s>l the corresponding effective Hamiltonians have a 
much more complicated form and the study of corresponding electron systems 
can be provided numerically only. Also, for triangular lattice there are no simple 
sum rules for the effective exchange integrals, which have been derived for a 
rectangular lattice (Eq. (22,26)). 

As has been shown by Takahashi [38], the isotropic case of the triangular 
lattice with a positive value of hopping integrals has a dominantly ferromagnetic 

character. Therefore, increasing the value of t2 (t2 = t3) can lead to the changing 

of the ground state total spin of the lattice strip. 
According to the numerical calculations of the exact spectra of finite lattice 

clusters [26], there is a critical value of t 2 near which a ferromagnetic state of 
the lattice is stable against a few spin flips, but the ground state is a singlet. In 
other words we can suppose that the depolarization of the ferromagnetic ground 
state of the infinite lattice strips for some electron concentrations cannot be 
considered to be a continuous process. The extrapolation of the numerical 
estimations of the critical values of t 2 gives for the infinite lattice formed by 
two-site segments the critical value t 2 ~ 0.63 [26]. For the case n=3, s=l there is 
no such transition. Nevertheless it appears again at s=2, n=3, and it can be 
expected there are transitions with the hopping of the ground state spin mostly 
between the marginal values for corresponding infinite lattice strips. Thus, at 
t 2 = t 3 for triangular lattice strips we have obtained a complicated dependence of 
So on model parameters. 
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When 1/2 < p< 1 there can be one or two electrons at each segment. At 
N=L+ 1 there is one pair. Let us first consider this case in detail. Omitting simple 
but cumbersome manipulations with the spin permutations in the first and 
second order in t2 we can write the lattice Hamiltonian for this filling in the form 

H=H~+H2 
L-I 

HI = --~- j,j+l + Qj+I,j+2 + ~Qj,  j+2 bj+lbj + H.c. 
j=l 

t~ b +b +lb~.+l 2 ( 1 - p ) Q i ,  i+l - ( 1 - P  - 1  
41tl [ j b j j  

l=1 

(30) 

l-1 

i= s  
k=l 

L-I t + s  j+,]b~.bj + [ A ( j ) -  2p Qj+,,j+2]b + b j+l j+l , 
j=l 

_Q+. A( j )  = 2 + p2 - Qj, j+2 j,j+2 + 2p Pjj+2, 

where ~i ,  j) is a Kronecker symbol; b,. + is a spin-free operator creating a pair of 

electrons on the i-th segment (-( b,.+)2 - 0 ). 

The numerical study of the exact spectra of the finite lattice strips with 
different values of parameters t l ,  h and t3 shows that for 1 > p > - 0 . 5  there is a 

monotonic decrease in the ground state total spin with the increase of the 
interaction between segments [26,40]. The increase in the total number of 
segments L leads to the same result. Therefore we can study the stability of the 
ferromagnetic state of a strip, comparing the energies of the lowest states with 

S = S m a  x and S = S m a  x - 1 at fixed values of L, p and a = . The coincidence 

of these energies gives us an estimation of the critical value of model 
parameters, which corresponds to the boundary of the stability region. This 
estimation can be obtained to use the following single spin-flip wave function 
with the correct space and spin symmetry: 
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~I'1= (~I,N ,~ ' ,~ a.]n (32) anln)+| 2 ' 2 
n=l 

| (L-1 L-l) 1 [ 
~ 2 ' 2  - 2 4 ~  

o2,~(~, 7 - ol~ 

a n  sin(7 ) 

where index n labels a segment with two electrons. For large L this function 
corresponds to the energy 

22 2 
E 1 = t4l]'/tl I (L - l ) -  t 2 (2 + ~)cos, _ t~ 2lt, l(1-/~) (33) 

At a<<l and large L the lowest ferromagnetic energy is 

E 2 = t41/'t ( t -  1)-Itzl(2 +/~)cos (34) t,[ 
Hence at EI=E2 we have the following relation between Hamiltonian parameters 
and the total number of the segments: 

i,, k) L l ii:-;~ 72 (as) 
It should be noted that the same formula could be obtained if we consider 

only the Hamiltonian Ill specified by Eq. (30). It agrees with the results of 
numerical calculations, which show that the estimations of critical value of a are 
slightly modified if only Ill is taken into consideration. 

In thevicinity of/.t = - 0 . 5 ,  the numerical calculations show that an increase 

in the value of a leads to a jump of the ground state total spin from the 
maximum to the minimum value [41]. Therefore Eq. (35) is not valid for the 
estimation of the stability of the ferromagnetic state of the strip in this region of 
the values of parameter ~. 

The results of numerical calculations are in a good agreement with Eq.(35). 
For example, for the strips with L=10-18 at ~=0.5 they are fitted by the formula 
L - 3.293 -~ [40]. 
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Fig.4 Magnetic polaron (big shaded region) for the rectangular strip with N=L+I. 

For the lattice strip with N=L+ 1 described by the Hamiltonian (31) there are 
a few kinds of interactions of neighboring segments. The first one corresponds 
to the interaction of the segments with equal filling (s=l) and leads to an 
"antiferromagnetic" spin ordering at p < 1. The second one corresponds to the 
interaction between the segment with s=l and the segment with s=2 (the 
interaction between the "unit" and the "pair") and produces a ferromagnetic spin 
ordering at /~ > -0 .5 .  The lattice spin structure is formed by the competition 
between these interactions. For the rectangular lattice strip of a two-leg ladder 
type (n=2, p = 0) according to Krivnov and Ovchinnikov [22] this competition 

leads to the formation of a region with ferromagnetic ordering around the pair 
(spin polaron) with sharp boundaries as is shown schematically in Fig.4. Let 
suppose, that for the triangular lattice strip at 1 > p >-0.5 we have a similar spin 
ordering and the ferromagnetic region includes X segments. In the polaron 
approximation [22,26], the total ground state energy of a lattice could be written 
in the form 

7r ~2t2 
t22 lnZ-]t2](2+ )cos - ( L - l )  (36) E(X)  = - ( L -  X)(1-  t t ) ~  tt 

X + 1 4[tl I I l [  

To minimize this function at [t2L, It3[ << ]t~[ we obtain the following estimation 
forX: 

(2 +/-t)Tr2 ]tl I 
(X + 1) 3 = O~i~n~2  ~-2 (37) 

The total ground state spin of the lattice strip is proportional to X. When X 
coincides with L it takes a maximum possible value. In this case one can easily 
obtain the corresponding relation between Hamiltonian parameters and the total 
number of segments L 

(I 1) '/3 
L =  (2+ ~ 2  t l  

(1-/~)ln2 ' 
(38) 

which is close to the estimation (35). 
If N>L+I, there are several pairs. It can be shown that all the pairs form a 

common ferromagnetic region [22]. Omitting manipulations which are similar to 
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Fig.5. The ground state phase diagram of the triangular lattice strip with n=2. The shaded 
region associates with the intermediate values of the ground state spin. 
the above consideration, it can be shown that our lattice at N>L has the 
ferromagnetic ground state if the electron concentration o obeys the condition 

1 l ( 3 ( 1 - p ) l n 2 l t 2 1 ]  1/3 
. . . .  (39) 

Let us consider the case ~ = 1. The difference between the lowest singlet and 
ferromagnetic states of the two-electron systems on two neighbor segments is 

proportional to t4 Therefore, according to the polaron description of the ground 
t, ~" 

state, it has a ferromagnetic ground state at arbitrary values of the electron 
/ N 

concentration p from the interval (0 .5+o/t~J ,  1). 

The main results of the above PT analysis are shown in the phase diagram in 
the parameter space of electron density and ~ (Fig.5). 

Let us now consider the case of the anisotropic rectangular lattice strips with 
n>2. For p < l / n  it is described by the antiferromagnetic Heisenberg spin 

Hamiltonian and So takes a minimum possible value (S0=0 for even N). When 
1/n < p < 2 /n  there is a competition between the interactions of the neighbor 

segments similar to the case s=2, that leads to the formation of the magnetic 
polaron. Therefore in the vicinity of p = 1/n the increase in p leads to a 

monotonic increase in the value of So. When p approaches the critical value 

specified by the analog of Eq.(38) for given n, So takes a maximum value. 
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Fig. 6. Magnetic polarons (big shaded regions) for different values of electron concentration 
p in the interval 1/n < p < 2 /n .  The small ellipses correspond to the two-electron states 
of the segments. 

Nevertheless, there is an important distinction. Two segments with n=2 and s=2 
cannot interact because all the electron hops between segments are forbidden. In 
contrast to this, at n>2 the neighbor segments with the equal filling s=2 interact 
to decrease the value of So. Therefore, at p = 2 /n  So =0, and in the vicinity of 

the value of p =2/n the polaron is formed by units on the background of pairs as 

is depicted in Fig.6. As a result, for infinite L the increase in the value of p in 

the vicinity of p =2/n decreases So to destroy the ferromagnetic spin ordering of 

the lattice. Thus in interval 1/n < p < 2 /n  there is a non-monotonic behavior of 

So as a function of electron concentration p .  

The further increase in p leads to the appearance of segment states with 

three electrons on the background of the pairs. The competition among the 
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S0=1/2 S0=3/2 
Fig.7 The dependence of So on the geometry of the lattice. 
interactions of these segments with pairs and between pairs leads again to the 
creation of the magnetic polaron and to the increase in So and so on. Therefore, 
for the lattice formed by n-site weakly interacting segments there is a cascade of 
concentration transitions with regular oscillations of spin multiplicity between 
minimal and maximal values. The ground state spin of the lattice takes a 

maximum value if p obeys the following condition: 

A+ (s, n, q, t 2) < p < A (s + 1, n, q, t 2), (40) 

where 

A+(s,n, t l , t z ) : s n  
_,+ 1 

_ - a , a =  , s = l ,  2 . . . n - 1 ,  
nrc [t2] 

e(s, n) is a dimensionless ground state energy per unit cell for the lattice formed 

by n-site segments with s electrons per segment. 

Let us consider the lattice consisting of 3 two-site segments (Fig.7) and 
suppose that N=3. If ]tl]>>lt21, the lowest energy corresponds to the 

homogeneous distribution of electrons through segments (one electron per 
segment), and the ground state spin takes a minimal value S0--1/2. On the other 
hand, if Itl I<< ]t21 we can consider the same lattice as one formed by two 3-site 

segments with inhomogeneous distribution of electrons. The ground state spin of 
the lattice in this case takes a maximal value S0=3/2. Hence the multiplicity of 
the lattice ground state is a function of the ratio of hopping integrals tl and t2. To 
generalize this consideration to a L1 by L2 rectangular lattice it can be shown that 
in two limiting cases Itl I>> ]t 21 and It1 ] << It21 this lattice has different values of 

the ground state spin if the electron density p satisfies the condition 

max[A+ (/1, L1 ), A_ (12, L2 )1 < i O < min[A_ (/1 + 1, L 1 ), A+ (/2, L2 )] (41) 

3.4 Lattices formed by segments with alternating values of a 
Quite recently the ferromagnetic ground state in a class of Hubbard systems 

on decorated lattices that contain flat or nearly flat lowest energy bands has been 
found [42,43]. Obviously such multiband systems have more degrees of freedom 
than the one-band model considered by Nagaoka, and we can expect the 
appearance of unusual effects even in the case of infinite electron repulsion. 
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Assume that the rectangular lattice consists of two weakly interacting 
segments, one of them having a nonzero value of a .  This lattice may be 
considered as a simple correlated electron model for stacked donor-acceptor 
crystals. For a >> It2] one can use the cyclic spin permutation technique within 

the framework of PT. As a result, for 2It, I, a it can be shown that the effective 

Hamiltonian describing the interaction between two neighbor segments with s 
and s+ 1 electrons has the form 

s+l s s+2 

H(1,2s + 1)= ZJl(k,l,p,q)Qk,l+sQp,q+s+>~>J2(k,l,p,q)+ " Q+l,k+s+lQq,p+s+l(42) 
Mpq=l kp=l /q=l 

where 

/~s+ls+l (k,l)Brt+ls+l 
~'rt (P,q) 

Jl (k'l' p'q) = El (s + 1)+ E~ (s) - E~ (s) - EZ (s + 1) 
r t  

Brt+ 2 (k,l)BSrt +2 (p,q) 
J2(k' l 'p 'q)= E~(s+l)+E2o(s)_E~(s+2)_E2t ( s_ l )  

rt 

n 

BSp (m,n) = t 2 Z GOt (i'm's)Gr~ (i,n,t)(-1) m + n  

i=1 

sin(flSl,E2 o (s + Elo (s) E01 (s)=-21tllCOS(fl(s + 1))si---~(/~) )= sa 

For example, in the case of n=2 s~=2 and s2 = 1 this Hamiltonian can be expressed 
in the form 

t~ (43) I-I(1,3)= J[(Q13 +Q~-3)ltll + 2(a +ltll)]; J = 
~ 2 ~ ( ~  21tll )" + 

This Hamiltonian has only non-positive matrix elements and its matrix in the 
space of spin configurations cannot be represented in a block-diagonal form 
after any permutation of the basis functions. Therefore, according to the Perron- 
Frobenius theorem its ground state must be nondegenerate. Obviously, the 

minimal eigenvalue of (43) equals -t---L2. Hence the Hamiltonian (43) has the 
a 

ferromagnetic ground state. 
For the lattice consisting of L unit cells and N=2L+ 1 we have 
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L-1 

H --- ~_~I-I(6i- 5,6i- 3) + H(6 i -  3,6i- 1) + H(6 i -  2,6i) + H(6i,6i + 2) (44) 

i=1 

with the ferromagnetic ground state energy 

E 0 = - t 2  ( L - l )  (45) 
a 

and a one-magnon spectrum 

AE(k )  = E ( k )  - E o - a ( a  + ~t ,  [) 1 - - ~  , 

2(k/21; k -47rz A,=0,1..Z/2-1 , 

~ -  L ' 
- 2  

Note, that the similar result may be found for the lattice formed by two 
segments with different hopping integrals t 1 and t~ respectively and a = 0. For 

example, in the case of two-site segments with s,=2 and s2 = 1 ( t~ -  t 1 >> It2 l) the 

lattice Hamiltonian has the form 
t 2 

I-I(1,3) = J[(Q13 + Ql+3)t~ + 2t 1 ]; J =  lt l) 
The ground state spin of this Hamiltonian takes a maximal value independently 
of the nonvanishing value of It1 - t~l. 

Let us consider now a rectangular lattice strip consisting of two-site weakly 
interacting segments with the same value of tl and alternating values of one-site 
energies ~ (two-leg ladder). For N = L +  1 and L>2 the segment with two electrons 
interacts in the second order of PT in t2 with nearest and next-nearest segments. 
The corresponding Hamiltonian for a three-segment system has the following 

H = H 1 + H 2 ,  (46)  

where H1 is described by formula (43), 

t22 [(Q, + Q24)(a + It, I)+ (I + Q34Q,2)lq]]a  a I + H.c. H 2 =  2a(a+21t  ,[) 3 

Here a + is a spinless Fermi operator describing the creation of a two-electron 

state on the i-th lattice segment. 
The interaction between neighboring segments with one electron per 

segment is described by the following spin Hamiltonian: 
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21t, 
I-I 3 (1,2) = 4t 2 _ a2 (Q12 - -  I )  (47) 

As a result we have obtained the effective Hamiltonian with the two types of 
interaction of neighboring segments. The competition between these types of 
interactions leads to the formation of a magnetic polaron similar to the 
anisotropic one band U=oo Hubbard model. 

It should be noted that for the last case the ferromagnetic interaction terms 
appear in the first order of PT in It2[. If the polaron includes X segments the total 
ground state energy of a lattice could be written in the form 

E 0 = - t~  1 + cos + (L - X) 2 
X + I  t 2 - a  

(The term H3 gives zero contribution to the ferromagnetic region energy). 
To minimize this function, we can evaluate the size of the ferromagnetic 

region and the energy and spin of the lattice ground state. For large values of X 
when ot << [t~ [ such a minimization gives 

1 x:(2 2(4t  o,t/  
al,,lln2 (49) 

For 2ltll=a neighbor segments interact in the first order in I',1-The 

corresponding Hamiltonian has the form 

(o ,t2 
H = , A = 2-~I[(Q12 - I) (50) 

It is easily shown that the ground state energy of H equals - ~ ,  where ~, is 
the spectral radius of the matrix A. Therefore (50) gives the ground state with a 
minimal value of total spin. It is of interest, because the first-PT-order terms for 
such lattices lead usually to the ferromagnetic ground state. 

Hence, the small clusters of anisotropic rectangular lattice with n=2 have a 

minimal ground state spin at 2[t,l=a and intermediate values of So at 2]t,l>(x. 

The corresponding results of the exact diagonalization study for the small lattice 
clusters described by the Hamiltonian (1) are in agreement with this conclusion 
[26]. 

Let us consider an anisotropic triangular lattice with alternating values of the 
one-site energy a.  The corresponding general formulas for the interaction 
between n-site segments are more cumbersome because of a more complicated 
dependence on the distribution of electrons through the lattice in zero PT order. 
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We will study only one simple case: the triangular lattice formed by two-site 
segments with the one electron per segment. Omitting cumbersome calculations, 
which are similar to the above one, we obtain the following effective spin 
Hamiltonians: 

Itllt2 {2(1-/./)Q12-1-(1-,/.t)2}, 21ql-a>>maxOt21,lt31) (sl) H(1,2) = 4t 2 _ a 2 

H(1,2)-  -2 t ' t~  Q 1 2 -  t2 (3a2 - 2 a t l  - 6t2),  a -  2ltll >> hi,t= = t3 (52) 
a (a + 2t 1 ) a (a 2 _ 4t 2 ) 

Note, that (51) is a generalization of the Hamiltonian (24). For positive t~ it has 
a ferromagnetic ground state. Note that we have obtained this ferromagnetic 
Hamiltonian in the second PT order in t2, which usually gives antiferromagnetic 
coupling. 

In the case of e = 21tl[ at N=L, even segments may contain one or two 

electrons. Therefore neighbor segments interact in the first order of PT, and the 
corresponding Hamiltonian has a form [40] 

"~ ( ) A 1 ,  2 0 .-.tit2 0 A1, 2 Al,2 = H =  , 2-~1 i [ (1-/.t)Q12 - I ] (53) 

It is easily shown that the ground state energy of H equals - ~ ,  where k is the 
spectral radius of the matrix A. Hence Hamiltonian (53) has a ground state with 
a minimal value of total spin So at ~t<l and a maximal value of So at/~> 1. 

For the strip formed by L segments the lattice Hamiltonian can be written as 
L-1 

I-I"- Z ( R i  + R+)Ai, i+I 
i=1 

This Hamiltonian acts in the space spanned by the basis vectors 

(Di --[ ml , me... mL ) | al , a2""a L ) 

(54) 

(ss) 

The coordinate part of these vectors I ml,m2""mL ) describes the distribution of 

electrons through the segments in zero-order of PT (m21_ 1 = 1,2; m21- 0 , 1 ) .  

The operators Ri act upon the coordinate part of these basis functions only.  Its 
non-zero elements are determined by the following equations" 

R2,_ll ml,...m2l_2,1,1...mL)=l ml,...m2l_2,Z,O...mL) 

Rzl I ml,...mzt_,,1,1...mL}-] m,,...mz,_l,O,2...mL) 
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It can be shown that the energy spectrum of (54) does not depend on the 
sign of the product tit 2 . If we choose a positive sign of tit2, none of the off- 
diagonal elements of the Hamiltonian matrix in the space spanned by the basis 
functions (55) is positive at p>l.  Besides, for two arbitrary basis states Z and q~ 
with the same value of the z-projection of total spin M and finite values of model 

parameters, there always exists an integer n with (Z [I-In [r162 0. This means that 

we have no additional decoupling in the subspace with a specified value of M. 
Therefore, according to the Perron-Frobenius theorem, at p> 1 Hamiltonian (54) 
has unique ground state and all the components of its eigenvector have the same 
sign, say positive. It is true for any subspace with a specified M. Such a 
subspace includes all the states with S >_ M. It can be shown that in the basis (55) 
the lowest ferromagnetic state of the Hamiltonian (54) has all the components of 
the same sign. Obviously it is not orthogonal to the ground state. Therefore at 
p> 1, Hamiltonian (54) has a unique ferromagnetic ground state. 
3.5 Two-dimensional systems 

Let us consider a fragment of the two-dimensional rectangular lattice such 
that the sites are weakly interacting n-site segments situated perpendicularly to 
the plane of the lattice (Fig.8). One can suppose that similar to the rectangular 
lattice strips, at N>L the ground state spin of the lattice can be described by 
means of the polaron hypothesis [44]. Making use of this hypothesis it can be 
shown that the lattice ground state spin takes a maximum value if electron 
concentration p is taken from one of the intervals 

where 

A_(r, n , t •  p < A+(r + 1, n , t •  (56) 

To check the adequacy of this polaron estimate we performed a direct 

numerical study of the exact lowest energy spectra of small ~ x 4~- clusters of 
rectangular and triangular lattices formed by weakly interacting two-site 
segments. The least squares fit of the results of this study gives the following 
dependence between number of segments and a critical value of the anisotropy 
parameter a [44]: 

[ 0.5 
a(r, n)= e(r, n)l A+ (r, n, t• t )= r  n -I + a(r, n~ 0.5 

_ _ , 

o:l i r i 
I ! 

i i 

e(r, n) is a dimensionless ground state energy per unit cell for the lattice formed 

by n-site segments with r electrons per segment. For the square lattice there is a 
numerical estimate: e(1, 2)= - 1.17 [45]. 
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0 
Figure 8. A fragment of two-dimensional rectangular lattice with N=L+ 1. The shaded circle 
corresponds to the region with ferromagnetic spin ordering around the segment with an 
additional electron (the shaded ellipse). 

