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PREFACE

Over a decade ago, Elsevier published the much-cited volume “Valence-bond
Theory and Chemical Structure” (Studies in Physical and Theoretical Chemistry,
vol. 64) edited by Klein and Trinajstié. Since then, there have been very significant
advances in methodology and many new researchers have entered the field. The
last. ten years have also seen a vast increase in the range of applications of
methodology based on valence bond (VB) theory. As such, it seemed timely to
publish a successor and complement to the earlier book.

The editor has attempted a selection of contributions by leading researchers
from throughout the world. A wide range of work in the field is represented but,
perhaps, with a greater emphasis on work in chemistry than in physics. The last
two decades have certainly seen the re-emergence of ad initio valence bond
theory as a serious tool for quantum chemical studies of molecular electronic
structure and reactivity. Of course, one of the main attractions of VB approaches
stems from the direct links between variational wavefunctions and more classical
ideas of bonding. In physics there has been a vast change in attitude with
extensive VB-based work following from the suggestion of P.W. Anderson in 1986
that a resonating valence bond (RVB) description was crucial in understanding
high-temperature superconductivity. Various chapters in the present volume
touch on such matters and provide a view of the extensive, predominantly
semiempirical, research in this important area.

As is the nature of any such volume, a few people were unable to contribute
and some important work will have been inadvertently overlooked. Nevertheless,
the editor believes that a reasonable snapshot of the diverse field of VB theory is
presented here. The general, historical development of VB theory is addressed in
a few of the present chapters (such as those of Gallup and of Klein). Much more
concerning this history may be found in the earlier Elsevier volume. Most of the
present contributors were encouraged to focus particularly on work from the last
decade, and to emphasize recent advances in methodology and recent
applications. The editor is grateful to Doug Klein for advising on potential
contributors and for his helpful comments on some of the manuscripts. It should
certainly be clear from the exciting range of work described in this book that the
future of VB theory looks very bright.

David L. Cooper
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Chapter 1

A short history of VB theory
G. A. Gallup

Department of Physics and Astronomy, University of Nebraska-Lincoln,
Lincoln, Nebraska 68588-0111

1 INTRODUCTION

Shortly after quantum mechanics evolved Heitler and London[1] applied the
then new ideas to the problem of molecule formation and chemical valence.
Their treatment of the Hy molecule was qualitatively very successful, and
this led to numerous studies by various workers applying the same ideas
to other substances. Many of these involved refinements of the original
Heitler-London procedure, and within three or four years, a group of ideas
and procedures had become reasonably well codified in what was called the
valence bond (VB)* method for molecular structure.

A few calculations were carried out earlier, but by 1929 Dirac[2] wrote:

The general theory of quantum mechanics is now almost com-
plete, the imperfections that still remain being in connection with
the exact fitting in of the theory with relativity ideas. These give
rise to difficulties only when high-speed particles are involved,
and are therefore of no importance in the consideration of atomic
and molecular structure and ordinary chemical reactions . . . .
The underlying physical laws necessary for the mathematical the-
ory of a large part of physics and the whole of chemistry are thus
completely known, and the difficulty is only that the exact appli-
cation of these laws leads to equations much too complicated to
be soluble . . . .
*A list of acronyms used in this chapter is in an appendix.




Since these words were written there has been no reason to feel that they
are incorrect in any way. Perhaps the only difference between attitudes
then and now are that, today, with visions of DNA chains dangling before
our eyes, we are likely to have an even greater appreciation of the phrase
“much too complicated to be soluble” than did early workers.

The early workers were severely hampered, of course, by the consider-
able difficulty of carrying out, for even small systems, the prescriptions of
VB theory with sufficient accuracy to assess their merit. Except for H; and
perhaps a few other molecules and ions, no really accurate VB calculations
were possible, and, to make progress, most workers had to resort to many
approximations. There thus arose a series of generalizations and conclu-
sions that were based upon results of at least somewhat uncertain value.
In their review of early results, Van Vleck and Sherman{3] comment upon
this point to the effect that a physical or chemical result was not to be
trusted unless it could be confirmed by several calculations using different
sorts of approximations. It is perhaps only to be expected that such cross
checking was rather infrequently undertaken.

In this chapter we have two goals. The first is to give a general picture of
the sweep of history of VB theory. We restrict ourselves to ab initio versions
of the theory or to versions that might be characterized as reasonable
approximations to ab initio theory. Our second goal is to identify a few of
the early ideas alluded to in the previous paragraph and see how they hold
up when they are assessed with modern computational power. The list is
perhaps idiosyncratic, but almost all deal with some sort of approximation,
which generally will be seen to be poor.

2 History: PreWWII

In the next few sections we give an historical description of the activity
and ideas that led to our current understanding of VB methods. As with
so much other human activity, progress in the development of molecular
theory was somewhat suspended by the second world war, and we use that
catastrophe as a dividing point in our narrative.

Almost all of the ideas were laid down before WWII, but difficulties in
carrying out calculations precluded firm conclusions in any but the simplest
cases. The H; molecule does allow some fairly easy calculations, and,
in the next section, we give a detailed description of the Heitler-London
calculations on that molecule. This is followed by descriptions of early



work of a more qualitative nature.

2.1 Heitler-London Treatment