Square lattice" L = 2.69a -~ 

Triangular lattice: L = 3.50a -0"35 

4. E M E R Y  M O D E L  

One of the simple models of high-T~ superconducting copper oxides is a 
two-band Hubbard Hamiltonian (so called Emery model) [46] 

i,aPi, a + Up Pi, aPi ,aPi , -~Pi , -a  

O'er ia i 

Z( + ) Z  + + tpp Pi+,c, Pj,~ + Pj,c, Pi,~ + Ud d/,odi,odi,_odi,_o (57) 
ij~ i 

Here tpd is the hopping integral, representing the hybridization of oxygen and 
copper bands, tpp describes direct hops of holes between neighbor oxygen atoms; 
a is a difference between the orbital energies 'for oxygen and copper sites, Up 
and Ud are Hubbard energies for oxygen and copper sites respectively. 

us consider a one-dimensional lattice described by (57)with < <  ~,  Let 

tpp=O and Ue=oo and enumerate the spins of holes in succession over the sites 
independently of type. In this case, the lattice Hamiltonian with periodic 
boundary conditions and one hole in an oxygen band can be written in the form 
[23,47] 

H = J la]a lQl , l+ l  + J2 al+l + a/+la/ + J2 1 a N Q  + + a N a l Q  (58) 

l 
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t 2 t 2 

a + U p  a 

where a~ is the creation operator for a hole at l-th oxygen atom, while Q is the 

cyclic spin permutation of all N+ 1 spin variables of 2N-site lattice. 
The Hamiltonian (58) commutes with the operator that displaces all the 

spins by one unit cell cyclically. Therefore, the eigenfunctions of (58) must be 
characterized by hole quasi-impulse k = 2 ~ m / N  (m=l,2...N). The symmetry 

adapted basis functions corresponding to a fixed value of k can be constructed 
by the usual group theory technique. 

N 

Wk,x = N-)/2 Z exp(ikl)Qt+la +u-' +' 10)O'~ (59) 
1 /  

1=1 
Omitting simple manipulations with the cyclic permutations, we can rewrite the 
Hamiltonian (1) in the following form: 

H = Jl (Q1,2 + P1N+I )+ J2 [exp(ik)Q1,N+l + exp(-ik)Q~,N+ 1 ] (60) 

So, to use the spin permutation technique we constructed the symmetry 
adapted lattice Hamiltonian in a compact operator form and essentially reduced 
the dimensionality of the corresponding eigenvalue problem. The effects of 
tpp r 0 and the additional superexchange of copper holes are considered in [48]. 
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Chapter 22 

Many body  V B  ans itze. From polymers  and ladder 
materials  to the square lattice 

M .  A.  G a r c i a - B a c h  

Departament de Fisica Fonamental, Facultat de Fisica, Universitat de 
Barcelona, Diagonal 647, 08028 Barcelona, Catalunya, Spain 

SUMMARY 

We consider different variational localized-site wave functions, i.e. a cluster- 
expanded ansatz based upon a N~el-state as a zero-order picture, and 
Resonating Valence Bond ansStze, for the spin-i/2 antiferromagnetically- 
signed Heisenberg Hamiltonian appropriate for square lattice strips and 
conjugated polymers. For Resonating Valence Bond ansiitze a Long-Range 
Spin-Pairing Order can be used to separate the space generated by the cova- 
lent Valence Bond configurations into different subspaces. The equivalence 
among different subspaces when connected by symmetry operations opens 
the possibility of either twofold degeneracy or spin-Peierls distortions. De- 
generacy, energy ordering, and discontinuities in the Long-Range Spin- 
Pairing Order due to the presence of topological spin-defects rationalize the 
differences among different strips. Computationally feasible formulae for 
expectation values are obtained using either a powerful "Transfer-matrix" 
technique or a "residual-overlap-ratios" technique. 

1.  I N T R O D U C T I O N  

Before the discovery, in 1986, by Bednorz and Miiller [1] of high-T~ super- 
conductivity, there was a rather widespread belief that Solid State Theory 
was satisfactorily built so as to allow the comprehension of any solid state 
problem, provided the computations to be carried out were feasible. Nour- 
ishing this believe there was, on the free quasi-particle side, the Fermi 
Liquid Theory and tools as Green Functions and Diagrammatic Pertur- 
bation Theory, which allowed to study most of the band-theoretic-based 
solid-state properties. Namely, Diagrammatic Perturbation Theory has 
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been the major theoretical tool for treating interactions in metals, semi- 
conductors, itinerant magnets, and low Tc superconductors. Nevertheless, 
one already could found in the literature some papers pointing to problems 
needing a deeper understanding (see, for instance the pioneering work of 
Anderson [2]. 

In the opposite end, in the strongly correlated domain, magnetic behav- 
ior was studied via Ising and Heisenberg-related empirical Hamiltonians, 
with actual results mainly semi-classical or mean-field-like. 

To cover the gap between them the Hubbard model Hamiltonian was 
quite generally accepted. This Hamiltonian apparently has the ability of 
mimicking the whole spectrum, from the free quasi-particle domain, at 
U=0, to the strongly correlated one, at U --+ c~, where, for half-filled band 
systems, it renormalizes to the Heisenberg Hamiltonian, via Degenerate 
Perturbation Theory. Thence, the Heisenberg Hamiltonian was assumed 
to be acceptable only for rather small t/U values. 

However, in the preceding two decades, there have been many exper- 
imental discoveries, beside high-T~ superconductivity, evidencing that we 
do not have yet the proper theoretical skills and tools to deal well with 
strongly correlated electron systems. For instance, heavy-fermions, frac- 
tional quantum Hall effect, ladder materials, and very specially high-T~ 
superconductivity seem not accessible from the weak coupling limit. 

To deal with these systems, the solid state community has turned to 
effective Hamiltonians, the more paradigmatic being the Hubbard, the 
t-J and (at half filling) the Heisenberg models. For instance, Ander- 
son [3] suggested that the important features of the undoped High T~ 
parent compounds can be described by a Heisenberg Hamiltonian on a 
two-dimensional square lattice with one electron per site. More recently 
Dagotto [4] proposed that this model on square lattice strips are also rele- 
vant to describe the ladder materials. 

Meanwhile in Chemistry the Heisenberg Hamiltonian, which is known as 
the (covalent-structure)valence-bond (VB) model, has also been applied 
to conjugated systems. Therefore, some parallelism can be established 
between ladder materials and long conjugated polymers. 

Nevertheless, several concerns emerged related about the adequacy or 
the predictive capability of the model Hamiltonians. Particularly, it has 
been argued that Coulomb interactions are not strong enough to justify 
the Heisenberg or the t-J model Hamiltonians for high-Tc superconduc- 
tivity. However, in the literature one can find different derivations of el- 
fective Hamiltonians [5-10] enlarging its validity beyond the generally ac- 
cepted Degenerate Perturbation Theory limit. Even more, it has also been 
claimed [11] that the Hubbard Hamiltonian is a good approximation to a 
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more complete Hamiltonian (with more extended Coulombic interactions) 
largely when the Heisenberg Hamiltonian is too. 

The appropriate parameterization is also essential to the predictive ca- 
pability of model Hamiltonians. Hence, much progress has been achieved 
on the computation of reliable appropriate parameterizations [12-15], ob- 
tained by accurate electronic structure calculations using as external input 
the crystal structure only. Here, we will not pursue on these two topics 
furthermore. 

A third concern about correlated systems is related to the task of solving 
the appropriate effective Hamiltonians and extracting information from 
them. Our interest here concerns work towards this goal. Thence, in this 
chapter we focus our attention on some useful tools and different many- 
body wave functions which allow extracting information from Heisenberg- 
like Hamiltonians with controlled approximations capable of a systematic 
improvement. This chapter cannot pretend to be exhaustive, though. 

This chapter is organized as follows: The quantum antiferromagnetic 
spin-l /2 strips and their unit cells are described in Section 2. The Model 
Hamiltonians considered here are presented in Section 3. The N@el-state 
based cluster-expanded a n s a t z  can be found in Section 4. The resonating 
valence-bond cluster-expanded ans i i t ze  and their properties are presented 
in Section 5. In particular, the model space generated by the covalent 
valence-bond singlet configurations can be found in Subsection 5.1. The 
long-range spin-pairing order underlying the covalent VB singlets is devel- 
oped in Subsection 5.2. The Resonating Valence Bond cluster-expanded 
a n s a t z  are described in Subsection 5.5. The treatment of expectation val- 
ues by a transfer matrix technique is described in Subsections 6.2. Some 
results and its discussion can be found in Section 7. Finally, the conclusions 
are presented in Section 8. 

2. QUANTUM ANTIFERROMAGNETIC SPIN-l /2  STRIPS 

For the sake of simplicity, we limit ourselves to extended half-filled bipartite 
systems, with equal number of sites in each sublattice, A (non-starred) and 
B (starred), 

N A --  N B -- N ,  (1) 

showing finite width and infinite length (L --+ cxz). We will refer to them 
as s t r ip s .  

These strips are presumed to be t r a n s l a t i o n a l l y  s y m m e t r i c  along L, with 
periodic boundary condition. Each site of the strip is taken to wear a 
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Figure 1" Some examples of fragments of strips: (a) Square lattice strip or ladder of 
w-3, (b) polyphenantrene, (c) polyaceacene, (d) poly(benz[m,n])anthracene. The region 
between two dashed vertical lines define a (reduced) unit cell 

spin--i/2. Examples of such strips are CuO2 square-lattice and carbon 
honeycomb strips. These include ladder materials as well as conjugated 
polymers, such as polyacetylene (P), p-polyphenylene, polyacene (PA), 
polyaceacene (PAA), polyphenantrene (PPh), polyperylene (PPR), poly- 
(benz[m,n])anthracene (PBA) polymers, or even carbon nanotubes. Some 
examples of strips can be seen in Fig. i. 

The strips may be divided into unit cells or eventually reduced unit cells 
(see Fig. 1), when the space group of the strip contains operations involving 
glide-reflections or screw-rotations, i.e. a combination of an improper re- 
flection or two-fold rotat ion followed by a non-primitive translat ion of half 
a unit cell, which by themselves do not leave the lattice invariant. Each 
cell will contain w sites, w x L - 2N. 

Along with the primitive translations, and glide-reflections when appro- 
priate, there are other symmetry  operations belonging to the space group. 
In bipart i te systems, it is relevant to classify any symmetry  operation ac- 
cording to whether it leaves each sublattice invariant or transforms one 
into each other (see, for instance, Fig. 2). 



733 

- . . ~ .  

(a) 

(b) 

Figure 2: (a) The polyphenantrene polymer with its glide-reflection plane. Here the A 
and B sublattices are invariant under this symmetry operation. (b) Polyaceacene polymer 
with its glide-reflection plane. Notice that here the A and B sublattices transform one 
into each other under this symmetry operation. 

3. M O D E L  H A M I L T O N I A N S  F O R  Q U A N T U M  S P I N - l / 2  S T R I P S  

The lowest-lying fraction of the strips spectra is assumed to be describable 
by a spin Hamiltonian 

H =/-/8 + H~, (2) 

where H~ is a spin-independent distance-dependent term and H~ is the 
antiferromagnetic quantum spin -1 Heisenberg Hamiltonian, 

H~ = E J~i,mj s~i . smj , (3) 
ni,mj 

where Sni is the spin operator for spin on site ni, n indicating the cell 
and i the site within the cell, and the J~i,mj are the exchange-coupling 
parameters. The Jni,mj a r e  assumed to decrease very rapidly with distance. 
Even more, frequently the Heisenberg Hamiltonian is restricted solely to 
the nearest-neighbor terms, 

H s ---k Hnn - E J ( n i , m j ) S n i ' S m j ,  (4) 
(ni,mj) 

(ni, m j }  indicating that ni and m j  are nearest-neighbor. 
Recently the appropriate Jni,mj values for some ladder materials [16,17] 

as well as for the well-known CuO2 planes shown by high-Tc superconduc- 
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tors [14,15] have already been obtained. Meanwhile, for the conjugated 
polymers, the ab initio distance-dependent J(r) as well as the two-body 
contributions, R(r(ni,mj)), to the spin-independent term, Hr, were obtained 
early in 1984 [18], 

(5) 
(ni,mj) 

Since the degrees of freedom for a spin-l /2  system with 2N sites grows 
as 22N, solving the spin- l /2  Heisenberg Hamiltonian for extended systems, 
is not an easy task. In fact, exact solutions for spin- l /2  nearest-neighbor 
Heisenberg models are largely limited to that  of Hulth~n [19] for the linear 
chain. Thence approximate solutions are generally required. In doing 
so, special care must be taken to ensure size-consistency, since we are 
dealing with extended systems. Therefore, we will focus our attention 
on wave functions obtained as cluster-expanded 'excitations' acting on an 
appropriate zero-order wave function. 

Rough approximations to the ground state for the Heisenberg Hamilto- 
nian to be used as our zero-order wave-functions are the N~el state and the 
Kekul~ or dimer-covering VB structures. The N~el state is mostly used in 
Physics. Although it is not a singlet, thence violating the Lieb and Mattis 
theorem [20], it has the suggestive image of a spin-ordered classical anti- 
ferromagnet. The alternative of using the dimer-covering configurations as 
a rough approximation to the ground state seeks to take advantage of the 
fact that the Heisenberg Hamiltonian commutes with the total-spin oper- 
ator and the Lieb and Mattis theorem ensuring that the ground state is a 
singlet. At this level of approximation, it is seen that the energy expecta- 
tion value is lower for the N~el state than for a single dimer-covering VB 
structure when the number of nearest-neighbors is greater than three. A 
paradigmatic case where the N~el state is far from the actual ground state 
is that of a linear chain, with a coordination of two. Nevertheless, in the 
two-dimensional honeycomb fragment or strip, with mixed coordination 
numbers of two and three, or the square-lattice strips, with coordination 
of three and four, reasonable doubts emerge about the nature of the ground 
state. For instance, either the inclusion of next-nearest-neighbor spin inter- 
actions or better ground-state wave functions can reverse the rough-level 
energy ordering. 

Therefore, two main different kinds of variational localized-site cluster 
expanded ans~tze have so far been considered: first the Ndel-state-based 
ans~itze (NSBA), where the N~el state is the zero order wave-function from 
which the trial wave-functions are generated, and second the Resonating 
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VB (RVB) ansi i tze,  where the trial wave-functions are a weighted super- 
position of singlets, each singlet being a product of N two-body singlets 
on two (not necessarily nearest-neighbor) sites at a time. 

4. T H E  N E E L - S T A T E - B A S E D  C L U S T E R - E X P A N D E D  A N S J k T Z E  

The cluster expanded wave-function ans~itze in this section are based upon 
the N~el state as a zero-order wave-function, 

niEA mjEB 
H o~(ni) IX /~(mj), (6) 
ni mj 

where c~(ni) [/~(ni)] indicates that  the spin of the electron on site ni  is 
+1 /2  [-1/2] .  

Start ing from ION}, we notice tha t  it is neither an eigenstate of a Heisen- 
berg Hamiltonian nor an eigenstate of the total spin operator S 2. For 
instance, the N~el state is not invariant under the action of the nearest- 
neighbor X Y  spin terms of the Heisenberg Hamiltonian, which may pro- 
duce a spin-flip on two nearest-neighbor sites at a time with respect to 
I(I)N). These X Y  'excitation operators'  from the 'vacuum' I(I)N}, can be 
writ ten as 

F(+i - + ,mj) : 8niSmj,  n i  E A,  (7) 

• -- x -4- isYi Since I(I)N) is invariant under the action of the spin where 8hi 8hi 
terms involving sites an even number of bonds apart,  the relevant excita- 
tions above the N~el state would be those between sites an odd number 
of bonds apart. As it is expected that  the spin interactions between sites 
more than two bonds apart  are small, for the sake of simplicity here we 
will limit ourselves to the excitation operators of Eq. (7). 

Therefore, a family of states susceptible to mixing with the N~el state 
are obtained when applying to the N~el state a product of an arbi trary 
number of such F(ni,mj) excitation operators in an "unlinked" way, 

er(~) 
+ + 

F r ( , )  I I  - (S) 
(hi,my) 

where F(#) is a not-necessarily-connected set of # bonds of the strip with 
no sites in common. Thence, a lowering of the energy, with respect to that  
of the N~el state, occurs for an ansa t z  defined within a space spanned by 
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the family of states of the form 

( 9 )  

Notice that  the N~el state belongs to this space, Io ) - F Io ), where 
stands for the empty set. 

For a finite system, approximate eigenstates within the space generated 
by the ]or(,)} could be obtained by Configuration Interaction (CI), 

- E (10) 
r(~) 

For L --+ co, the 'exact'  values of the CI weight, Cr(,), of each state into 
the ground state cannot be obtained. Therefore, they are to be written 
as a function of a few variational parameters. To do so, every [mr(~) ~ N  ) can 
be viewed as made of connected clusters with a spin-flip pattern in each 
connected cluster. Any spin-flip pattern in a connected cluster can be 
writ ten as 

+ + (11) 

In Eq. (11), I~(,) is the identity operator on the set of sites r/(v), which 
contain v sites; ~(#) is a set of # bonds with no site in common, and ~(#, v) 
is the connected cluster of the 2# sites in "y(#) and the p sites in ~(v), 

9'(P) U ?7(v) - ~(#, v), (12) 

"y(#)n?7(v) -- 0. (13) 

We associate a variational parameter x~(,,~) to the spin-flips pattern + P~(,,~)" 
Thence, variational localized-site cluster expansion ans~tze based upon 

the N~el state can be defined as 

(14) 

where 

2#+v<M 
:P~= E x~(.,v):P4(.,v), (15) 

~(~,~) 

and the summation is limited to connected clusters of no more than M 
sites. The x~(~,~) are scalars to be optimized, while submitted to appropri- 
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ate t rans la t ion-symmetry  restrictions. U indicates tha t  only the unlinked p+ + 
port ion of e M is to be retained, i.e., a product  as rI~(u,~) 7~(~,~) is to be re- 

tained in the Taylor series expansion of e ~ only if none of the sets ~(#, v) 
in the product  have a site in common. 

Notice tha t  different levels of approximation can natural ly  be achieved 
when allowing a set of increasing values of M. 

4.1.  L inear  cha in  
For the linear chain, any connected cluster ~(#, v) is simply a set of 

consecutive sites {n, n + 1 , . . .  n + m}. Numerical results for a n s ~ t z e  us- 
ing connected-cluster pat terns  involving up to M = 4 sites, for a l ternate  
chains, and up to M = 5 sites, for regular chains, have been obtained so 
far. The hierarchy of pat terns  have been defined as 

+ 
~{n,n+l} ~_ xnF(n,n+l), (16) 

"P~n,n+l,n+2,n+3} ---- ynF(n,n+l)F(n+2,n+3) + ZnF{n,n+3}I{n+l,n+2}, (17) 
+ 

~{n,n+l,n+2,n+3,n+4} -- tnF(n,n+l)Z{n+2}F(n+3,n+4). (18) 

The Xn, y~, z~ and t~ are variational parameters  submit ted  to t ranslat ional  
symmet ry  restrictions, Vn+m = Vn, V - -  X, y ,  Z, t ,  where m = 1 for a regular 
chain, and m = 2 when al ternating translat ional  symmet ry  conditions are 
desired. 

4.2. S t r i p s  w i t h  w > 1 
For strips with w > 1, up to now the NSBA has been limited to M - 2 

a n s i i t z e .  Thence 

- E (10) 
(ni,mj> 

The variational parameters are submitted to translational symmetry re- 
strictions and are assumed to be different when associated to spin-flips 
on non-equivalent bonds. Several conjugated polymers and square-lattice 
strips have been treated so far. 

5. THE RESONATING-VALENCE-BOND ANSJkTZE 

Since the Heisenberg Hamiltonian commutes with the total-spin opera- 
tors, the 22N-dimensional spin space can be separated in subspaces with 
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well defined total spin S 2 and S ~. Trivially, there is only one totally fer- 
romagnetic state, i.e. with spin S - S z - N ,  IN, N ) .  From it, 2N states 
with S z - N -  1 can be obtained by the action of the s~-/, ni  ranging. 
Linearly independent combinations of these sn~lN, N )  yield the IN, N - 1) 
state plus 2 N -  1 different ] N -  1, N -  1) states. Furthermore, applying 
to the totally ferromagnetic state products such as Sn-~Smj , ni  ~ m j ,  it is 
easily seen that  

d 2N N + d 2NN1 + d 2N N 2 -- 
2 N ( 2 N -  1) (2N)! 

2! 2 ! ( 2 N -  2)!' 
(20) 

where d2N_m is the number of states with S -  S z - N -  m.  Following this 
line of reasoning, it can be easily shown that  

4 . . .  _ 1 + +d2N-m --  
(2N)! 

m ! ( 2 N - m ) ! "  
(21) 

Therefore, with this recursive relations, the dimension of any well-defined 
spin subspace can be obtained. In particular, since the results of Lieb and 
Mattis [20] establishes that  the ground state of systems with equal number 
of sites in each sublattice must be a singlet, we will limit ourselves to the 
singlet subspace. Then, the ground state can be written as a weighted 
superposition of a non-orthogonal complete basis set of singlets, [ai}, i = 1 
to d 2N, where d]g can be easily obtained making use of Eq. (21), 

d2 N _ (2N)! (22) 
(N + 1)!N!' 

and is known as the Catalan number. 
In a bipartite system a set of d 2N independent singlets can be con- 

structed by pairing to a singlet each of the N spins in A to a spin in B, 
with no site unpaired. We represent one of these spin-pairings (SP) by 
an arrow from the site in the sublattice A to its partner in B (see, for 
instance, Fig. 3, where a complete set of linearly-independent singlets for 
six-site systems are represented). 

Although the dimension of the space where the ground state is con- 
structed has been considerably reduced with respect to 2 2N, d 2N still grows 
too rapidly with N and truncating the covalent VB basis set is required 
soon. Therefore, the many-body or multiconfigurational (covalent) VB 
wave functions, i.e. resonating-valence-bond-type (RVB) wave functions, 
are to be defined in a still smaller VB subspace. In order of selecting the 
relevant VB configurations in the basis set, we rely on two facts. First, 
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(a) (b) 

Figure 3: A complete set of linearly independent (covalent) singlets for a six-sites system: 
a) l x 6 ; b )  2 x 3 .  

the dimer-covering configurations (or Kekul~ structures [21], as they have 
always been termed in Resonance Theory) are the lowest-lying monocon- 
figurational singlets. Thus, they provide a good zero-order picture upon 
which the longer-range RVB ans~itze are based. Second, the VB configu- 
rations show a long-range spin-pairing order which allow to separate the 
VB configurations into different non-interacting sectors. 

5.1. The  M-range  covalent V B  s tructures  
Although the dimer-covering configurations are the lowest lying VB 

structures, the space generated by the dimer-covering configurations alone 
is not invariant under the Hamiltonian operator. However, on applying 
the Hamiltonian to any Kekul~ structure, it can be noticed that the near- 
ness of spin pairing tends to be preserved. For instance, the X Y  terms, 
s~iSTmj, of the nearest-neighbor Heisenberg Hamiltonian acting on a Kekul~ 
structure yield singlets with SP between sites up to 3 bonds apart (see 
Fig. 4). Then, as a first step, linearly independent singlets with 3-bond- 
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s~ . s  2 ~ ..... ~ ..... ~ = - 3 / 4  ~ ..... ~ ..... 

...... ~ ...... ~ - - ~ =  a 

+b 

~ ' ~  ~ ..... ~ = a  

+b 

+b 

Figure 4: A dimer-covering configuration is an eigenstate of sj "Sk when sites j and k are 
spin-paired. The "off-diagonal" singlet with (i,/*) and (k,j*) pairings is also obtained 
when s j . s~  acts on a VB configuration with spin-pairings (i,j*) and (k,/*). 

range (3BR) SP should be incorporated into the model space, ~/, to go 
beyond the dimer-covering approximation. These 3BR-SP states allow 
sites in the A-sublattice to be SP to sites in the B-sublattice no more 
than 3 bonds apart. These states can be directly generated by the "recou- 
pling" [22,23] of two simply adjacent bond-dimers, i.e. unlinked bond-pairs 
with one and only one site in a pair being a nearest neighbor to a site in 
the other pair. It is worth noting that  these re-couplings satisfy a gen- 
eralized non-crossing rule. Thence, the 3BR-SP model space incorporates 
any singlet obtained from any Kekul@ structure when allowing an arbitrary 
number of unlinked recouplings between simply adjacent bond-pairs. Still 
longer-range model spaces can be obtained allowing an arbitrary number 
of recouplings between longer-range SP (see Fig. 4). Thence 5BR-SP, 7BR- 
SP, .~ would be included into 7-/. Nevertheless, singlets with very long 
bond-range SP should contribute less, so a reasonable model space will be 
that  including singlets with SP up to M bonds apart, M not necessar- 
ily being small. Hence, the RVB wave functions are defined in the space 
spanned by M-BR-SP, with large but finite M. We refer to this space as 
the M-BR model space. In this context, the Kekul@ structures are referred 
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to simply as the I-BR configurations. 
However, we note that the M-range RVB pictures neglect corrections 

lying higher than the M order in Perturbation Theory, which could be im- 
portant for the isotropic nearest-neighbor Heisenberg Hamiltonian for some 
systems. Although, additional frustrational terms in the Hamiltonian are 
expected to stabilize the finite-range RVB wave functions with respect to 
other N6el-based a n s S t z e  (see Ref. 24 and references therein). Indeed, 
there exist finite-range Heisenberg models for which short-range Kekul6 
structures are exact ground states and also short-range RVB a n s d t z e  cer- 
tainly apply for so-called "bond-dimer" models (see, for instance, Refer- 
ences from 25 to 29). 

5.2. Singlets and long-range spin-pairing-order 
In order to reduce the dimension of the model space, several attempts 

have been made to find associated topological quantum numbers which 
would allow to separate the covalent VB space into non-mixing different 
subspaces (see Ref. 30 and references therein). For the linear chain, prelim- 
inary attempts were made early in 1979 [31], when a parameter measuring 
the spin-pairing long-range order was suggested, 

p -- 2 l im (-1)p-n((sn "Sn+l - (Sn" Sn+l})(Sp "Sp+l -- (Sp" Sp+l>)>. (23) 

Recently, in Ref. 30, it has been shown that monoconfigurational covalent 
VB structures for ladder materials show a long-range spin-pairing order 
(LR-SPO). This LR-SPO can be easily generalized to our present strips. 

Let us take f~ to be the right boundary of the cell n. Thus, f~ unam- 
biguously break up the strip in two regions: a left region, Ln, and a right 
region, R~ (see Fig. 1). Furthermore, the f~-I and fn boundaries delimit 
the nth cell. 

We define P+ (P~-) as the number of arrows penetrating the boundary 
f~ with the arrowhead in the R~ (L~) region (see Fig. 5). I~ is the number 
of arrows with both ends in the cell n. l~ (r~) is the number of arrows 
starting in Rn (Ln-1) and with the arrowhead in Ln-1 ( R n ) ,  i.e. with no 

A (w B) is the number of sites partner belonging to the cell nth. Finally, w~ 
in the cell n belonging to the sublattice A (B). Then 

A (24) P ~ _ l  - ln + P +  - rn + In = w n ,  

P + - I  - rn q- P n  - ln q- In  - Wn (25) 
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Figure 5: Fragment of VB configurations showing the values of Dn inside circles: (a) 
Polyphenantrene, with b = 0: (1) D - 0 and (2) D - 1. (b) Poly(benz[m,n]anthracene, 
with bn = - ( - 1 ) ~ :  (1) D = -1 and (2) D = 0. 

Subt rac t ing  Eq. (25) from Eq. (24) 

A B (26) P n _ I  - P+_I  + P +  - P n  - w  n - w  n .  

Making use of the r e s o n a n c e  q u a n t u m  n u m b e r  at boundary  f~ of Klein e t  

al. [32], 

Dn - P+  - P~-, (27) 

we obta in  

A B _ _  b n  ' (28) O n  - D n _ l  - W n - w n 

For t ransla t ional ly  symmetr ic  bipar t i te  systems with N A - N B - N and 
cyclic bounda ry  conditions, either bn is zero or b~ = - b n - 1 ,  al though ac- 
tual  values of bn for a given strip depend to a certain extend on the unit  
cell selected. For instance, b~ is even for ladders with  an even number  of 
legs, while b~ is odd for ladders with an odd number  of legs. In part icular,  
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though, when the unit cells are defined as in Fig. 1, b~ : 0 for ladders with 
an even number of legs, polyacene, polyphenantrene,  or polyperylene poly- 
mers, while Ib~l = 1 for ladders with an odd number of legs, polyaceacene, 
or poly(benz[m,n])anthracene. Choosing A and B sublattices according to 

wJ  - w f  - b > O, (29) 

one has 

A B 
bn - w n - w n - -  - ( - 1 ) n b ,  (30) 

Thence, 

w,A _ 21 [ w -  (-1)"b] , (31) 

wnB _ 21 [w + (-1)nb] . (32) 

Therefore, from Eq. (28) we obtain a recurrence relation for the SPO in 
any cell boundary, 

D n + l  - -  D n  + (-1)~b. (33) 

Then a SPO parameter  D - Do can be associated to any covalent VB 
configuration, so tha t  

1 [1 - ( - 1 )  "] b. (34) D n -  D + - ~  

Since the shorter range VB structures are expected to contribute to the 
lower-lying wave functions, the subspaces of interest will contain VB struc- 
tures with at least one position n where l~ = r~ = 0. At this part icular  
position 

P+ - -  0, 1 , . .  A . W n  , (35) 
B Pn  -- 0, 1 , . . .  W n . (36) 

Therefore, there generally are w + 1 different values of D to be considered, 

w - b  w - b - 2  b + w  

D -  2 ' 2 " ' "  2 ' (37) 
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and the relevant sector of the VB space can be restricted to these w + 1 
subspaces, 7/~, with the values of D from Eq. (37). 

For quantum spin-l/2 ladders, it can be seen that there are dimer- 
covering configurations in any ~ subspace, while that is not so in gen- 
eral. Particularly, when dealing with honeycomb conjugated polymers, it 
is worthwhile to notice that some subspaces do not contain dimer-covering 
configurations. Examples of this fact are the 7_/4 and ~r~42 subspaces as- 1 

sociated to polyphenantrene. 

5 .3 .  L R - S P O  of the  E igens ta t e s  and  D e g e n e r a c y  
So far, we have separated the relevant model space into w 4- 1 sub- 

spaces of different LR-SPO. At this point we note that two singlets from 
different subspaces must be different repeatedly at every position along 
the strip. Since the overlap, (ai]aj) ,  and matrix elements, ( a i l H I o j )  can 
be evaluated using the Pauling's [21,33] superposition rules, by the island- 
counting technique, two singlets from different subspaces are asymptoti- 
cally orthogonal and non interacting via any interaction mediated by a 
few-particle operator. Then, the matrix of the Hamiltonian asymptoti- 
cally block-diagonalizes, so configurations belonging to different subspaces 
do not mix in the configuration-interaction sense. Thus D may be taken as 
a long-range order parameter labeling the eigenstates lI/D of the D block. 

For a given strip, it may happen that under a symmetry operation one 
configuration of LR-SPO D transforms into a configuration of different 
LR-SPO, D ~. That happens in particular for symmetry operations that 
transform one sublattice into each other, since then the arrows representing 
the SP will change their direction. Sometimes such a symmetry operation 
may be the one step translation (or the glide reflection when appropriate), 
7". For instance, when b ~ 0, A and B sublattices always must transform 
one into each other under T, 

TA = B,  (38) 

T B  = A. (39) 

On the other hand, for b = 0, it may happen either that 7- transforms the 
A- and B-sublattices into each other, as for w=even ladders, or alterna- 
tively that A and B sublattices are invariant, as for polyphenantrene (see 
Fig. 2). Thence, for any strip with b ~ 0 and those with b - 0 such that 
the sublattices are not invariant under 7", t h e / / ~  subspace transforms into 
the 7-/~_b_D subspace, 

"f"t t~ -- nWb_D . (40) 



745 

Therefore, there is a one-to-one correspondence among wave functions, 

TI'~D -- ~ - b - D ,  (41) 

and the energy of the corresponding wave functions must be 

ED -- E-D-D. (42) 

Consequently, degeneracy is expected to occur, unless 2D - - b  =even. 
For instance, the D-manifold is spanned by ~D and ~-b-D, which are 
eigenstates of H, but not of T. The eigenstates (I)~ of the translation 
operator, are defined in the D-state manifold, 

1 
{I)B = ~ (~D 4- ~-b-D),  (43) 

SO 

T ~  -- q - ~ .  (44) 

with k = 0 and k - 7r. Even more, if a small variation of the interaction 
strength occurs, as a result of a distortion, then the accidental degeneracy 
of Eq. (42) no longer holds. Therefore, either q~D or ~-b-D will be lower 
in energy and completely dominate the wave function, leading to a spin- 
Peierls broken-symmetry ground state. For instance, early in 1979 [31] it 
was shown that long linear chains, as seen from the point of view of VB 
theory, show a long-range order, measured by the parameter p in Eq. (23), 
leading to a ground-state instability to bond alternation. Bond alternation 
is actually found for polyacetylene (see Ref. 34 and references therein), and 
it is also expected for other conjugated polymers (see Ref. 23). 

5.4. Topological  spin defects ,  exci ted  s t a t e s  and  L R - S P O  
There are different types of excitations conceivable from a Maximally- 

spin-paired ground state. The common fact of any excitation will be the 
existence of an even number of topological spin defects, i.e. non-paired 
sites. Preserving half filling (one electron per site), there are primarily 
spin excitations. In this case, two topological spin defects are obtained by 
breaking one SP to form a triplet state. Away from half filling, hopping 
terms must be retained in the Hamiltonian and the so-called t-J model 
applies, whence, there are low-energy spin and charge excitations. For 
instance, hole doping produces vacant sites, while electron doping produces 
doubly occupied sites, and in both cases doping produces sites that cannot 



746 

be SP. As long the doping is not so strong as to preclude a maximally- 
spin-paired ground state, either a vacancy or a doubly-occupied site may 
also be assimilated to topological spin defects in a sea of singlets, although 
there is no spin associated with them. Still, going up in the hierarchy of 
Hamiltonians, the Hubbard or even a more general Hamiltonian has to be 
considered. In this case, still another type of charge excitations (though 
presumably of higher energy if a Heisenberg-like Hamiltonian is assumed to 
govern the lowest-lying region of the spectrum) can be produced relaxing 
the single-occupancy restriction. This leads to the ionic states, i.e. states 
with at least a couple of sites, one doubly occupied and the other empty. 

Let us now suppose that  there is a topological spin defect on site i of 
cell n, i.e. for any reason the site ni remains not spin-paired. Making use 
of the freedom of defining the cell and the numbering of the sites in the 
cell, without lost of generality, let us number the sites such that  

A, n + i -  even, (45) 
n i E  B, n + i -  odd. 

Then, Eqs. (24) and (25) become 

1 [1 + (- 1) n+i] (46) A 
_ - l n +  .. - r n + I n +  = W n  ~ P n l  

1[1 ( -1 )  n+i] (47) B p + _ l _ r , + p ~  l n + I n + - ~  W n  ~ ~ 

and the recurrence relation across the cell n with a topological spin defect 
on site ni is 

Dn - D n - 1 -  ( -1 )  n [b + ( -1) i ] .  (48) 

If the order parameter to the left of the spin defect is Dr, according to 
Eq. (34), the order parameter to the right of site ni, D~, will be 

Dr - Dt - ( -  1)~+i. (49) 

Thus, a topological spin defect can be seen as a domain wall separating 
sectors with order parameters Dt and Dr. 

Therefore, when the subspaces D and -b-D are degenerate, the energy 
per site associated to the sectors to the right and to the left of a spin defect 
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located at the ni site will be degenerate if 

1 
D t -  ~ [ ( -1)  ~+~- b]. (50) 

Since Dt must be an integer, this equation has a solution only when b=odd. 
Thence, for our bipartite strips with b = 1, that  is fulfilled when Dt = 0 
( D 1 -  - 1 )  with the defect in the sublattice A (B) and Dr - - 1  (Dr - 0). 

Furthermore, it is possible to form a local region between the cells n and 
m of LR-SPO D :t: 1 placing two spin defects in a wave function of LR-SPO 
D, one on a site ni and the other on a site mj,  with n + i + m + j = o d d .  

Thence, when b=odd and D - ( 1 -  b)/2 (D - - ( 1  + b)/2) a local 
region with D - - ( 1  + b)/2 (D - (1 - b)/2) is obtained when n + / = e v e n  
(n + / = o d d ) .  Since subspaces with D (1 - b)/2 and D - - ( 1  + b)/2 are 
degenerate, topological spin defects are not confined, though it may happen 
that  they at t ract  one another (with an ordinary short-range potential). 
For instance, solitons in polyacetylene (with b = 1) can be interpreted as 
a realization of this deconfinement of spin defects. 

On the contrary, for a b=even strip, the order parameter  of the local 
region delimited by the pair of spin defects is in general associated to higher 
energy per site, then the two spin defects should remain as close as possible, 
predominantly in neighboring sites, so confinement is expected. 

5.5. Resonating Valence Bond (RVB) ans~itze 
Within the RVB scheme for the ground state, the simplest wave function 

beyond that  of a single Kekul~ structure can be defined as a simple equally- 
weighted superposition of Kekul~ structures (EWK) within a given LR- 
SPO subspace, 

i D 
- E IK ). (51) 

KD 

However, this approximation is not expected to yield reasonable results 
when the strength of the nearest-neighbor J parameters are different in 
different directions, since then some Kekul~ structures can be stabilized 
with respect to other structures in the same LR-SPO subspace, although 
it can be of some help as an indication about which LR-SPO subspace is 
likely to contain the ground state. Thence, removing the equally-weighted 
constrain is the first step in order of improving the energy expectation 
value. Still better  approximations can be obtained when longer-range VB 
structures enlarging the model space are considered. Different strategies 
have already been applied in order of selecting the singlets involved in the 
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superposition ans~tze and how their weight contributing to the ground 
state is written as a function of a few variational parameters. Thence, we 
distinguish the w -  1 from the w > 1 ansiitze. 

5. 5.1. R V B  ansiitze for  the linear chain 
For the linear chain there is only one Kekul~ structure in each LR-SPO 

subspace. Therefore, two main different ans~tze including long SP may be 
considered. See, for instance, Refs. 24, 31 and 35. 

F i v e - b o n d - r a n g e  R V B  ansa tz :  The M-bond RVB variational local- 
ized-site cluster expansion ans~itze can be defined [31] as 

I M (EP +) , 
( 5 2 )  

where/4 indicates that only unlinked terms are to be retained and the 
subscript s on/~ indicates an excitation is to occur on every site. ~ is 
the excitation operator 

< M / 2  

~)~VI -- E E Vn(2p+l). (53) 
n p = O  

Numerical results for such ans~tze with connected-cluster patterns involv- 
ing up to M - 5 bonds have been treated so far. The hierarchy of patterns 
have been defined as 

+ 1 )n 
:P.(1) -~Xn [(1 ( -1 )  n) (I s~ + + - )] 

- -  - -  - -  8n+l) -- (1 + ( - - 1 ) ( I -  S. 8n+ 1 , 

~[)n~3) 1 _ 8n+3)( I + -~Yn [(1 ( -1 )  n) (I s n + - - - 2 .  

(1 + ( 1 )  n) ( I -  s+s-s S~+l ], 

- -  _ _ _ _ 8 n + 3 8 n + 4 /  Sn+lSn+2)(I + - -~Zn [(1 ( -1 )  n) (I s n + s .§  § 

+ - 
_ _  _ _  8 n + l S n + 2 ) ( I -  - 8 +  ( 1 + ( - 1 )  n ) ( I  s nsn+5)(I - + - n §  �9 

(54) 

( 5 5 )  

( 5 6 )  

The Xn, Yn and zn are variational parameters submitted to translational- 
symmetry constraints, Vn+m - Vn, V -- X, y, Z, where m -- 1 for a regular 
chain, and m- 2 when alternating translational symmetry conditions are 
desired. 
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I n f i n i t e - b o n d - r a n g e  RV B ans~itze: 
defined [35] by 

Infinite range RVB ansiitze are 

I P - E H H 
n p 

(57) 

where cr is restricted to all the linearly independent overall singlets made 
as a product of N non-crossing two-body spin-pairings such that ,  at any 
boundary fn, Pn <_ P, with Pn - P+ + Pn; Xn,p is the variational param- 
eter, submitted to appropriate symmetry constraints, associated to the 
occurrence of p sites preceding a site n + 1 being spin-paired to p sites 
succeeding site n, i.e. Pn = P; finally, 

1, if in a there are p SP penetrating the fn boundary, 
re(n, p, a) - 0, otherwise. 

Actual ansiitze has gone up to P = 4, while P = i gives the dimer-covering 
approximation. 

5. 5. 2. R VB ansiitze for w > 1 
For strips other than the linear chain, i.e. w > 1, we start  with LR-SPO- 

adapted 1BR-RVB ansiitze. These LR-SPO-adapted 1BR-RVB ansiitze 
play the fundamental zero order role for the higher-range ans~itze. Below 
the 3BR-RVB ansiitze are developed explicitly. Generalization to higher 
range ansiitze is straight forward, albeit quite tedious. 

O n e - b o n d - r a n g e  R V B  ans~itze: A one-bond-range RVB ansatz ~D 
showing LR-SPO D is a weighted superposition of dimer-covering config- 
urations with LR-SPO D. They can be written as 

eA  (ni,mj) 

ni m j  

I is the identity operator, UD projects out all the terms with LR-SPO dif- 
ferent than D as well as those where any site appears more than once. It is 
worth noting that  the weight of every specific Kekul~ structure contribut- 
ing to (I'D is a product of the variational parameters x(~i,mj) associated to 
each of the N spin pairings in (I)D. 

T h r e e - B o n d - R a n g e  R V B  ans~itze: Following a strategy parallel to 
that  of the N~el-state based ansiitze, we try to generate a trial wave func- 
tion as a superposition, now, of singlets which are obtained from a cluster- 
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expanded excitation operator acting on the appropriate zero order function, 
i.e. ['I'D). From the Sec. 5.1, the two-body X Y  terms of the Hamiltonian 
acting on a covalent VB singlet such as those in the 1BR-RVB wave func- 
tions of Eq. (58) may produce "off diagonal" states with next-next-nearest- 
neighbors pairings. These off-diagonal states can be directly generated by 
the "recoupling" of two adjacent bond-singlets in (I) D a s  indicated in Fig. 4. 
We denote by ~ i  the operator related to such a recoupling between two 
bond-singlets e and f.  From [(I)D) w e  may build the 3BR-RVB with LR- 
SPO D allowing an arbitrary number of recouplings of two simply adjacent 
bond-singlets. Then, the overall 3BR-RVB excitation operator above the 
1BR wave function is 

Q -  Y~ Y~/qeI, (59) 
(e,f) 

with Y(ef) variational parameters. The corresponding ansatz  is then 

- ( 6 0 )  

where/4 indicates that  only unlinked terms are to be retained. That is, 
in the Taylor series expansion of e Q one retains only products of ~ i  such 
that  no pair index (e or f)  appears more than once. And Q and (I) D a r e  to 
be optimized simultaneously. 

6 .  T H E  G R O U N D  S T A T E  E N E R G Y  

In this section the ground-state energy per site in units of a characteristic 
J of the strip, 

1 ( lHl ) 
JLw ' (61)  

is to be computed assuming translational symmetry and cyclic boundary 
conditions along L. Different strategies are used depending of the kind of 
ansatz .  

For the equally-weighted dimer-covering wave function, the resonance 
energy,  i.e. the ground-state energy correction below the energy of a sin- 
gle Kekul~ structure [2N(-0.375)], is obtained by the Kekul~ structures 
counting method. For the trial wave functions which depend of some vari- 
ational parameters, the local way our ans~itze are constructed allows us to 
deal with the strips locally. Thence, the expectation values of local opera- 
tors accept a treatment based either on the use of a transfer matrix or on 
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a residual-overlap-ratios technique [36,37]. 

6.1. K e k u l d  s t r u c t u r e s  c o u n t i n g  m e t h o d  
Within the dimer-covering approximation the resonance energy in units 

of J,  2Ne~(w, D) depends on configuration interaction amongst the differ- 
ent Kekul~ structures. When an equally-weighted wave function is con- 
sidered, it has been argued [38,39] that  one might consider this energy 
lowering to depend solely on the dimension of the space spanned by the 
appropriate Kekul~ structures. Let n(w, D) be the dimension of the D 
block for a strip with w sites per cell. Since n(w, D) is multiplicative in 
terms of a break up into subsystems while the energy is additive, such a 
functional dependence should be of the form 

CJ 
er(W, D) ~ -w----L In n(w, D), (62) 

where C is a fitting parameter independent of the structure to some degree. 
For energy-ordering purposes the value of C is irrelevant. Nevertheless, for 
the nearest-neighbor isotropic Heisenberg model the value of C have been 
determined for a class of benzenoid hydrocarbons [38] (with C-0.5667) 
and for finite square-lattice fragments [39] (with C-0.75), by fitting the 
logarithm of the Kekul~-structure count to the resonance energy calculated 
from an equally-weighted Kekul~-structure wave function. 

Since the arguments supporting Eq. (62) rely on the fact that the energy 
is an extensive magnitude, i.e. scales as the system size, while the number 
of Kekul~ structures needs to scale exponentially with the system size, 
values of C have been determined for the square lattice [30,39] by fitting 
the logarithm of the Kekul~-structure count to the "exact" energy values 
of Table II of Ref. 39. This yields Cw=0.84, 1.0 and 0.93 appropriate for 
square-lattice strips with L -+ c~ and w - 2 ,  3 and 4, respectively, and their 
weighted average C = 0.94 • 0.19 as a rough estimate of C appropriate for 
the two-dimensional square lattice. 

When the sublattices are invariant under 7-, n(w, D) is easily obtained 
as the Lth-power of the highest eigenvalue, A~D, of the D block of the 
square of a dimer-covering-counting transfer matr ix KD. Otherwise, i.e. 
when under the (pseudo) translation T the sublattices transform one into 
each other as reported in Eqs. (38) and (39), a symmetry  operation of 7 .2 
is needed to leave the sublattices invariant. Thence, the values of n(w, D) 
can be obtained as the L/2 power of the highest eigenvalue, 2 A~D, of the 
D block of the square of a dimer-covering-counting transfer matr ix  K 2. 
Then, in general, the resonance energy of the lowest lying state in the 
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subspace D can be written as 

CJ 
~(w,  D) ~ - - - I n  A~D. (63) 

w 

6.2. Transfer-Matrix Based Technique 

The way the present ansiitze are defined allows one to deal with the 
strips locally and the matrix elements can be evaluated by a transfer- 
matrix technique [22,23,34,35,40-44]. Within this technique one can define 
transfer and connection matrices that encode the local features and reduce 
the computation expectation values of any observable accepting a local 
expression, such as that of Eq. (61) for the energy. The results entails 
"simple" products of matrices [22,34]. 

Let's suppose there are imaginary vertical lines cutting the strip on 
translationally equivalent positions, as for instance it is shown in Fig. 1. 
We can define the ansatz-dependent "local states" according to every pos- 
sible local configuration around a given position determined by one of the 
imaginary vertical lines, when computing (~I~). Thence these local states 
contain the contributions from both the bra and the ket. 

By translational symmetry, local states in every symmetrically equiva- 
lent position are to be the same. Now, labeling these local states by en, n 
ranging, we let the transfer-matrix element 

T r im-  (en[TJem), (64) 

denote a weighted sum over the various ways a local state em may succeed 
a local state e~. The weight of every contribution is obtained by consid- 
ering the additional variational parameters (and island-counting in RVB 
ansiitze involved in proceeding from e~ to era. The transfer matrix is then 
conveniently used to evaluate the overlap as 

(qglq2 } -- t rT  L. (65) 

For L --+ c~, the largest eigenvalue A of T dominates, and the previous 
expression (65) reduces to 

( ~ 1 ~ / "  A L. (66) 

The Hamiltonian expectation value over I~I can be obtained in a similar 
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way in t roducinga  connection matrix C defined according to 

= JL<q l 
unit cell 

E Sni" SmjllI I) -- JL tr{TL-cc},  (67) 
(ni,mj) 

where c measures the range of the interaction within the ansatz. 
case c = 2. And, the matrix element 

In our 

Cnm -(enlClem) (68) 

is a weighted sum over the various ways a local state em may succeed 
a c-transfer-matrix-steps preceding local state e~ when the Hamiltonian 
operators per cell are present. 

In the long-length limit the energy per site of Eq. (61) reduces to: 

E = 1 (A, ZlCIA, r) (69) 
wA 2 (A, llA, r) ' 

where (A, 11 and IA, r) are left and right eigenvectors corresponding to the 
maximum eigenvalue A of T. This expression is a function of the varia- 
tional parameters associated to ~ and an upper bound to the exact ground 
state energy. Because the matrix element limit is obtained exactly, this re- 
sult remains a rigorous upper bound upon optimization of the variational 
parameters. 

7. RESULTS A N D  DISCUSSION 

In this section we present some of the results obtained so far, although 
some numerical results not previously published are now included. They 
are organized according the sort of strip and the ansatz that  has been used. 

7 .1 .  L i n e a r  C h a i n  
Two different problems have already been considered: The spin- l /2  

Heisenberg chain with interactions up to next-nearest-neighbor, and the 
geometry and ground-state energy of polyacetylene. Related with poly- 
acetylene, the al ternat ing-J  Heisenberg chain and associated alternating- 
variational-parameter ansiitze have also been considered. 

7.1.1. Regular chain with next-nearest-neighbor interactions 
For the regular chain with nearest- and next-nearest-neighbor spin- 

interacting terms, with J(~,~+l) - J for any n, and J{n,~+2} - a J, the 
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Heisenberg ground-state energy per site, in units of J 

1 2 
E ( ~ ) -  y E Jr 

p=l 

(~N]Sn" S~+pI~N) _ 

(~.~NI.t.~N) - - -  E 1  -[- O/E2, (70) 

has been obtain by the NSBA, with up to M - 5 sites, and the RVB 
ans5tze, including pairing up to M - 5 bonds apart, for - 1  < c~ < 1. It 
is worth noticing that  at c~ - 1 the triangular lattice is reached, while for 
c~ - 1/2 the dimer-covering structure is the exact ground state. 

N S B  ans i i t ze :  The p-neighbor energy per site, ep, as a function of the 
variational parameters x~, Yn, zn, and tn of Sec. 4, with translational- 
symmetry constraints v~ - v for all n, was obtained by the residual- 
overlap-ratio method. 

The nearest- and next-nearest-neighbor contributions to the energy, C1 
and e2, can be written as (see, Ref. 45 for more details) 

1 [  2 t ~  z2 -~- yz -}- z~ 2 t 2 f f l ] (71) 
E1 = f f l  x + 2 4 + f - -  1 +  f + f2 I f4 8 ' 

1{ ( 22) 
~2 -- 2 f  f l  ( f  - 1)2 + 2 f ( f - 1 )  f - l - ~  + l + 2 ( x + ( ~ ) a  

1 
+ 4xt~ + 2t2~ + ] [4y(x + if)2 + 2y2 + 4z(x + ~)] 

1 } + ]5  [ t2 + 2t(x + ~)2 + 2z24ty] f f l  
- - - 4 -  , 

(72) 

where the residual-overlap-ratios are 

2 
f l - l + 2 t ~  2 + ] ( x  2 

4 + 4xr + ~2) + ]5 (y2 + z 2) + 

x 2 + 2x~ y2 + z 2 t 2 
f - - 1 +  + f 

f f3 f4'  

5t 2 

f4 
(73) 

(74) 

with 

f2 _ y _ t / f '  
(75) 

(76) 
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Table 1: Long-range spin-pairing order p as defined by Eq. (23) of the RVB ansatz and 
the energy per site in units of J for the linear spin-l/2 Heisenberg chain with nearest- and 
next-nearest-neighbor spin interactions yield by the M - 5 bonds RVB ansatz with SP 
parterns of Eqs. (54)-(56) and the M - 5 sites NSBA ansatz with the spin-flip paterns 
of Eqs. (16)-(18). The lower and upper bounds and the extrapolated results from finite 
systems of van den Brock et al. [26], the exact results at a = 0 of Hulth~n [19] and at 

- 0.5 of Majumdar [25] have been included for comparison. At c~ - 0.5 the RVB ansatz 
yield the exact result p ( J  = 1/2) = 3/16. 

c~ p RVBA NSBA lower upper extrpol exact 
-1.0 
-0.9 
-0.8 
-0.7 
-0.6 
-0.5 
-0.4 
-0.3 
-0.2 
-0.1 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.0519 -0.6174 -0.6367 -0.6759 -0.6223 -0.6486 
0.0531 -0.5987 -0.6156 -0.6526 -0.6020 -0.6267 
0.0547 -0.5801 -0.5947 -0.6294 -0.5818 -0.605 
0.0565 -0.5615 -0.5739 -0.6061 -0.5615 -0.5835 
0.0587 -0.5430 -0.5535 -0.5828 -0.5412 -0.5622 
0.0612 -0.5246 -0.5333 -0.5595 -0.521 -0.5412 
0.0641 -0.5064 -0.5134 -0.5363 -0.5007 -0.5206 
0.076 -0.4883 -0.4939 -0.513 -0.4853 -0.5004 
0.0720 -0.4744 -0.4748 -0.4897 -0.4713 -0.4806 
0.0776 -0.4529 -0.4562 -0.4664 -0.4572 -0.4614 
0.0848 -0.4358 -0.4382 -0.4432 -0.4332 -0.4424 
0.0946 -0.4193 -0.4208 -0.4291 -0.4199 -0.4251 
0.1083 -0.4038 -0.4044 -0.4150 -0.3966 -0.4083 
0.1282 -0.3900 -0.389 -0.401 -0.3859 -0.3929 
0.1566 -0.3794 -0.375 -0.3869 -0.3782 -0.3804 
0.1875 -0.3750 -0.3627 -0.3750 -0.3750 -0.3750 
0.1994 -0.3801 -0.3524 -0.3889 -0.3789 -0.3812 
0.1926 -0.3944 -0.3446 -0.4154 -0.3906 -0.3963 
0.1831 -0.4147 -0.3394 -0.4462 -0.4090 -0.4174 
0.1750 -0.4392 -0.3369 -0.4905 -0.4326 -0.4503 
0.1684 -0.4667 -0.3368 -0.5348 -0.4602 -0.5016 

-0.44315 

-0.37500 

The optimal values of the energy as a function of c~ are presented in 
Table I, where it can be noticed that the NSBA is progressively less reliable 
as a frustrating (c~ > 0) next-nearest-neighbor interaction increases, while 
it is stabilized with respect to the upper bound of van den Brock by an 
c~ < 0.3 contribution. 

R V B  a n s i i t z e "  T h e  p - n e i g h b o r  e n e r g y  p e r  s i te  ~p as a f u n c t i o n  of  t h e  

v a r i a t i o n a l  p a r a m e t e r s  x, y, z of  t h e  M = 5 b o n d s  R V B  a n s a t z  w i t h  SP  

p a t e r n s  of  Eqs .  (54) - (56) ,  w i t h  t r a n s l a t i o n a l - s y m m e t r y  c o n s t r a i n t s  Vn - v 

for all  n ,  w a s  o b t a i n e d  by  t h e  r e s i d u a l - o v e r l a p - r a t i o  m e t h o d  (see Ref .  31 
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for details). 

E1 Z 
3[ 

4ff1,2 - f  

2z 2 _~_ y2 _~_ __]__ ~_ 
4 f  3 _ ( 4yz  + 

[ r = f fl ,2(4 f 3 _ ~) y z  
+ 

~c(4f3 + 3 ( -  4yf2)~ 

4f3 - ] , (77) 

~(~ + z f)  1 (78) 
4f3 - ~ J ' 

where the residual-overlap-ratios are 

y2 z 2 2~2 (79) 
f - - - 1 + - ] - + ~ 5 +  ( 4 f 3 _ ( ) f '  

and 

4y 2 6z 2 
Sl,2 - - 2  + --T + - f f  + 

with 

( f ( 4 f  3 _ r  ~ + 4 y z +  
~(~ + f z  + 2z2)~ 

(so) 
4f3 -- ~ ) ' 

-- 2 f  2 + yz,  (81) 

-- 2 y f  2 + z f  + z 2. (82) 

The optimal  ground-state  energy values and the LR-SPO, as measured 
by p in Eq. (23), as a function of a are presented in Table 1. From this 
table, it can be seen tha t  the RVB ansatz  is exact at a - 0.5, while the 
error at c~ - 0 is ~ 1.7%. Also, it is noticed tha t  the RVB ansatz  is clearly 
stabilized with respect to the NSBA when frustration is present. Also, it 
is worth noticing tha t  the energy values yield by the RVB ansatz  are lower 
than  the upper bounds of van den Broek for - 0 . 7  _< c~ < - 0 . 1  and a > 0.1, 
while van den Broek's upper bounds crosses below for - 0 . 1  __ c~ < 0.1, 
with a max imum difference of less than 1.7% , and for c~ < -0 .7 ,  with a 
max imum difference of less than  0.9% . Therefore, the RVB ansatz yield 
very good ground-state  energy values for all the rang - 1 . 0  __ c~ _< 1.0. 

7.1.2. Polyacetylene and the al ternat ing-J Heisenberg chain 

In Ref. 31 it has been shown that  long linear chains, as seen from 
the point of view of VB theory, show a long-range order, measured by 
the parameter  p in Eq. (23), leading to a ground-state  instabili ty to bond 
alternation.  From Sec. 5.3 also this is expected to occur. 
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Polyacetylene is a physical realization of such a system and it is known- 
that it does present bond alternation [46,47]. Since a parameterization to 
a model spin Hamiltonian is available [18] for conjugated hydrocarbons, 
this system is a good test for the NSBA and RVB ans~tze. Therefore, in 
Ref. 34 the geometry of polyacetylene has been computed using this sort 
of ansiitze. 

The total energy per site of polyacetylene has two contributions, i.e. the 
expectation value of the spin independent term, as given by Eq. (5), which 
only depends on the interatomic distances, 

1 
Er(ff2) - -~ (R(rl) + R(r2)), (83) 

and the expectation value of the spin term of the nearest-neighbor Heisen- 
berg Hamiltonian of Eq. (4), 

1 
Es(~)  -- -~ (c1 -[- E2) 

1 (J(r l ) (~[Sl"  s2[~> <xI/Is2 " s3 [xI/> ) 
2 (~11~) + J(r2) (~l I ff~) " (84) 

N~e l -S t a t e -Based  Ansatz :  The NSBA of Subsec. 4.1, with M - 2 
and M - 4, and alternate translational symmetry conditions, has been 
used [34] to obtain the energy as a function of the variational parameters 
and the interatomic distances, rl and r2. Upon optimization, the geometry 
and the alternating-to-regular geometry transition have been obtain (see 
Ref. 34). 

The alternate value of the energy per site E n as a function of variational 
parameters x~, y~, and z~ of Sec. 4 and the interatomic distances, rl and 
r2, was obtained by the residual-overlap-ratios method, 

J(rn)[ (1 + 
Cn f---~n+l fn+l - - f ) - - i  

2 Xn(fn+lfn -~- Yn) Zn + 
fn+lfn -- Yn fn+lfn 

Yn+lZn+l + + 
f2 

2 2 ]  Xn+lZn+lf n+l 
(In+lfn--Yn+I) 2 

(85) 

where the residual-overlap-ratios are 

2 2 y2n -~ Zn Xn(fn+lfn -[-Yn) 
A - I +  + 

f2+lfn f n + l ( f n + i f n  - -  Y~) 
(86) 
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Table 2: Results of Variational Localized-site Cluster expansions from either a N6el-state 
based ansiitze or a Resonating Valence Bond ansatz. We notice that the lower level NSBA 
is unable of showing the dimerization of polyacetylene. Yc is the critical bifurcation mean 
bond length, rl and r2 are the optimized short and long bond distances (in/~). E is the 
energy per carbon atom (in eV), taking the energy of the N6el state with 1.40/~ equal 
bond lengths as zero of energy. NSB forth order perturbative and Dimer-covering second 
order perturbative (see Ref. 34), CEPA ab-initio estimate of Kcnig and Stollhoff [52], and 
the experimental results [46,47] for rl and r2 have been added for comparison. 

ansatz Yc r~ rt E 
NSBA M -  2 1.46 1.400 1.400 -0.661 
NSBA M -  4 1.32 1.360 1.443 -0.704 
RVBA 1.364 1.436 -0.724 
NSB perturbative (4 th order) 1.43 1.401 1.401 -0.616 
Dimer-covering perturbative (2 nd order) 1.361 1.438 -0.720 
CEPA ab-initio 1.343 1.436 
Experimental 1.36 1.44 

and 

2(Yn+l + z~+l) 
f - - l +  + + 

f2n+xfn fn+xf2n 

X2nYn(2 fn fn+l  -- Yn) 

f n + l ( f n f n + l  -- Yn) 2 

2 ( 2 f n f n + l  . + Xn+lYn+l -- Yn+l) (87) 

fn ( A f n + l -  Yn+l) 2 

When the geometry is optimized, the M = 2  NSBA (y~ = zn = 0) would 
predict a regular ground state. The lowest energy is obtained for a non- 
dimerized geometry rl - r2 - 1.40 /~. Meanwhile the M - 4 NSBA 
yield an al ternate geometry (see, for instance, Table 2) with interatomic 
distances tha t  compare very well with the experimental values [46,47]. 

The study of the energy surface E(rl, r2) or E(~, 5), with 

1 
-- ~ (r  1 -[- ?'2) , (88) 

5 - r2 - r------A1, (89) 
r l  ~ r 2  

as a function of 5 for different values of ~, allows to obtain the critical value 
~c where the regular-to-dimerized geometry transit ion takes place. The 
energy per site, as a function of 5, has been computed [34] at the M - 2 
and M - 4 level of approximation for different values of ~. Results for 
the M - 4 level of approximation are plotted in Fig. 6, and the transition 
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Figure 6" 5-sites N~el based Variational Localized-site Cluster Expansion Energy per atom 
(in eV) as a function of ~ for different values of ~ (in/~), taking the energy of the N~el 
state with 1.40/~ equal bond lengths as zero of energy. The arrows point to the relative 
minima, while the star indicates the position of the ground state when the geometry is 
optimized. 

is found for ~ ~ 1.32/~, while at the M - 2 level the bifurcation in the 
energy surface takes place for a stretched system, the critical distance ~c 
being 1.46/~. 

The whole calculated potential energy surface is very flat. In particular 
for the optimal ~ (1.40/~), the energy gain brought by the dimerization 
is ~ 0.0118 eV per C2H2 unit. This value is very close to that  shown in 
Table 3, which has been obtained as the difference between the cluster 
expansion ground-state energies when optimization is performed with and 
without the rl  - -  r 2  constraint. Those are about 4 times the value predicted 
by Mintmire and White using a Local-density-functional approach [48], but  
still smaller than 0.07 eV suggested by Ashkenazi et al. [49] to be compat- 
ible with polyacetylene being dimerized well above room temperature,  or 
Suhai (0.09 eV) HF calculation and second order Mr perturba- 
tion theory [50]. HF stabilization energies brought by dimerization are in 
general still higher (see Ref. 51 and references therein), though this ap- 
proximation is not reliable due to the charge density wave HF instability 
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Table 3: Optimized regular interatomic distance (in ]k) and gain in energy per C2H2 unit 
(in eV) of regular polyacetylene by report to the alternating ground state, with the N6el 
state based higher order and the RVB ansiitze. Results from Local-density-functional ap- 
proach of Mintmire and White [48], Hartree-Fock and Mr perturbation Theory 
of Suhai [50], or Ashkenazi [49] are included. 

r AE 
NSBA 1.399 0.0118 
RVB 1.398 0.0391 
LDA 0.003 
Ashkenazi 0.07 
Suhai 0.09 

occurring for 3 - 0. Still higher order NSBA should yield higher values of 
the barrier than the M - 4 ansatz.  

R V B  a n s a ~ z :  The P = 4 infinite-range RVB ansatz  of Eq. (57) has been 
used (see Ref. 34) to obtain the energy as a function of the interatomic 
distances, rl and r2, and the variational parameters. Upon optimization, 
this ansatz  yields better energy evaluation for the distorted region (see, 
for instance, Table 2). Furthermore, the RVB ansatz  already yields lower 
energy than the NSBA even when applied to the regular chain, as reported 
in Table 4. Thus, one always obtains a reasonable estimate of the dimerized 
geometry. 

Optimizing the geometry with the constraint of equal bond length, the 
stabilization energy gain by dimerization has also been estimated. The 
barrier to inversion of dimerization is higher with RVB than with NSBA 
(see Table 3). While the RVB ansatz yields better energy and interatomic 
distances, it is not suitable for the rl ~- r2 region and the bifurcation of 
the energy surface E(~, ~). In a general way, all methods which start with 
a symmetry-broken description are unable to treat  correctly the weakly 
dimerized region and of course the bifurcation point. Such is for the 
case of RVB ans~itze with well defined LR-SPO D. A similar problem is 
found when starting from Hartree-Fock, where a symmetry-breaking takes 
place for non-dimerized geometries, leading to bond-centered charge den- 
sity waves, i.e. bond alternation of the density-matrix without any bond- 
length alternation. Then, any strategy based on the HF solutions will 
be unable to study the region around 3 - 0, since it is symmetry-broken 
for the non-dimerized geometries. This fact is manifested by the energy 
cusp for 3 = 0 in Ref. 52 or in RVB ansiitze as also pointed out for the 
Heisenberg Hamiltonian in Ref. 31. 
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Table 4: Ground state Heisenberg energies per site for undistorted polymers (see Refs. 22, 
23, 34, 35, and 45 and references therein for other available results). EPV stands for 
Exclusion Principle Violating infinite summation perturbation theory (see Ref. 34 for 
more details). 

Method P PA PAA PBA PPR 
N~el state 
One Kekuld configuration 
RVB 1-bond-range SP 
RVB 3-bond-range SP 
EPV (2 nd order) 
EPV (4 th order) 
NSBA M = 2 
One-Kekul6+perturb. (2 nd order) 
N6el+perturbative (4 th order) 
NSBA M = 4 
NSBA M - 5 
RVB c~-range SP P = 4 
Exact result of Hulth6n [19] 
N~el+perturbative (2 nd order) 

-0.25 
-0.375 
-0.375 
-0.4269 
-0.393 
-0.416 
-0.4279 
-0.4375 
-0.4375 
-0.4379 
-0.43815 
-0.43955 
-0.44315 
-0.5000 

-0.3125 -0.333 -0.3214 -0.325 
-0.375 -0.375 -0.375 -0.375 
-0.375 -0.375 -0.4339 -0.4435 
-0.4480 -0.43395 

-0.4740 -0.4941 -0.4906 

7.2.  C o n j u g a t e d  h y d r o c a r b o n  p o l y m e r s  
The  possibility of dis tor t ions  in several polymers ,  besides polyacetylene,  

have also been s tudied using NSBA and RVB ansiitze (see, for ins tance  
Refs. 22 and  23). For the  sake of space l imi ta t ion,  here we only repor t  the  
g round-s t a t e  Heisenberg energy for the  und i s to r t ed  po lymer ic  str ips (see 
Table 4). 

7 .3.  S p i n - l / 2  s q u a r e - l a t t i c e  s t r i p s  
In Ref. 30 the  values of A~D of Sec. 6.1 for w ranging  from one to twelve 

and D from zero to ( w -  b)/2 (with A~(-b-D) -- h ~ n )  have been ob ta in  by 
a d imer-cover ing-count ing  t r ans fe r -ma t r ix  m e t h o d  as follows. 

Let us analyze from a local point  of view the  d imer-cover ing  singlets. 
We can identify a dimer-covering local s tate ,  leni), I ranging,  according 
to which legs have an arrow across the  fn boundary .  The  di rect ion of any 
arrow is fixed by n and w. For ladders,  it can be seen t h a t  there  are 2 ~ 
different local s ta tes  for each boundary ,  which can be classified according 
to the  value of Dn, leD). Since 7" t ransforms  one subla t t ice  into the  other,  
the  local s ta tes  of posi t ion n + 1 are mir ror  images of those of posi t ion n. 

A dimer-covering-counting matr ix ,  )Un, is defined as 

1, 
(en-lIl]C-'nlena)- O, 

lenj) can succeed lea_l/),  (90) 

otherwise. 
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Table 5: The absolute value of the resonance energy in units of C, (ln AD)/W, for the 
lowest lying state of subspaces with order parameters from D = 0 to ( w -  b)/2 (with 
AwD, = AwD, D' -- - b -  D), and the extrapolations to w -+ cx) for the lowest lying 
subspace of both, the w-even and w-odd, series. 

D =  0 1 2 3 4 5 6 

1 0 
3 0.2195 0 
5 0.2529 0.1567 0 
7 0.2656 0.2121 0.1181 0 
9 0.2721 0.2383 0.1762 0.0940 
11 0.2760 0.2527 0.2090 0.1491 
c~ 0.2920 
2 0.2406 0 
4 0.2610 0.1849 0 
6 0.2699 0.2331 0.1349 0 
8 0.2748 0.2532 0.1930 0.1048 
10 0.2778 0.2637 0.2332 0.1617 
12 0.2800 0.2700 0.2410 0.1959 
c~ 0.2913 

0 
0.0799 0 

0 
0.0852 0 
0.1382 0.0717 

Then,  the  number  of dimer-covering s ta tes  in a 7/~ subspace is 

n(w,  D) - Z(eDIK:IK:2 . . .  ICLleDoi). (91) 

Since for any dimer-covering singlet Dn-1 - Dn+I, )t~n~-,n+l is a block- 
d iagonal  symmet r i c  ma t r i x  which does not  depend  on n (apar t  from the 
direct ion of the arrows in the local s ta tes  t ha t  it relates) we can omit  the 
sub-index.  For L -+ c~, the highest  eigenvalue 2 Awn of the D block/(72 
domina tes ,  and 

L (92) n(w,  D) ~ A~D. 

Table 5 summar izes  the absolute  values of the  zero order  resonance 
energies er(W, D), in uni ts  of C, as computed  from Eq. (63). Since it is 
unlikely t h a t  the  zero-order  energies are drast ical ly  modified by the small 
correct ions to the isotropic neares t -neighbor  Heisenberg Hamil tonian ,  the 
expec ted  energy order ing would be 

E0 < E1 < . . .  < E�89 (93) 
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Table 6: Ground-state Energy per site in units of J for CuO2 square-lattice strips. K-C 
stands for the Kekul6 counting method, with C - 0.75 and 0.94, NB-M is the M = 2 
NSBA, RVB-M are the M-bond RVB ans~itze. Extrapolations of K-C to w - c~ are 
obtained from the even- and odd-w ground-state energies separately, while extrapolation 
from NSBA is done with even- and odd-w energies together. Some other results are 
included for comparison. 

w N6el K-0.75 K-0.94 NB-2 RVB-1 RVB-3 other 
2 
4 
6 
8 
10 
12 

-0.375 -0.5555 -0.6012 -0.5507 -0.55696 
-0.4375 -0.5708 -0.6203 -0.6025 -0.57221 
-0.4583 -0.5774 -0.6287 
-0.4688 -0.5811 -0.6333 
-0.4750 -0.5834 -0.6361 
-0.4792 -0.5850 -0.6382 

-057317 -0578 [39] 
-0.618 [39] 

3 
5 
7 
9 
11 

-0.4167 -0.5396 -0.5813 -0.5834 -0.56824 
-0.45 -0.5647 -0.6127 
-0.4643 -0.5742 -0.6247 
-0.4722 -0.5791 -0.6308 
-0.4773 -0.5820 -0.6344 

-0.594 [39] 

cx>even 
c~-odd 
c~-any 

cc -0.5 

-0.5940 -0.6488 
-0.5935 -0.6495 

-0.6626 
-0.6688 [61] 
-0.67228 [62] 
-0.7158 [63] 

Therefore ,  for w = e v e n ,  the  g round  s t a t e  belongs  to  the  n o n - d e g e n e r a t e  
D - 0 subspace ,  w i th  

7 - 9 0 -  ~0,  (94) 

while, for w = o d d ,  the  g r o u n d - s t a t e  mani fo ld  is spanned  by 90  and  ~I'-l, 
which  are e igens ta tes  of H ,  b u t  no t  of 7". The  e igens ta tes  @~= of the  
t r a n s l a t i o n  opera to r ,  are defined in the  g r o u n d - s t a t e  manifo ld ,  

1 
(I)~ = ~ (xIt0 -Jr- xI/_l) , (95) 

SO 

- (96) 

wi th  k - 0 and  k - lr. This  RVB a s y m p t o t i c  degeneracy  for w = o d d  is 
cons i s ten t  w i th  a very  wide b o d y  of evidence [53-58]. 

The  g r o u n d - s t a t e  energy per  site, in un i t s  of J ,  for CuO2 square - l a t t i ce  
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strips with w=2 to 12 has been computed from the dimer-covering-counting 
method, assuming the constant C of Sec. 6.1 as 0.75 and 0.94. Also, 
for some w values the eneergy has been obtained [59,60] by the M = 2- 
sites NSBA and the M = 1 and M = 3 bond-range RVB ansiitze by 
the transfer-matrix technique. Extrapolations to w = c~ of the dimer- 
covering-counting results are done from the even- and odd-w ground-state 
energies separately, while extrapolation from NSBA is done with even- and 
odd-w energies together. These results are presented in Table 6, where the 
extrapolation to L - c~ from exact results on finite systems of Zivkovi6 
et al. [39], the long-range RVB result from Doucot and Anderson [61], the 
real-space renormalization method of Mattis and Pan [62], and the lower 
bounds of Tarrach and Valenti [63] have been included for comparison. 

Following Subsection 5.4, excitations above the maximally-spin-paired 
ground state have also been analyzed [30] as local regions delimited by 
a couple of topological spin defects. When w=odd and D = 0  (D - -1 ) ,  
there can be local regions with D = -+-1 (D=0,-2). Then, since subspaces 
D = 0  and D = - 1  are degenerate, it is possible to have a local region 
with identical per site energy inside and outside the local region. In this 
case the topological spin defects limiting the local region are not confined, 
though it may happen that  they at tract  one another (with an ordinary 
short-range potential). Two conclusions can be drawn from this result. 
First, for the half filling case, triplets with the two spin defects very far 
apart  from one another are possible. Although breaking a singlet does cost 
some energy (due to contribution of the diagonal terms), there is a gain 
in kinetic energy (off-diagonal terms contributions), since (for w=odd) the 
two spins are not confined and can move independently. Consequently, a 
gapless triplet spectrum is not inconsistent with these results. This feature 
can be understood as a generalization to any odd-legged spin-�89 antiferro- 
magnetic ladders of Lieb, Shultz, and Mattis theorem [56,57] holding for 
one-dimensional systems. Second, away from half filling, removing (adding) 
an electron to the system yields a non-confined pair of sites, one being a 
vacant (doubly-occupied) site and the other a non-SP site. It is worth 
noting that  the vacant (doubly-occupied) site holds the charge, while the 
non-SP site holds the up or down spin, leading to charge-spin separation. 

In clear contrast, when w=even, the order parameter of the local region 
limited by the couple of spin defects is always associated to higher energy 
per site. This indicates that  the couple of spin defects should remain 
as close as possible so confinement is predicted to occur. Hence, at half 
filling, the energy difference between the triplet and the ground state will 
be finite, and the w=even ladders are expected to be gapped. Nevertheless 
the energy difference per site between the lowest lying subspaces decreases 
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faster than 1/w. Therefore, a lowering of confinement and the closing of 
the gap is predicted for increasing values of w. Nevertheless, within the 
scope of the present treatment it is not able to predict the energy ordering 
of the lowest singlet and triplet excited states. Now, away from half filling, 
when removing (adding) one electron the vacant (doubly-occupied) site will 
be bound to the non-SP spin, forming a "quasi-particle" with charge and 
spin. Again the lowering of the confinement and the charge-spin separation 
with increasing values of w is expected. When removing (adding) two 
electrons, arguments based on the LR-SPO alone are not able to decide 
if the two-holes (two-electrons) state is described as two quasi-particles or 
two bound vacant (doubly-occupied) sites. Nevertheless, we expect the two 
vacant (doubly-occupied) sites to be confined to benefit from the energy 
lowering due to the hoping term of the Hamiltonian, as has been pointed 
out in Ref. 64, using numerical results from DMRG techniques on clusters. 
Another argument to take into account is the range of the RVB. Since the 
two quasi-particles are expected to couple to a singlet, non-bound quasi- 
particle would imply a long bond, while a short-range RVB is expected for 
w=even ladders [65,66]. 

8. C O N C L U S I O N S  

Although considerable work remains to be done on the intermediate and 
strongly correlated domains, model Hamiltonians, with reliable parame- 
terization, combined with the cluster expansion ans~tze wave functions, 
have proven to be a useful tool to extract information capable of a sys- 
tematic improvement. The RVB ansiitze yield fairly good ground-state 
energies (with errors estimated ~ 1- 2%) for the alternating-J Heisen- 
berg chain for the whole range of-Jn,n+l ~_ Jn,n+2 ~_ Jn,n+l and is exact 
for Jn,n+2 --  0 .5Jn ,n+l ,  while still a higher order N~el-state-based ansdtze 
would be necessary for frustrating J~,~+2 close J~,~+l. For Polyacetylene, 
both, the RVB and the higher order N~el-state-based ansiitze, yield alter- 
nate interatomic distances quantitatively comparable with experimental 
results, while the lower-level N~el-state-based ansatz predicts a regular ge- 
ometry. It is worth noticing that the N~el-state-based ansStze are not 
symmetry-broken, thence, permitting to analyze the region around 5 - 0, 
although they converge slowly for alternating geometries. The RVB con- 
figurations present a long-range spin-pairing order, thence, so do the RVB 
ansiitze. Therefore, RVB ansiitze with different long-range spin-pairing or- 
der can be defined, symmetry relations suggesting (non)degeneracy among 
different RVB wave functions. Topological spin defects can be seen as do- 
main walls separating regions of the strips with long-range spin-pairing 
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order differing by :I:I. This fact allows one to conceive of the existence 
of local regions, delimited by a pair of topological spin defects. In terms 
of energy ordering, (non)degeneracy and the discontinuities introduced in 
the long-range spin-pairing order by the topological spin defects, the dif- 
ferences between w-even and w-odd strips can be explained in a general 
and systematic way. 
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Chapter 23 

Exact  ground states  of one- and two-d imens ional  
frustrated quantum spin sys tems  
A.A.Ovchinnikov,  V.Ya.Krivnov and D.V.Dmitr iev  
Joint Institute of Chemical Physics of RAS, 117977 Moscow, Russia 
Max-Planck-Institut fur Physik Komplexer Systeme, 01187 Dresden, Germany 

Summary 

We outline the recent results for the ground states for a class of one- and two- 
dimensional frustrated quantum spin models with competing ferro(F)- and an- 
tiferromagnetic (AF) interactions. Frustrated spin systems are known to have 
many interesting properties due to large quantum fluctuations. As a result of 
these fluctuations the usual mean-field approach gives a quite crude (if not false) 
description of these systems. Therefore, exactly solvable models are very instruc- 
tive for investigations of such systems. The exact ground state wave function of 
the proposed models has a structure of the valence-bond state (VBS) type. One 
of the 1D model describes the transition line between the F and AF phase. The 
exact singlet ground state on this line has a double-spiral ordering. Using differ- 
ent approximation methods we study the magnetization curve in the AF phase. 
The second considered set of the 1D and 2D models has an exact non-degenerate 
ground state with exponentially decaying spin correlations. We also propose the 
1D and 2D electronic models with exact ground states represented in terms of 
singlet bond functions which are a generalization of the RVB functions including 
ionic states. 

1 Introduction 

There is currently much interest in quantum spin systems that exhibit frustration 
[1]. This has been stimulated in particular by the study of the magnetic properties 
of the cuprates which become high-Tc superconductors when doped. Frustrated 
spin systems are known to have many interesting properties that are quite unlike 
those of conventional magnetic systems. The simplest model of such kind is the 
Heisenberg spin chain with nearest- and next-nearest neighbor interactions J1 
and J2. This model is well studied for J1, J2 > 0 [2, 3, 4]. In particular, it 
has been found that at J2 = 0.24J1 the transition from the gapless state to the 
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dimerized one takes place [5]. The point J2 = J1/2 corresponds to the well-known 
Majumdar-Ghosh model [6] for which the exact ground state consists of dimerized 
singlets and there is a gap in the spectrum of excited states. 

Less studied are frustrated spin models with competing interactions of ferro- 
and antiferromagnetic types. The physical interest for these models is connected 
with the study of the real compounds containing CuO chains with edge-sharing 
Cu04 units, like La6CasCu24041, Li2Cu02 and Ca2Y2Cu501o [7]. In these com- 
pounds the C u -  0 -  Cu bond angle is nearly 90 ~ and the nearest-neighbor C u -  
Cu spin interaction is ferromagnetic according to the Goodenough-Kanamori- 
Anderson rules [8] while the next-nearest-neighbor interaction is antiferromag- 
netic. The magnetic properties of these models are very different from those 
for models with pure antiferromagnetic interactions. Their ground states can be 
either ferromagnetic or singlet depending on the relation between the exchange 
integrals. One of the most interesting problems related to these models is the 
character of the transition between ferromagnetic (F) and antiferromagnetic (AF) 
phases. 

Of a special importance are models for which it is possible to construct an 
exact ground state. Recently considerable progress has been achieved by using 
a so-called Matrix-Product (MP) form of the ground-state wave function [9, 10]. 
The ground-state wave function in the MP method is represented by Trace of 
a product of matrices describing single-site states. The MP ground state has a 
structure of the type where each neighboring pair of spins has a valence bond and, 
in fact, the MP form is a convenient representation of the valence bond states. Its 
origin can be traced to the S=I  quantum spin chain with bilinear and biquadratic 
interactions [13]. At present, various 1D spin models with the exact MP ground 
state have been found [10, 11, 12]. 

In this paper we present a set of 1D and 2D spin-l/2 models with competing 
F and AF interactions for which the singlet ground-state wave function can be 
found exactly. This function has a special form expressed in terms of auxiliary 
Bose operators. This form of the wave function is similar to the MP one but with 
infinite matrices. For special values of model parameters it can be reduced to the 
standard MP form. 

One such model is the 1D quantum spin model describing the F-AF transition 
point. Spin correlations in the singlet ground state show giant spiral magnetic 
structure with period equal to the system size. On the antiferromagnetic side 
of this point the ground state can be either gapless with incommensurate spiral 
ground state [18] or gapped with exponential decay of correlators [24]. There are 
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regions in the AF phase where the magnetization as a function of magnetic field 
has jumps. 

The second considered model is the special case of the spin ladder with exchange 
integrals depending on one parameter. The exact ground state of this model is 
non-degenerated singlet with exponentially decaying spin correlations, and there 
is an energy gap. 

It will be shown that proposed form of the exact wave function can be gen- 
eralized to higher dimensions and a two dimensional frustrated spin model with 
exact ground state can be constructed. 

It is known that the exact ground state of some 1D and 2D quantum spin 
models can be represented in RVB form [15, 6, 36, 13, 31]. The RVB function in 
the Fermi representation consists of homopolar configurations of electron pairs. 
We generalize this two-particle function to include ionic states and denote it as 
"singlet bond" (SB) function. It is natural to try to find electronic models with 
exact ground state formed by SB functions in the same manner as for known spin 
models. In the paper some models of interacting electrons are presented. The 
Hamiltonians of these models include the correlated hopping of electrons and spin 
interactions. One of the 1D models describes the transition point between the 
phases with and without an off-diagonal long-range order. 

The paper is organized as follows. In See.2 we consider the frustrated spin 
chain at F-AF transition point and describe the exact singlet ground-state wave 
function as well as details of the spin correlation function calculations. We discuss 
the phase diagram of this model and its magnetic properties in the AF phase. In 
See.3 the special spin ladder will be considered. A two-dimensional frustrated 
spin model with the exact ground state is considered in See.4. See.5 is devoted to 
the construction of the electronic models with the SB type of wave function. The 
results of this paper are summarized in See.6. 

2 Zigzag spin model  

2.1 Zigzag spin mode l  at  F - A F  t r a n s i t i o n  po in t  

1 Let us consider the s = i spin chain with nearest- and next-nearest neighbor 
interactions given by the Hamiltonian 

M 1 M 1 N 1 
H -  - E(S2~-I" S2~- ~) + J23 E(S2~- S2i+l -- ~)  -}- J13 E ( s i .  si+2 - ~) ,  

i=1 i=1 i=1 
(i) 
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Figure 1: Phase diagram of the 'zigzag' model (1). The solid line is the boundary between the 
ferromagnetic and singlet phases. Circles correspond to the special cases of the model. On the 
dotted line the ground state is a product of singlet pairs. 

with periodic boundary conditions and an even number of spins N = 2M. This 
model is equivalent to a ladder model with diagonal coupling: the so called a 
'zigzag' spin ladder. 

If J2a < 1, then the ground state of (1) is ferromagnetic (singlet) when 5 < 0 
2J~ (Fig 1). The equation 5 - 0 defines the line (5 > 0), where 5 -  J2a + 1-2J,~ �9 

of transition points from the ferromagnetic to the singlet state, when energies of 
these states are zero. The model (1) along this line is given by the Hamiltonian 
depending on the parameter x (x > -1 /2 ) :  

M 1 N 1 
M 1 2x E (S2/. S2/+l ~) -- X E ( S / .  Si+2 - ~), (2) 

g - - i=1 ~ ($2i-1" $ 2 i -  ~) + 2x + 1 i=1 i=1 

with periodic boundary conditions. 
We note that the Hamiltonian (2) has a symmetry: its spectrum coincides with 

the spectrum of H(x )  obtained by the following transformation 

1 1 --- 2x H ( - x -  ), < x < O  
H(x)  - - 2 x  + 1 -2 2 

This transformation permutes the factors at the first and the second terms in the 
Hamiltonian (2). Thus, due to the symmetry it is sufficient to consider the range 
x ~  1 

- -  4 "  

First, we will show that  the ground-state energy of (2) is zero. Let us represent 
the Hamiltonian (2) as a sum of Hamiltonians h~ of cells containing three sites 

M 
H = E(h2i_x + h2i), (3) 

i=1 
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where 

1 1 
h2i-1 - - ~ ( S 2 i - 1 -  S2i - ~ )  -4- 

h2i - -~1  (S2i+l  �9 S2i+2 - ~)1 
The eigenvalues of each h~ are 

x (S2i" S2i+1 1 
2x + 1 4 ) -  

+ 

1 
2c(S2i -1"  S2i+l  -- ~ ) ,  

x 1 1 
2x + 1 (S2i. S2i+l  -- ~ )  -- x ( S 2 i "  S2i+2 -- ~ )  

4z 2 + 2z + 1 
)kl --  ,~2 --  0, ,~3 --  > 0 

4 x + 2  

We will present a singlet wave function which is an exact zero-energy eigenvec- 
tor to each h~ and, therefore, it is the exact ground-state wave function of (2). 
This function has a form 

~I/0 --  P0 lII, ~I / --- (0hi gl @ g; @ g3 @ . . .  @ g~v 10b) (4) 

Here 

g~ = b+ ]T)i + ].L)i, g~ -  ( b+b - 2x)IT)i + b It)~ (5) 

where the spin-configuration space has been augmented with an auxiliary bosonic 
space, having creation (annihilation) operators b+(b) and a vacuum 10)b. This 
auxiliary space is ' integrated away', so that �9 is a pure spin-configuration wave 
function. The direct product gl @ g~. |  @ g~v is the superposition of all pos- 
sible spin configurations multiplied on the corresponding Bose operators, like 
b+bbb+... IT.L.~I . . .).  Po is a projector onto the singlet state. This operator 
can be written as [16] 

1 27r 2zr r r r r 

where S x(z) are components of the total spin operator. 
The form of wave function (4) resembles the MP form, but with an infinite 

matrix which is represented by Bose operators. Therefore, we have to pick out 
the (0hi... 10b) element of the matrix product instead of the usual trace in the 
MP formalism [9, 10], because the trace is undefined in this case. The function 

contains components with all possible values of spin S (0 <_ S <_ N/2)  and, in 
fact, a fraction of the singlet is exponentially small at large N. This component 
is filtered out by the operator/9o. 

One can easily check that  each cell Hamiltonian h2i-1 and h2i for i - 1 , . . .  ( M -  
1) gives zero when acting on the corresponding part in wave function �9 - g2i-1 @ 



774 

g~2i | g2i+l and g~2i | g2i+1 (x) g2i+2' (one should take care of Bose commutation 
relations). Since each hi is a non-negatively defined operator, then @ is the exact 
ground state wave function of an open chain: 

M - 1  

Hopen = E (h2i-, + h2i) (7) 
i=1 

As mentioned above, the function �9 contains components of all possible values 
of total spin S, and, therefore, the ground state of the open chain is multiply 
degenerate. However it can be proven [14, 11] that  for the cyclic chain (3) only 
the singlet and ferromagnetic components of �9 have zero energy. Therefore, for 
the cyclic chain (3) ~0 is the singlet ground state wave function degenerate with 
the ferromagnetic state. 

1 In particular case, x -  - 1 / 4 ,  when , ]12 - -  J 2 3  - -  - 1  and , ]13  - -  ~ ,  another form 
of the exact singlet ground-state wave function has been found in [15]. It reads 

= E[ i ,  j] [k, l] [m, n ] . . . ,  (8) 

where [i, j] denotes the singlet pair and the summation is made for any combina- 
tion of spin sites under the condition that i < j, k < l, m < n . . . .  

The following general statements relevant to the Hamiltonian (2) can be proved: 
1). The ground states of open chain described by (7) in the sector with fixed 

total spin S are non-degenerate and their energies are zero. 
2). For cyclic chains the ground state in the S - 0 sector is non-degenerate. 

The ground-state energies for 0 < S < M are non-zero. 
3). The singlet ground-state wave function for open and cyclic chains coincide 

with each other. 

2.2 Spin  c o r r e l a t i o n s  in t he  g r o u n d  s ta te  

For the sake of simplicity we show the calculation of the spin correlation function 
in the symmetric case x -  - 1 / 4 ,  when the Hamiltonian (2) takes the form 

N 1 1 N 1 
H = - i=,E (Si. Si+, - ~) + ~ E (Si.  S i + 2 -  ~), (9) 

i=1 

Since in this case there is one spin in each elementary cell, the singlet ground 
state wave function ~0 can be written in a more simple and symmetric form: 

r  - P 0 r  r - (0hi g2 10b), (10) 



,/,/~ 

where 

g i -  b + + b [l)i (11) 

One can check tha t  wave functions (10) is the singlet ground-s ta te  wave func- 
tion with zero energy for Hamil tonian (9). Therefore, the equivalence of wave 
functions (4) and (10) follows from the non-degeneracy of the ground state  in the 
S = 0 sector ( though functions @ in Eqs.(10) and (4) are different). 

Now we calculate the norm and correlation function of the wave function @0 
(10). The norm of the singlet wave function @0 is 

(~o[~o> = (~[ Po [~> (12) 

It is easy to check that the function ~ has S z - O. Then the projector Po in 
Eq.(6) takes the form [II] 

1 s eizS-eiz,S+ (13) P0 = ~ sin ~/d-), 

where z - t an  2 ~, z' = sin ~ cos ~ and S +(-) are the operators of the total  spin. 
Therefore, the norm takes the form 

1 ~r N 
(~-9o[~o) - ~ f0 s inTd7 (Oa, Ob[ 1-I(g? eizS~-eiZ'S+gi)lOa, Ob), 

i=1 

where 

g + e~ZS:e~z'S?gi - ( a+ (Til + a ($il)eiZS;e~Z'S:(b+ I;)~ + bll)~) 
= a+b + + (1 - ztz)ab + izab + + izta+b, 

and a + and a are the Bose operators.  Thus  the norm can be rewri t ten  as 

1 ~ GN (t9o[~o) - ~ s s inTd7 (0[ [0), 

where 10) - 10~, 0b) is the Bose vacuum of a + and b + particles and 

a - u(a+b + + ab) + iv(ab + + a+b), 

where u - cos 2 2, v - sin ~ 2" 

Let us introduce the auxiliary function P(~)" 

P(~) = (01  al0>, 
then 

I 
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The function P(~) can be easily found [17]: 

1 
P([ )  = 

V/1 - U 2 sin 2 

Integrating Eq.(16) over 3', we obtain 

(~o1~o) ~-- d{~ ~=o e{~  cos~(~) ~=o 

Thus, finally, we arrive at 

(~01~o) = 2d~N+ 1 tan = 
~=o N + 2  

Here BN are the Bernoulli numbers. 
To calculate the spin correlators we need to introduce operators 

Gz = g? e izS[ e iz'S+ 2SZ gi = u(a+b + - ab) + iv(ab + - a+b), 

G+ g+ e izS~- e iz'S+ + 
- -  Si gi - u a  + b  + ivab, 

G_ = g+ ei*STe iz's~+ Si-gi - uab + + iva+b + 

(16) 

(17) 

(18) 

Then, the correlator (S1. Sz+l) will be defined by 

<%IS,. Sz+ll~0) - ~ L sinTd7 <01 a~a~aza ~-~-~ 1 GN_I_ 2 + -~G+GZG- I0> (19) 

ol oN-l-2 
<01GzGlGzGX-l -2 lO > = O~ l 0~. N-l-2 <Olazer162162 , 

Ol oN-l-2 
<ol G+GZG-GN-Z-~IO) = O~z OCN-~-= (~ (20) 

After a procedure similar to that for the norm and the integration over 7, we 
obtain 

ol o N - l - 2 ( 3 c 0 S ( ~ - ~ ) )  (21) 
<~o[81" S/+l[~I/o) -- O~ l O~N_l_ 2 8 COS4( +~2 ) ~:(,':0 

It can be shown that in the thermodynamic limit, Eqs.(18) and (21) result in 

(Si. Si+l) - ~ cos (22) 

( ~ n ~  <01C . . . .  10> = 0). 
The expectation values in Eq.(19) can be represented as 
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So, we reproduce the result obtained in [15, 11] that in the thermodynamic limit 
a giant spiral spin structure is realized, with the period of the spiral equal to the 
system size. 

For the general case of model (2) the calculation of the singlet ground-state 
correlation functions can be performed in a similar way. The final result in the 
thermodynamic limit is [14, 11]: 

< S . S n + 2 Z >  - -  C O S  - -  , 

I (2(2/-I)Ir ) 
<SnSn+21-1> -- -~ COS N + (-I)"A~ (23) 

The latter equations mean that the long-range double-spiral order exists in the 
singlet ground state of Hamiltonian (2). The pitch angle of each spiral is -~ and 

there is a small shift angle/Xg~ = 2~(4~+1) between them. This shift angle reflects 
N 

1 the fact that the unit cell contains two sites unless x -  4" 
a 2 Eqs. (23) We note that  for special values of the model parameter x = �89 1, ~, . . .  

are not valid and spin correlations decay exponentially. These cases will be con- 
sidered in Sec.III (see Eqs.(42)). 

2.3 Phase  diagram of 'zigzag' mode l  

So far we have considered the model (1) at the transition line from ferromagnetic 
to antiferromagnetic state. Now we discuss the phase diagram of this model. The 
exact ground state in the AF phase is generally unknown. But it is interesting 
to note that  the ground state on the line J13 - - 1 / 2  is the product of singlets 
on ladder diagonals (2,3), (4,5), ... as in the point J13 - -J23 = - 1 / 2  on the 
transition line. The spectrum of (1) on the transition line is gapless. There are 
some regions on the plane (J13, J23) which were studied by different approximation 
methods. 

First let us consider the behavior of the system in the transition region near 
1 where the 'symmetric' point x - - ~ ,  

1 
J12 - J23 = - 1 ,  ,/13 - ~ + 5 (24) 

It should be mentioned that several copper oxide compounds are described by 
this model. These compounds contain CuO chains and C u -  0 -  Cu angle 0 
is near 90 ~ [7]. In this case the usual antiferromagnetic super-exchange of two 
nearest-neighbor magnetic Cu ions is suppressed and the exchange integral J12 is 
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Figure 2: The thick solid line is the boundary between the ferromagnetic and singlet phases. 
Circles correspond to the special cases of the model. The dotted line denotes the heuristic bound- 
ary between gapped and gapless phases. The dashed line is the boundary of the region with a 
multimagnon bound state. 

negative. On the other hand the next-nearest-neighbor interaction Jla between Cu 
ions does not depend on 0 and is antiferromagnetic. The estimation of the ratio 
Jla/J12 for La6CasCu:4041 and Li2Cu02 gives 5 = 0.11 and 5 = 0.37 respectively 
[7] 

Though the model (24) is not exactly solvable in this case, its properties for 
5 << 1 can be studied. The consideration is based on the classical approximation. 
In this approximation the ground-state spin structure is the spiral with period 
,-., 5 -1/2 and the ground-state energy E = -2N52.  Using this approach the 
regular expansion in powers of the small parameter 5 can be developed [18, 14]. 
The second-order quantum corrections coincide with the classical energy. The 
calculation of higher orders of the perturbation theory in 5 leads to infrared- 
divergent integrals and it is necessary to sum them in all orders to obtain the 
contributions proportional to 55/2, 5 a etc. In particular, the ground-state energy 
calculated up to terms N 55/2 is 

Eo - -4N52  + 4.14N55/2 

The excitation spectrum is gapless and has a sound-like behavior [18]. The 
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corresponding sound velocity is v = 4 5 3 / 2 .  

The study of the dependence of the ground-state energy E(m)  on magnetization 
m - S z / N  [26] at 5 << I shows that  ~ < 0 in a finite interval of values 
of m. This implies the thermodynamic instability of the uniform state against 
phase separation. This instability arises due to the existence of multimagnon 
bound states. The energy of an n-magnon bound state (n >> 1) is en = -nb,  
b = ]ell-Jr-  eb, where C1 is the energy of one-magnon state and eb is the binding 
energy per magnon. For the model (24) g l  - -  - - 8 5 2  and eb N 55/2. As a result the 
function E(m) has the form [26]" 

E(m)  = Eo + 2~53/2m2, m < mc - 2 V ~  
T 

1 
._.R_m( ) = 2b(1-2m) '  m c < m < - 2  (25) 

At m > m~ the system is in a two-phase state consisting of the ferromagnetic (m = 
1/2) phase and the phase with m = me. According to (25) the magnetization as a 
function of magnetic field h has a jump from m = me to m = 1/2 (metamagnetic 
transition) at h = h~ = b. These values me and h~ are close to those obtained in 
[27] by extrapolation of finite cluster calculations. We stress that  the jump of the 
magnetization exists if there are multimagnon bound states leading to the linear 
dependence of E(m)  for some region of m. 

As for properties of the model far from the transition point 5 = 0, now-days 
there is no clear understanding [3, 19, 20], but we believe that  the spectrum 
remains gapless. For the case 5 >> I this fact is predicted in [21]. As for the jump 
in re(h) it is unknown if it remains at 5 ~_ 1. Numerical calculations [27] show 
that, at least, there is an abrupt increase of magnetization at some critical value 
of magnetic field. 

This perturbation theory can be generalized for the vicinity of any point on 
the transition line. It gives similar properties of the system in the region J23 < 0, 
but it diverges at J23 > 0. 

At J13 = 0 and J23 > 0 the model (1) reduces to the alternating Heisenberg 
chain studied in [22]. The lowest excitation is the triplet and there is a gap. At 
J23 = 0 and J13 > 0 the model (1) reduces to the spin ladder with antiferromag- 
netic interactions along legs and ferromagnetic interactions on rungs. It is evident 
that there is a gap at J13 ~< 1 (in this case the model is equivalent to the spin 
S = 1 Heisenberg chain). It was shown in [23] that the gap exists at J~3 >> 1. 

The region J23 > 0, J13 < 0 was studied by different methods in [24, 26]. The 
exact diagonalization of finite chains shows a gap A in the excitation spectrum 
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Figure 3: Dependence of magnetizat ion m on magnetic field h for the case: (a) outside the bound- 
1 1. state region; (b) in the bound-sta te  region, but outside the strip - 5  < Jla < - g ,  (c) inside the 

1 1 s t r i p - 5  < J13 < 8" 

which is closed at the transition line. The presence of singlet-triplet gap is also 
confirmed by calculations with the use of variational wave functions in MP form 
(39) when all matrix elements are considered as variational parameters. The 
MP variational function gives very good accuracy [25, 26], besides it gives exact 
ground-state results for special points on the transition line and for the line Jla = 

1 (dimer state) 2 
Another important property of the model with J2a > 0, Jla < 0 is the existence 

of the multimagnon bound states for a definite region of the values J2a and J13. 
This region is shown on Fig.1. On the boundary of this region the multimagnon 
bound states disappear. As was noted before the existence of the bound states 
leads to linear regions on the dependence E(m) and to a metamagnetic transition. 
The dependence for E(m) and m(h) was found using MP variational function. 
The calculations show that out of the bound-state region the function re(h) is 
typical for the gapped antiferromagnet, i.e. it is monotonically increasing function 
(Fig.3). In other words, re(h) = 0 for h < A and re(h) = 1/2 for h > Jell. In 
the bound-state region the magnetization curve has the jump. It is interesting 
that inside the strip -�89 < J~a < ~ this jump takes place immediately from 
zero to the maximal value m = �89 (Fig.3) at hc-  Je(0)J (e(0) is a ground-state 
energy per site). Such behavior of m(h) is explained by the fact that inside this 
strip A > fe(0)J and the transition from the singlet state to the ferromagnetic one 
passes through states with intermediate values of spin. In the bound-state region 
outside the stripe the magnetization curve has a form as shown on Fig.(3). In 
this case the critical field hc = A. 

Thus, summarizing all the above, we expect that the phase diagram of the 
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Figure 4: The two-leg spin ladder. 

model (1) h~s the form shown in Fig.(2). 
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3 S p i n  l a d d e r  m o d e l  

Let us consider a more general spin-ladder model, for which the 'zigzag' model (2) 
is a particular case. So, we consider the cyclic ladder model containing N -  2M 

1 (Fig.4). The proposed form of wave function (4) can be generalized spins s -  
for a ladder model as follows- 

~ 0  --- t)0 ~ ,  ~ - -  (01 g l  (~ g2 (~ . . . (~ g M  I0) ,  (26) 

where each gi corresponds to the i th rung of the ladder: 

g~ - - b+ (  2 x -  b +b) ITT)~ + b]++)~ + (b+b-  x)]Tl + +T)~ + y]T+ - +T)~ (27) 

where x and y are two parameters of the model. It is obvious that  the ladder 
wave function (26)-(27) reduces to the original function (4) at y = x. 

Now we will construct the Hamiltonian for which ~l~dder is the exact ground- 
1 ladder with state wave function. This Hamiltonian describes the two-leg s - 

periodic boundary conditions (Fig.4) and can be represented in a form 

N 
H = ~_, hi,i+1, (28) 

i=1 

where hi,i+1 describes the interaction between neighboring rungs. The spin space 
of two neighboring rungs consists of six multiplets: two singlet, three triplet and 
one quintet. At the same time, one can check that  the product g~ | gi+l contains 
only three of the six multiplets of each pair of neighboring rungs: one singlet, one 
triplet ~nd one quintet. The specific form of the singlet ~nd triplet components 
present in the product gi | gi+l depends on parameters x ~nd y. The H~miltonian 
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hi,i+1 c a n  be written as the sum of the projectors onto the three missing multiplets 
with arbitrary positive coefficients/~1, ~2,/~3: 

3 
r)i,i+l (29) hi , i+i -  ~ AkZ-k , 

k=l 

19i,i+1 where ~ k is the projector onto the missing multiplets in the corresponding cell 
Hamiltonian. 

The wave function (26) is an exact wave function of the ground state of the 
Hamiltonian hi,i+1 with zero energy, because 

h i , i+ l [~)  - 0, i = 1, . . . N -  I (30) 

and )~1, )~2, )~3 axe the excitation energies of the corresponding multiplets in the 
cell. 

So, �9 is the exact ground state wave function with zero energy for the total 
Hamiltonian of an open ladder 

M-1 
Hopen-- ~ hi,i+l (31) 

i=1 

Hopenl ~) - 0  (32) 

Since the function ~ contains components with all possible values of total spin 
S (0 < S < M), then the ground state of the open ladder is multiply degenerate. 
But for a cyclic ladder (28) only singlet and ferromagnetic components of �9 have 
zero energy. Therefore, for a cyclic ladder ~0 is a singlet ground state wave 
function degenerated with the ferromagnetic state. Further, all the statements 
given for the 'zigzag' model (2) are valid for ladder model (28). 

Since the specific form of the existing and missing multiplets in the wave func- 
tion (26) on each of the two nearest neighbor spin pairs depends on the parameters 
x and y, the projectors in (29) also depend on x and y. Each projector can be 
written in the form 

- -  " " l ( k ) ( S l  S3 ~- S2 S4) + l(k)r S4 -~- r(k){2 S3 /91,2 l(k)(Sl S2 -~- 83 S4) -~- o13 ~'14 ~1" ~12 " " ')23 02" 
~-J~k)(Sl" S2)(S3" S4) -~- J~k)(Sl" S3)(S2" S4) -~- J~k)(Sl" S4)(S2" 83)-~- C(k~33) 

and this representation is unique for a fixed value of the parameters x and y. 
Substituting the above expressions for the projectors into Eq. (29), we obtain 

the general form of the Hamiltonian hi,i+1. Inasmuch as the Hamiltonian hi,i+1 



783 

have the same form for any i, it suffices here to give the expression for hi,2: 

hi,2 - J12(A12 -]- A34)+ J13(A13 + A24) + J14A14 + J23A23 

+ JIA12A34 + J2Ai3A24 + J3A14A23 (34) 

where 1 

A ~ j = S ~ . S j  4 

and all exchange integrals depend on the model parameters and the spectrum of 
excited states Ji = Ji(x, y,/~1, A2, '~3) aS follows: 

A2 A3 4Y 2 - 1 
J12 = § 

2 2 4 y 2 + 1  ' 

)12 /~3 4Y 2 - 1 
J13 = 

2 2 4y 2 + 1' 
y4 _ x2(x + 1)2 

,]1 -- 2 J 1 2 - A 1  3y 4 + x2(x + 1) 2' 

/~2 )~3 ( 2 y -  1) 2 
,]23--" 2 2 4 y 2 + 1  ' 

/~2 /~3 (2y + 1) 2 
J14 = 2 2 4 y 2 + 1  ' 

y4 + y2x( x + 1) 
,]2 -- 2J13 -~- 2/~1 ~-ff4 ~+_ ~-~-~ _~_ 1) 2 , 

y4 __ y2x( x ..~ 1) (35) 
J3 -- J14 ~- ,]23-~- 2/~1~-~4 _~--~-~ _~_ 1) 2 

(one should keep in mind that  only positive Ai can be subst i tuted in these ex- 
pressions). The model (35) has evident symmetry: the change of sign of y is 
equivalent to renumbering of sites 1 ~ 2, 3 ~ 4 . . . .  Therefore, we will consider 
only the case y > 0. 

In general, the Hamiltonian hi,i+1 contains all the terms present in (33), but 
we can simplify it by setting, for example, J2 = J3 = 0 and solving equations (35) 
for A1, A2, A3. All Ak turn  out to be positive in this case for any x and y except 
two lines y = 0 and x = - 1 / 2 ,  where ground state is multiple degenerated. The 
Hamiltonian hi,i+1 in this case takes the form 

hi,2 - J12(A12 -+- A34) + J13(A13 + A24) + J14A14 -+- J23A23 -~- JIA12A34 (36) 

J12 = - x ( x  + 1) + y2 

,113 = - x ( x  + 1) - y2, 

J1 = [x (x  + 1) - y~]~ 
y2 

1 

2' 
J14 - x (x  + 1) - y2 _ y, 

J23 = x (x  + 1) - y2 + y, 

-1 

The calculation of the norm of (26) and the singlet ground-state correlation 
functions can be performed in a similar way as the corresponding calculations for 
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the case y = x = - 1 / 4 .  Therefore, we give here the final result for spin correlation 

functions at N -~ oc 

1 
( S . .  - c o s  

1 (y  
(S2n-1" S2n+2/) -- ~ COS - -  -- / ~ )  (a7) 

41r is formed and These equations mean that  a spiral on each leg with pitch angle 
the shift angle between spirals on the upper and the lower legs i s / ~  - ~ At N" 
y = 0, when spins on each rung form a local triplet, the shift angle vanishes and 
the spirals on both legs become coherent (we note that  the shift angles in Eqs.(23) 
and (37) are defined in different ways). 

Thus, there is just one full rotation of the spin over the length of the ladder, 
independent of the size of the system and for fixed l << N at N ~ oc two spins 
on the ladder are parallel. 

We emphasize that  the spin correlation function (Si.Sj) does not depend on the 
choice of ~k for a fixed parameters x, y, because the ground-state wave function 
of the three-parameter set of Hamiltonians (35) is the same. 

3.1 Specia l  cases  

There are special values of the parameter x for which Eqs.(37) are not valid. For 
cases of integer or half-integer x = j,  which correspond to the special cases of the 
model (35), in Eq.(27) one can easily recognize Maleev's boson representation of 
spin S = j operators [28]: 

S + = b + ( 2 j  - b +b), S -  = b, S z = b + b - j  (38) 

Generally, the wave functions (4) and (26) resemble the MP form but with infinite 
matrices represented by the Bose operators. However, in accordance to Maleev's 
representation in the special cases the infinite matrices formed by the Bose oper- 
ators b + and b can be broken off to the size n = 2j + 1, and wave function (26) is 
reduced to the usual MP form 

~o = T r  (gl | g2 |  | gN) ,  (39) 

where g = - x T  + y S  is the n x n matrix describing states of spin pair on corre- 
sponding rung of the ladder. The singlet-state matrix is 

s = i (4o) 
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where I is unit matr ix  and [s} is the singlet state. The tr iplet-s tate  matr ix  T is 
expressed by Clebsch-Gordan coefficients Cm~,m~ = ((1, m l ) ( j ,  m2)I[ (J, ml  + m2)) 
as follows: 

Cod IO> Cl,j-1 [1> 0 0 0 
1 C-I, j  [ - 1 )  Co,j-1 ]0> . 0 0 

T = Coj 0 . . . 0 , (41) 
' 0 0 . �9 Cl,-j 11> 

0 0 0 C-1,-j+I [ -1)  Co,_y [0) 

where [a} is the triplet s tate with S z - a. 
Exact calculation of the correlators in the the rmodynamic  limit is performed 

using s tandard  transfer mat r ix  technique and results in 

x(x + 1) - 3y 2 
(SIS2) = 4w ' 

x(x + 1)(4y 2 -  1) {w- 1~/-1 

4w 2 ~ w ] ' 
x(x + 1 ) ( 2 y -  1) 2 {w -- l~ I-1 

= 

4w 2 ~, ] w 
x(x + 1)(2y + 1) 2 [ w - 1 ~ ' - '  

<S2i+282i+21+1> 4w 2 ~, w ] (42) 

where 
- x ( x  + 1) + y2 

In the part icular  case of zero singlet weight, y = 0, when spins on each rung 
form a local triplet,  correlation functions (42) coincide with those obtained in 
[9, 29]. 

According to Eqs.(42) the spin correlations have an exponential  decay and the 
correlation length r~ is 

w (43) re=21n  -1 w - 1  

In particular,  for special points of the 'zigzag' model (2) with J23 - 2~ and 2x+1 ( 1)  Jla - - x  the correlation length r e -  - 2  In -1 1 ~(2~+1) �9 

The correlation length re diverges when x ~ oc or y ~ oo. In these cases 
the singlet ground state has a collinear or stripe spin structure,  i.e. spin-spin 
correlations are ferromagnetic along legs and antiferromagnetic between them 
(Fig.5), with a magnet ic  order m: 

(SiS~+2z> - -  (SiSi+l+2z) - - m  2, ?It,"-' 
xy 

X 2 q_ y2 
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Figure 5: Stripe spin structure on the ladder model. 

When y = x (the 'zigzag' model) the magnetic order is equal to the classical value 
1/2. 

We note that  the wave function (26) shows double-spiral ordering for all values 
of x and y excluding the special lines x = j .  The crossover between spiral and 
stripe states occurs in the exponentially small (at N -~ ce) vicinity of the special 
lines. 

3.2 S p e c t r u m  of the  m o d e l  

Generally, the excitation spectrum of model (28,36) can not be calculated exactly. 
It is clear that this spectrum is gapless because, for example, the one-magnon 
energy is ~ N -4 at N -, oe. Moreover, the lowest singlet excitation is gapless as 
well. For model (28,36) lying on the special lines this fact can be established from 
the following consideration. As mentioned above, the crossover between spiral 
and stripe states occurs in the exponentially small vicinity of the special lines. 
It means that two wave functions ~0(j) and ~0(j + 6) corresponding to points 
(x - j, y) and (x - j + 6, y) respectively are almost orthogonal at 6 ~ e -g .  
Hence, we can consider a spiral wave function 90(j  + 6) as a variational function 
of the excited singlet state at special point x = j .  The energy of this excited state 
at a special point x = j is 

E ~  = (~0(j + 6)[ H ( j ) [ 9 0 ( j  + 6)) 

<90(j  + 6 ) 1 H ( j + 6 ) - 5 d H ( J d x  + 6 ) l g 0 ( j  + 6)> ~ const. .  6 ~ e -N 

Thus, on the special lines the stripe ground state of the considered model is 
asymptotically degenerated with an excited spiral singlet state in the thermody- 
namic limit. It is not clear if the degeneracy is exponentially large or not. This 
consideration is valid for any integer or half-integer x = j ,  but it is not valid for 
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the parameters x # j ,  which are outside of special lines. We performed [24] nu- 
merical diagonalization of finite ladders for various parameters x and y and found 
that  the exponential degeneracy possibly takes place for all parameters x and y, 
but we can not confirm it strictly. 

It is interesting to note that  the singlet wave function (26) can be also repre- 
sented in a special recurrent form [14, 11] 

~o = POq2 M, (44) 

~I/M - -  (81 + -+- 1218+ -+" / 2 2 8 ~ - . . .  Jr- / 2 2 8 + ) ( 8 ~  - -4- V 1 8 4 + . . .  ~- /228~V) �9 �9 �9 

(8-~n_ 1 + VlS-~n.. .  + V 2 8 ~ ) . . .  ( 8 ~ _  1 -F- VlS~v ) I,L,L �9 �9 �9 ,L> ( 4 5 )  

1 raising operator. Eq.(45) contains M operator multipliers where s + is the s = 
and the vacuum state ll$ . . .  $) is the state with all spins pointing down. The 
function ~M is the eigenfunction of Sz with Sz = 0 but it is not an eigenfunction 
of S 2. P0 is a projector onto the singlet state. Two parameters /21 and v2 in wave 
function (45) are connected with parameters x and y in (27) as 

l + x - y  1 
V l - -  l + x + y '  /22--- l + x + y  

The norm of the wave function (44) and expectation values can be also calcu- 
lated with the use of the recursion technique developed in [14, 11]. Certainly, it 
gives the same expressions (37,42) for spin correlation functions. 

3.3 A n t i f e r r o m a g n e t i c  l a d d e r  m o d e l  

Now we should consider in particular the special case [11] x = 1/2. In this case 
the product g~| contains only one singlet and one triplet and does not contain 
any quintet. Therefore, in this case the cell Hamiltonian can be writ ten in the 
form [31] 

4 
~i,~+1 (46) H -  ~ hi,i+1, hi,i+l - ~ ,kk., k , 

i k= l  

where p~,i+l _ is a projector onto the quintet state. If all Ak > 0, the ferromagnetic 
state has positive energy E = M/~4 and wave function ~0 (26) is now a non- 
degenerate singlet ground-state wave function for the Hamiltonian (46), while for 
Hamiltonian (28,29) ~0 is also an exact ground state but degenerate with the 
ferromagnetic state. Using a freedom in choice of Ak we can exclude all four-spin 



788 

interactions in hi,i+l 

hi,i+1 = J12 (S2i-1" S2i-~- S2i+1" S2i+2) -]- J13 (S2i-1" S2i+l -~- S2i" S2i+2) 

--~-J1482i-x �9 S2i+2 -[- J23S2i" S2i+l -F- C (47) 

and all exchange integrals Jij depend on one model parameter  y < 3/2 (this 
inequality is necessary to satisfy Ak > O) 

3 
J12 - ~(4y 2 -  1), J14 = - y ( 3  + 2 y ) ( 2 y -  1) 2, 

Jla - - 2 y 2 ( 4 y  2 - 1), J2a - y(3 - 2y)(2y + 1) 2, 3 (48) C - 9y 2 + 

~t- E o.~ ~0, (49) 
n 

The trial function ~t  gives A(y) which at N ~ oc has minima at k - 7r and 
1 a n d � 8 9  < 3  k - 0 for 0 < y < ~ y ~, respectively 

1 A(y) = 32y2(4Y2 + 1 )  0 < y <  2 
4y 2 + 3 ' 

128y 2 1 3 
A(y) = (4y 2 + 1)(4y 2 + 3)'  2 < y < 2 (50) 

It follows from Eq.(42) tha t  the ground state has ultrashort-range correlations 
with re ~ 1. For example, r~(y - 0) - 2log -1 3, which coincides with the 
correlation length of the AKLT model. But at y = �89 all correlations are zero 

3 1 except (S2~. S2i+l} -- --~. It implies that  at y - ~ the model (46-48) has a dimer 
ground state. 

1 and as follows from Eqs.(42), the The value ( w -  1) changes sign at y = ~, 
1 <  < 3  correlators show the antiferromagnetic structure of the ground state at ~ _ y _ ~, 

while at 0 _< y <_ 51 there are ferromagnetic correlations inside pairs (1, 2), (3, 4), . . .  
and antiferromagnetic correlations between the pairs. 

The Hamiltonian (46-48) of the cyclic ladder has a singlet-triplet gap A for 
1 finite N. It is evident that  for y = ~ the gap exists for N -+ oc and A(�89 - 4. 

a 
The existence of the finite gap at the thermodynamic limit in the range 0 < y < 
follows from the continuity of the function A(y). It is also clear that  A(y) at 

3 when the ground state N --+ oc vanishes at the boundary points y - 0 and y = 
is degenerate and there are low-lying spin-wave excitations. 

Unfortunately, a method for the exact calculation of A(y) in the thermody- 
namic limit is unknown. For the approximate calculation A(y) we use the trial 
function of the triplet state in the form 
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A(y) 

. B  " Q 

0 0 0.5 1 

" \ . .  

i 

Y 
1 . 5  

Figure 6: Singlet-triplet gap of the model (48) as a function of the parameter y. The circles 
denote the results of the extrapolation of exact finite-chain calculations. The solid line represents 
the dependence A(y) given by Eq.(50). 

The dependence of A(y) given by Eq.(50) is shown in Fig.6 together with the 
results of extrapolations of exact finite-chain calculations. Both dependences agree 
very well for y <_ ~.1 However, A(y) given by Eq.(50) is not zero at y = 5,3 while 

, 

numerical calculations fit the dependence A(y) ~ V/3 y, y ~ 3 2" 
We note that the trial function of the type (49) gives the value 0.7407 for the 

singlet-triplet gap in the AKLT model. This estimate is close to the value 0.7143 
obtained by another approach in [30]. 

For other special cases one can also construct Hamiltonians for which ~0 is a 
non-degenerate singlet ground-state wave function. But in these cases one have 
to introduce more distant interactions. 

4 V a l e n c e - B o n d - S t a t e  m o d e l s  

4.1 O n e - d i m e n s i o n a l  mode l  

We studied previously a one-parameter ladder model (46-48) with non-degenerate 
singlet ground state. The exact ground state wave function of the cyclic ladder 
was written in the MP form (39). Now we write the wave function ~0 in a form 
more suitable for subsequent generalization to other types of lattices [31]. 

We consider a ladder of N = 2M spins 1/2. The wave function of this system 
is described by the Nth-rank spinor 

- (51) 
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where the indices )~, #, u , . . . ,  -/- - 1, 2 correspond to different projections of the 
spin 1/2. 

We partition the system into pairs of spins located on rungs of the ladder. The 
wave function can then be written as the product of M second-rank spinors 

-- ~a" (1 )~P(2 ) . . .  ~a~(M). (52) 

We now form a scalar from Eq. (52), simplifying the latter with respect to index 
pairs: 

�9 ~ = ~a~(1)~"~(2). . .  ~ ( M ) .  (53) 

Here subscripts correspond to the covariant components of the spinor, which are 
related to the contravariant components (superscripts) through the metric spinor 

g ~ , = g ~ -  ( 01 1 (54) 
- 0 /  

The scalar function (53) can thus be written in the form 

�9 s - ~ " ( 1 ) g . ~ v ~ " ( 2 ) a , ~ . . .  ~ ( M ) g ~ .  (55) 

The scalar function ~ obviously describes the singlet state. 
The second-rank spinor, describing the pair of spins 1/2, can be written in the 

form 

�9 ~. = c ~ "  + ~ ~ . ,  (56) 

where ~t A" and ~ "  are symmetric and antisymmetric second-rank spinors, re- 
spectively, and ct and c~ are arbitrary constants. We know that the symmet- 
ric second-rank spinor describes a system with spin S = 1, so that the pair of 
spins 1/2 in this case forms a triplet. If ~a" is an antisymmetric second-rank 
spinor reducible to a scalar multiplied by ga,, the spin pair exists in the singlet 
state. Consequently, the ratio of the constants ct and c~ determines the relative 
weights of the triplet and singlet components on the pair of spins s = 1/2 and is a 
parameter of the model. In particular, for cs = 0 the wave function (56) contains 
only a triplet component, and for ct = 0 it contains only a singlet component. 

We note that the wave function (53) has the MP form (39) with the matrices 
gi representing a mixed second-rank tensor: /1 / 

9 i -  ~ (i) -- ct -~ [;'~ + ~.T)i ]J.l)i 1 ~' 1 -~c~(IT& + &T>~ z, (57) 
-[TT)~ 2 ITl + s 
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Figure 7: Two-dimensional lattice on which the spin model is defined. 

where I is the unit matrix. 
We now choose a Hamiltonian H for which the wave function (55) is an exact 

ground-state wave function. To do so, we consider the part of the system (cell) 
consisting of two nearest neighbor spin pairs. In the wave function (55) the factor 
corresponding to the two spin pairs is a second-rank spinor: 

~t ' ( i )gm,~ 'P( i  + 1). (58) 

In the general case, therefore, only two of the six multiplets forming two pairs 
of spin 1/2 one singlet and one triplet are present in the function (58). 
Inasmuch as four spins 1/2 form two singlets and three triplets, the specific form 
of the singlet and triplet components present in the wave function (58) depends on 
the ratio c~/ct. The cell Hamiltonian acting in the spin space of nearest neighbor 
spin pairs can be written as the sum of the projectors onto the four missing 
multiplets with arbitrary positive coefficients Ak (46). As mentioned above, the 
general form of the Hamiltonian (46) can be reduced to a more simple form (47) 
with c~/ct = 2y. 

Thus, the singlet ground-state wave function of the model (46) can be also 
written in a spinor form (55). 

4.2 Two-d imens iona l  mode l  

Now we consider an N x N-site square lattice with cyclic boundary conditions. We 
replace each site of the lattice by a square (Fig.7) with spins s - 1/2 at its corners, 
making the total number of spins equal to 4N 2. To avoid misunderstanding, 
however, from now on we continue to refer to these squares as sites. The wave 
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Figure 8: Graphical correspondence of the model wave function. The indices of the site spinors 
depend on the site index (not shown in the figure). 

function of the system is described by the product of fourth-rank spinors 

-- II  ~"""~"P"(n). (59) 
11 

By analogy with (55), from Eq. (59) we form the scalar 

- I I  (60)  
II  

where a and b are unit vectors in the x and y directions. 
The singlet wave function (60) is conveniently identified graphically with a 

square lattice, each site corresponding to a fourth-rank spinor ~ ' ~ P  (whose form 
is identical for all sites), and each segment linking sites corresponds to a metric 
spinor gA, (Fig.8). 

To completely define the wave function (60), it is necessary to know the form 
of the site spinor ~A,~p. The specific form of the fourth-rank spinor ~ '~P  [and, 
hence, the wave function (60)] describing the system of four spins s - 1/2 is 
governed by 14 quantities [31], which are parameters of the model. 

We now choose a Hamiltonian H for which the wave function (60) is an exact 
ground state wave function. As in the one-dimensional case, we seek the required 
Hamiltonian in the form of a sum of cell Hamiltonians acting in the space of two 
nearest neighbor spin quartets: 

g -  E H.,.+~ + E Hn,n+b. (61) 
n n 

The first term in Eq. (61) is the sum of the cell Hamiltonians in the horizontal 
direction, and the second term is the same for the vertical. The cell Hamiltonians 
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Figure 9: Lattice sites associated with interactions HI,2 and Hl,a. 

along each direction have the same form, but the "horizontal" and "vertical" 
Hamiltonians differ in general. In the following discussion, therefore, we consider 
only the Hamiltonians H1,2 and Hl,3 (Fig.9), which describe interactions of "sites" 
in the x and y directions, respectively. 

For the wave function (60) to be an exact eigenfunction of the Hamiltonian H, 
it is sufficient that the sixth-rank spinors 

t~AlP'vlPl (1)t~A2P2v2P2 (2)gv1~2, 

~AlttlUlPl(1)~A3tt3u3p3 (3)gpltL3, (62) 

be eigenfunctions of the corresponding cell Hamiltonians H1,2 and H1,3. 
In general, when the site spinor ~ ' ~ P  is not symmetric with respect to any 

indices, the possible states of two quartets of spins s = 1/2 consist of 70 multiplets. 
A wave function represented by a sixth-rank spinor contains only 20 of them. 
Accordingly, the cell Hamiltonians H1,2 and H1,3 can be represented by the sum 
of projectors onto the 50 missing multiplets: 

50 50 
. .1,2 H1,3-  E #kP~ '3 (63) H1,2 = E Akrk  , 

k=l k=l 

where the positive constants Ak and #k are the excitation energies of H1,2 and 
HI,a, and the specific form of the projectors depends on 14 model parameters. 

Inasmuch as 

Hn,n+al~I/s) = 0, Hn, n+bl~I/s) = 0, (64) 

for the total Hamiltonian (61) we have the expression 

H[ff~) - 0. (65) 
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Consequently, ~ is the ground-state wave function of the total Hamiltonian 
H, because it is a sum of nonnegative definite cell Hamiltonians. Also, it can be 
rigorously proved [31] that  the ground state of H is non-degenerate. 

As mentioned above, the specific form of the projectors depends on 14 model 
parameters, and in general the cell Hamiltonians (63), expressed in terms of scalar 
products of the type s~ �9 s j, (s~. sj)(sk- sz), etc., have an extremely cumbersome 
form. We therefore consider a few special cases. 

When the site spinor ~a'"P is a symmetric fourth-rank spinor QA,.p (corre- 
sponding to the two-dimensional AKLT model[13]), only the quintet component 
out of the six multiplets on each spin quartet is present in the wave function (60). 
The sixth-rank spinors (62) are symmetric with respect to two triplets of indices 
and, hence, contain four multiplets with S = 0, 1, 2, 3 formed from two quintets. 
Consequently, the cell Hamiltonian (H1,2 and HI,a coincide in this case) has the 
form 

66 
= E (66) 

k=l 

If we set Ak = 1 (k = 1, 66), we can write Eq. (66) in the form 

H1,2 = P4(Sl + S2 )+  [1 - P2(S1)P2(S2)], (67) 

where S~ is the total spin of the quartet of spins s = 1/2 on the ith site, Si - 
sl(i) + s2(i) + s3(i) + s4(i), and Pz(S) is the projector onto the state with spin 
S = l .  

If the four spins s = 1/2 at each site are replaced by a single spin S = 2 and 
if the wave function (60) is treated as a wave function describing a system of N 2 
spins S = 2, the second term in the Hamiltonian (67) vanishes, and we arrive at 
the Hamiltonian of the two-dimensional AKLT model: 

1 1 (Sl" S2) 3 -~- (Sl" S2)4(68) Hi,2 -- Pn(Sl ~- S2) - Sl" S2 -J- ~-0(Sl" S2) 2 + ~ 2520 

Another interesting special case is encountered when the system decomposes 
into independent one-dimensional chains. This happens if the site spinor ~ " P  
reduces to a product of two second-rank spinors, each describing two spins 1/2. 
For example, 

II/A#uP(81, 82, 83, 8 4 ) -  ~)~u(81, 83)~ttP(82, 84). (69) 

In this case the Hamiltonians H1,2 and H1,3 contain interactions of four rather 
than eight spins 1/2 and have the form (34). 
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Figure 10" Pattern of independent singlet pairs (double lines). 

The simplest case is when the site spinor ~a'"P is a product of four first-rank 
spinors: 

tIIA#uP(81, 82, 83, 8 4 ) -  ~A(81)~tt(82)~u(83)qPP(84). (70) 

Now the system decomposes into independent singlet pairs (Fig.10), and the total 
Hamiltonian of the system has the form 

z,3 

where si and sj are the spins forming the singlet pairs. 

(71) 

4.3 Spin correlat ion funct ions in the  ground state  

We now look at the problem of calculating the norm and the correlation function 
of the model described by the wave function (60). The expression for the norm 
of the wave function G -  (~m~}  has the form 

-- H <II/A~#~#nP~ (n) I II/Anttnu'Pn (n)} g nuAn+agP.#n+bg.U'~'.+.gP.#.+b' ' 
n 

n i1 

a i , / ~ / -  {1, 2, 3, 4}, (72) 

where R~Z~Z is a 4 z 4 x 4 x 4 matrix. 
According to the selection rules for the projection of the total spin S z, only 

70 of the 256 elements in the expression (~ ' "~ 'P (n ) l~ '~P(n)}  are non-vanishing. 
Consequently, the matrix R also contains at most 70 elements. If we regard the 
elements of R as Boltzmann vertex weights, the problem of calculating the norm 
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reduces to the classical 70-vertex model. Since the exact solution for the 70-vertex 
model is unknown, numerical methods must be used to calculate the norm and 
the expectation values. 

To calculate the above-indicated expected values, we carry out Monte Carlo 
calculations on 20 • 20-site lattices. As mentioned, the ground-state wave function 
of the model depends on 14 parameters and, of course, cannot possibly be analyzed 
completely. We confine the numerical calculations to the case in which the spinor 
�9 ~u~P depends on one parameter a: 

@A"~P = cos a .  Q~"~p + sin (~. (A ~"~p - Q~"~P), (73) 

where (~ c [ - ~ / 2 ;  ~/2], the spinor QA~P is symmetric with respect to all indices, 
and 

A~,,,p _ ~ A ( 8 1 ) ( ~ t t ( 8 2 ) ~ u ( 8 3 ) ~ P ( 8 4 ) .  (74) 

In this case we have a one-parameter model with two well-known limiting cases. 
One corresponds to c~ = ~/4, for which ~ ~ P  = A ~ p ,  and the system decomposes 
into independent singlet pairs (Fig. 10); the other limiting case corresponds to 

= 0 (our model reduces to the two-dimensional AKLT model in this case, the 
spins at each site forming a quintet). 

In the given model there are four spins s = 1/2 at each site, and the enu- 
meration of each spin is determined by the order number of the lattice site to 
which it belongs and by its own number at this site. The spin correlation function 
therefore has the form 

= + (75) 

In determining the spin structure of the ground state, however, it is more 
practical to consider the more straightforward quantity F(r):  

4 

F(r)  - E (si(n). s j(n + r)) - (S(n)- S(n + r)). (76) 
i , j=l  

The function F(r )  is left unchanged by a change of sign of a. We note, however, 
that only the total correlation function, and not fij(r), possesses symmetry under 
a change of sign of c~. This assertion is evident, for example, in Fig. 11, which 
shows the dependence of f31(a) on a as an illustration. 

The correlation function decays exponentially as r increases, differing from 
the one-dimensional model in that the pre-exponential factor also depends on r. 
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Figure 11: Dependence of the spin correlation function (sa(1)Sl(2)) on the parameter a. 

Figure 12 shows the dependence of the correlation length r~ on the parameter c~. 
The correlation length is a maximum at the point a = 0 (two-dimensional AKLT 
model), decreases as a increases, and at a = ~/4,  when the system decomposes 
into independent singlet pairs (Fig. 10), it is equal to zero. Wi th  a further increase 
in a the correlation length increases and attains a second maximum at (~ = 7r/2. 
Like the correlation function F( r ) ,  the function r~(a) is symmetric with respect to 
a. It is evident from Fig. 12 that  the parameter  a has two ranges corresponding to 
states with different symmetries. In the range lal < lr/4 the correlation function 
F( r )  exhibits antiferromagnetic behavior: 

F( r )  c< (--1)r~+rYe-lr]/rc, (77) 

whereas the spins at one site are coupled ferromagnetically, ( s i (n) .  sj(n)) > 0. 
On the other hand, in the range ~ /4  < la[ < ~r/2 the correlation function F(r )  is 
always negative: 

F( r )  ~ _e-I~l/~o (78) 

and all the correlation functions at one site are also negative. 
These ranges have two end points in common, c~ = •  where r c  = O. 

Whereas c~ = ~ /4  corresponds to the trivial parti t ion of the system into indepen- 
dent singlet pairs, the case c~ = - ~ / 4  is more interesting. In this case one can 
calculate all spin correlations exactly [31]. The correlations of spins located on 
neighboring 'sites' of lattice at a = - ~ / 4  are antiferromagnetic, while all other 
correlators are zero. 

The Hamiltonian for model (73) has a very combersome form and for the cases 
c~ = -7r /4  and c~ = 7r/2 was given in [31]. 
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Figure 12: Dependence of the correlation length on the parameter a. 

Our results suggest that the spin correlation functions decay exponentially 
with a correlation length ~ 1 for an arbitrary parameter a. We also assume 
that the decay of the correlation function is of the exponential type for the 14- 
parameter model as well, i.e., for any choice of site spinor ~ '~P .  This assumption 
is supported in special cases: 1) the partition of the system into one-dimensional 
chains with exactly known exponentially decaying correlation functions; 2) the 
two-dimensional AKLT model, for which the exponential character of the decay 
of the correlation function has been rigorously proved [32]. Further evidence of 
the stated assumption lies in the numerical results obtained for various values of 
the parameter in the one-parameter model. 

4.4 Gene ra l i z a t i on  of t he  mode l  to  other types  of latt ices 

The wave function (55), (60) can be generalized to any type of lattice. The gen- 
eral principle of wave function construction for a system of spins 1/2 entails the 
following: 

1) Each bond on a given lattice has associated with it two indices running 
through the values 1 and 2, one at each end of the bond. 

2) Each bond has associated with it a metric spinor g~, with the indices of the 
ends of this bond. 

3) Each site of the lattice (a site being interpreted here, of course, in the same 
sense as in Sec.IVB) with m outgoing bonds has associated with it an ruth-rank 
spinor with the indices of the bonds adjacent to the site. 

4) The wave function is the product of all spinors at sites of the lattice and all 
metric spinors. 
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It is obvious that each index in the formulated wave function is encountered 
twice, so that the wave function is scalar and, hence, singlet. 

The wave function so constructed describes a system in which each lattice site 
contains as many spins s = 1/2 as the number of bonds emanating from it. 

To completely define the wave function, it is necessary to determine the spe- 
cific form of all site spinors. The coefficients that determine their form are then 
parameters of the model. 

The Hamiltonian of such a model is the sum of the cell Hamiltonians acting 
in the spin space of the subsystem formed by the spins at two mutually coupled 
sites: 

H = ~_~ Hij. (79) 
(ij) 

Each cell Hamiltonian is the sum of the projectors with arbitrary positive 
coefficients onto all multiplets possible in the corresponding two-site subsystem 
except those present in the constructed wave function: 

H ,j E "  (80) - -  A k  r- k . 
k 

Then H i , j ] ~ ) =  0 and, accordingly, H I ~  > = 0. 
Consequently, ~ is an exact ground-state wave function. 
We note that any two lattice sites can be joined by two, three, or more bonds, 

because this does not contradict the principle of construction of the wave function. 
Moreover, the general principle of construction of the wave function is valid not 
only for translationally symmetric lattices, but for any graph in general. As an 
example, let us consider the system shown in Fig. 13. The wave function of this 
system has the form 

f f 2 s -  ~ A I ( 1 ) ~ A 2 # ' u l P l ( 2 ) ~ P 2 U 2 T ' ( a ) ~ # 2 ~ ' 2 ( a ) g A 1 ) ~ 2 g # I # 2 g U l u 2 g p l p 2 g T 1 T 2  (81) 

and describes a system containing ten spins 1/2. 
If the given lattice has dangling bonds (as occurs for systems with open bound- 

ary conditions), the resulting wave function represents a spinor of rank equal to 
the number of loose ends. The ground state of this kind of system is therefore 2L 
fold degenerate, where l is the number of loose ends. For an open one-dimensional 
chain, for example, the ground state corresponds to four functions one singlet 
and three triplet components. For higher-dimensional lattices this degeneracy 
depends on the size of the lattice and increases exponentially as its boundaries 
grow. 
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Figure 13: Example of a graph corresponding to the wave function (81). 

5 E l e c t r o n i c  m o d e l s  

In recent years there has been increasing interest in studying models where at least 
the ground state can be found exactly [33, 34]. The most popular method for the 
construction of exact ground state is the so-called optimal ground state approach 
(OGS) [34]. In the OSG method the ground state of the system is simultaneously 
the ground state of each local interaction. In this Section we propose new 1D and 
2D models of interacting electrons with the exact ground state which are different 
from those constructed in the OSG method. The ground state wave function of 
our models is expressed in terms of the two-particle 'singlet bond' (SB) function 
located on sites i and j of the lattice: 

[ i , j ] = c  +c  + _ c  + ;c+c + + + 

where c .+ ~,~, c/,o are the Fermi operators and x is an arbitrary coefficient. The 
SB function is the generalization of the RVB function [35] including ionic states. 
The presence of the ionic states is very important from the physical point of view 
because, as a rule, the bond functions contain some amount of the ionic states as 
well. 

It is known that for a set of 1D and 2D quantum spin models the exact ground 
state of which can be represented in the RVB form [15, 6, 36, 13, 31]. It is natural 
to try to find electronic models with an exact ground state at half-filling formed 
by SB functions in the same manner as for above mentioned spin models. The 
electronic models of these types include the correlated hopping of electrons as well 
as the spin interactions and pair hopping terms. 

The model with dimerization. 
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As the first example we consider the 1D electronic model with the two-fold 
degenerate ground state in the form of the simple product of SB dimers, similarly 
to the ground state of the well-known spin -1 Majumdar-Ghosh model [6]. For the 
half-filling case the proposed ground state wave functions are: 

II/1 -- [1, 2][3, 4]...IN - 1, N] (83) 

and 
�9 2 = [2, 3][4, 5]...IN, 1] (84) 

In order to find the Hamiltonian for which the wave functions (83) and (84) 
are the exact ground state wave functions, we represent the Hamiltonian as a sum 
of local Hamiltonians hi defined on three neighboring sites (periodic boundary 
conditions are supposed): 

N 
H = F_, hi (85) 

i=1 

The basis of three-site local Hamiltonians hi consists of 64 states, while only 
eight of them are present in ~1 and ~2. These 8 states are 

[i, i + 1] g)i+2, ~i [i + 1, i + 2], (86) 

where ~ is one of four possible electronic states of i-th site: 10)i, I?)~, I~)~, 12)~ �9 
The local Hamiltonian hi for which all the functions (86) are the exact ground 

state wave functions can be written as the sum of the projectors onto other 56 
states ] Xk ) 

hi = E Ak Ik;k)(Xk[, (87) 
k 

where Ik are arbitrary positive coefficients. This means that the wave functions ~1 
and 92 are the ground states of each local Hamiltonian with zero energy. Hence, 
91 and 92 are the 'optimal' ground state wave functions of the total Hamiltonian 
H with zero energy, similarly to the models in [10, 34, 37, 12]. In general case, the 
local Hamiltonian hi is many-parametrical and depends on parameters Ik and x. 
We consider one of the simplest forms of hi including the correlated hopping of 
electrons of different types and spin interactions between nearest- and next-nearest 
neighbor sites" 

hi = 2 - x (ti,i+l + ti+1,r 
+ (x 2 - (1 + x2)(1 -/ t i+l) 2) T/,i+ 2 
+ 8 1 - x 2  

3 (Si. Si+l  + Si+l " Si+2 + Si"  Si+2), (ss) 
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where 

T~,5 + 
= E(c+~cj,~ + cj,~c/,~)(1 - ni,_~ - nj,_~),  

5r 

ti,j - V(c+ocj ,~ + cj+oc~,~)(ni,_~ - nj,_~) 2 (89) 

and Si is the SU(2) spin operator. 
Each local Hamiltonian hi is a non-negatively defined operator at Ix[ <_ 1. The 

following statements related to the Hamiltonian (88) are valid" 
1. The functions (83) and (84) are the only two ground state wave functions 

of the Hamiltonian (88) at Are - N (Are is the total number of electrons). They 
are not orthogonal, but their overlap is ~ e -N  at N >> 1. 

2. The ground state energy Eo(N~. /N)  is a symmetrical function with respect 
to the point N ~ / N  = 1 and has a global minimum E0 = 0 at N ~ / N  = 1. 

3. The translational symmetry of (88) is spontaneously broken in the ground 
state leading to the dimerization: 

(Iti,i+l -- t i+l,i+2[) = 2 

The excited states of the model can not be calculated exactly but we expect 
that  there has to be a gap, because the ground state is formed by the ultrashort- 
range SB functions. If this is the case, the function E o ( N ~ / N )  has a cusp at 
N ~ / N =  1. 

Actually, this model is the fermion version of the Majumdar  - Ghosh spin 
model. Moreover, it reduces to the Majumdar  - Ghosh model at x = 0 and in 
the subspace with ni = 1. 

For x = 1 the Hamiltonian (88) simplifies and takes the form: 

H - - 2  E tj,j+l -- E einn~+'Tj,j+2 (90) 
J J 

The 2D model. 

We can easily construct the 2D electronic model with the exact ground state 
which is analogous to the S h a s t r y -  Sutherland model [36] (Fig.14). The Hamil- 
tonian of this model is: 

H - E hi,j + hi,k + hJ, k, (91) 
{i,j,k} 

where the sum is over all triangles { i , j , k } ,  one of which is shown on Fig.14. So, 
each diagonal line belongs to the two different triangles. The local Hamiltonians 



803 

/ 
/ 

/"  j 

uu u "'u', u �9 

"uu  ", 

u / 

/ 

" ' ""  k 

/" / 
�9 / 

�9 / / �9 

Figure 14: The lattice of the Shastry- Sutherland model 

hjd, k acting on the diagonal of the triangle {i, j, k}, and h~,j, h~,k have the form (for 
the sake of simplicity we put x = 1) 

hjdk -- --2 tb, k + 4 

hi,j = - t i , j  - e i~nk Ti,j 

hi,k = --ti,k -- e i ~ j  Ti,k (92) 

It is easy to check that 

hjdk [~i [j, k]) - (hi,j + hi,k) [~i [j, k]) - 0 

All other states of the local Hamiltonian hi,j + hi,k + hjdk have higher energies. 
Therefore, the ground state wave function in the half-filling case is the product of 
the SB functions located on the diagonals shown by dashed lines on Fig.14. This 
model has non-degenerate singlet ground state with ultrashort-range correlations. 

The l a d d e r  model .  

Let us now consider electronic models with a more complicated ground state 
including different configurations of short-range SB functions. The form of these 
ground states is similar to that for spin models proposed in [13] and generalized 
in [31]. In the 1D case our model describes the two-leg ladder model (Fig.4). Its 
ground state is a superposition of the SB functions where each pair of nearest 
neighbor rungs of the ladder is connected by one SB. 

The wave function of this ground state can be written in a form (55): 

�9 , = CA"(1)g,.r r  (93) 

The functions r  describes the i-th rung of the ladder 

/k # 
~))~tt ( i)  - -  C1 ~2A/_1~i  -J- C2~92i(t92i-1 (94) 
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with 

It is easy to see that  

T)k 0 1 0 0 
- I  0 0 0 

~)k g ~ " -  0 0 0 x 2)k ' 
0)k 0 0 x 0 

(05) 

g~,q0i qaj = 

Therefore, the function ~ is a singlet wave function depending on two parame- 
ters x and cl/c2. Actually, this form of ~ is equivalent to the MP form with 4 • 4 
matrices A~(i )  = g~,r  Moreover, at x = 0 and Cl/C2 = - 1  the function ~ 
reduces to the wave function of the well-known AKLT spin-1 model. 

In order to find the Hamiltonian for which the wave function (93) is the exact 
ground state wave function, it is necessary to consider what states are present 
on the two nearest rungs in ~ .  It turns out that  there are only 16 states from 
the total 256 ones in the product r162 + 1). The local Hamiltonian h~ 
acting on two nearest rungs i and i + 1 can be written in the form of (87) with 
the projectors onto the 240 missing states. The total Hamiltonian is the sum of 
local ones (85). The explicit form of this Hamiltonian is very cumbersome and, 
therefore, it is not given here. 

The correlation functions in the ground state (93) can be calculated exactly 
in the same manner  as was done for spin models [13]. It can be shown that all 
of correlations exponentially decay in the ground state. We expect also that  this 
model has a gap. 

This method of construction of the exact ground state can be generalized also 
to 2D and 3D lattices, as was done in Sec.IV. Following [31], one can rigorously 
prove that  the ground state of these models is always a non-degenerate singlet. 

1D models with a giant spiral order. 
There is one more spin -1 model with an exact ground state of the RVB type 

[15]. This is the model (9) describing the F-AF transition point. The exact singlet 
ground state can be expressed by the combinations of the RVB functions (i, j )  
distributed uniformly over the lattice points (8). The analog of the wave function 
(8) in the SB terms is: 

~0 - ~ ( -1 )  P [i, j][k,/][m, n ] . . . ,  (96) 
i<j... 

where P = (i, j, k, 1, . . . )  is the permutat ion of numbers (1, 2 , . . .  N). It is inter- 
esting to note that  the singlet wave function (96) can be also writ ten in the MP 
form but with infinite size matrices [17]. 
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In order to find the Hamiltonian for which the wave function (96) is the exact 
ground-state wave function, let us consider what states are present on the two 
nearest sites in the ~0. It turns out [17] that  there are only 9 states from the 
total 16 ones in (96). They are 

ITT), I&l), IT& -4- s 120- 02), 
IT& - s + x 120 -4- 02 ) ,  IT 0 - o T>, 

IT 2 -  21"), It 0 - 0  t ) ,  [~ 2 - 2 ~) (97) 

The local Hamiltonian hi,i+l c a n  be written as the sum of the projectors onto 
the 7 missing states (87). At Ix[ > I the most simple form of this total Hamiltonian 
i s :  

N 

, - -  x t i , i + l  - -  4 Si" Si+l 

4 x 2 -  ) 
+ ~-~qi" qi+l + 4 x2 3q~q~+l + 1 (98) 

We use here ~ operators: 

H ~_ 

?7+ __ C+j. C +  - z i , l '  ~ i  - -  Ci , l  C i , l ,  rli - -  
1 - -  n i  

which form another SU(2) algebra [38, 39], and U1 "~/2 is a scalar product of 
pseudo-spins 771 and ~2. We note that  this Hamiltonian commutes with S 2, but 
does not commute with q2. It can be proved [17] that  only three multiplets are 
the ground states of (98): the singlet state (96), the trivial ferromagnetic state 
S = N/2  and the state with S = N / 2 -  1. 

The norm and the correlators of the electronic model (98) in the singlet ground 
state are exactly calculated [17]. For example, the norm of (96) is: 

t i N (  
(~olq2o)- de N 2 

1 + cosh(xr 

cos~(~) r 

The correlators at N >> 1 are 

o(5) (1) <~-~> - o ~ , 
' 

( S i S i + l )  - -  "~ COS - -  (99) 
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The correlator (rl+rff+z) which determines the off-diagonal long-range order 
(ODLRO) [40] vanishes in the thermodynamic limit. At the same time the spin- 
spin correlations have a spiral form, and the period of the spiral equals the system 
size as in the spin model (9). 

Another electronic model can be obtained by making the canonical transforma- 
tion c+t --+ c+ T and c+~ ---+ ci,,. As a result of this transformation, the SB function 
(82) becomes: 

C + C + + + (C + C + C + C + {i, j }  = i,t i , 1 -  cj, tcj, i -  x t i,t j,i + i,i J,t)10>, (100) 
and the wave function (96) changes to 

~o = E { i , j } { k ,  1 } { m , n } . . .  (101) 
i<j . . .  

The function (101) for Ixl > 1 is the exact ground state wave function of the 
transformed Hamiltonian: 

N ( 2t ' 
H = ~Q - T i , i + l  - x i , i+ 1 - 4 ~ i .  7]i+ 1 

i = 1  

X 2 - -  3 ) 
-I- Si" Si+I-+" 4 x2 SZSi%l -n t- I , (102) 

where 
t~i,i+l - ~:~ a(c~,~c~+l,o + c++l,oc~,~) (ni,_~ - n i+ l  _~) 2 

IT 

This Hamiltonian commutes with ~2 but does not commute with S 2. Therefore, 
the eigenfunctions of the Hamiltonian (102) can be described by quantum numbers 

and ~z. For the cyclic model the states with three different values of ~ have 
zero energy [17] [as it was for the model (98)]. They include one state with rl - 0 
(101), all states with 77 = N/2"  

N/2. , .  - ( ~ + ) N / ~ - " "  IO>. (1o3) 

and the states with rl = N / 2  - 1. Therefore, for the case of one electron per site 
(~z = 0), the ground state of the model (102) is three-fold degenerate. 

The correlation functions in the ground states with 77 = N / 2  and ~? = N / 2 -  1 
for the half-filling case coincide with each other and at N >> 1 they are: 

< ~,~ ~+~,~> = o , <s~s~+~> = o ~ , 

' 
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The existence of the ODLRO immediately follows from the latter equations. The 
correlation functions in the ground state (101) have similar forms as in Eqs.(99): 

(1) 
- 2 - c o s  (105) 

The giant spiral ordering in the last equation implies the existence of ODLRO 
and, therefore, of superconductivity [40] in the ground state (101). 

Similarly to the original spin model (9) [11, 18] the last two electronic models 
(98),(102) describe the transition points on the phase diagram between the phases 
with and without a long-range order [ferromagnetic for the model (98) and off- 
diagonal for the model (102)]. Therefore, we suggest the formation of the ground 
state with giant spiral order (ferromagnetic or off-diagonal) as a probable scenario 
of the subsequent destruction of ferromagnetism and superconductivity. 

6 C o n c l u s i o n  

We have considered the class of the 1D and 2D spin and electronic models with 
an exact ground states. 

1 ladder with competing interactions of the One of these models is the spin-~ 
ferro- and antiferromagnetic types at the F-AF transition line. The exact singlet 
ground-state wave function on this line is found in the special form expressed in 
terms of auxiliary Bose-operators. The spin correlators in the singlet state show 
double-spiral ordering with the period of spirals equal to the system size. 

In the general case the proposed form of the wave function corresponds to 
the MP form but with matrices of infinite size. However, for special values of 
parameters of the model it can be reduced to the standard MP form. In particular, 
we consider a spin-�89 ladder with nondegenerate antiferromagnetic ground state 
for which the ground state wave function is the MP one with 2 • 2 matrices. 
This model has some properties of 1D AKLT model and reduces to it in definite 
limiting case. 

The ground state wave function of the spin ladders can be represented in an 
alternative form as a product of second-rank spinors associated with the lattice 
sites and the metric spinors corresponding to bonds between nearest neighbor 
sites. Two-dimensional spin-�89 model is constructed with exact ground state wave 
function of this type. The ground state of this model is a nondegenerate singlet 
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with exponential decay of spin correlators. We believe the model has a gap in the 
spectrum of excitations. 

We propose new models of interacting electrons with the exact ground state 
formed by the singlet bond functions in the same manner as for some spin models. 
In particular, we have considered the models describing the boundary points on 
the phase diagram between the phases with and without long-range order (ferro- 
magnetic or off-diagonal). 

In conclusion we note that the construction of considered models is based on 
the following property. Their Hamiltonians are the sums of the cell Hamiltonians 
that are local and non-commuting with each other. At the same time the ground- 
state wave function of the total Hamiltonian is the ground state for each cell 
Hamiltonian. It is clear that these models are rather special. Nevertheless, the 
study of them is useful for understanding properties of the real frustrated spin 
systems and strongly correlated electronic models. 

This work was supported by the Russian Foundation for Basic Research (grants 
no.00-03-32981, 99-03-3280 and no.00-15-97334). 
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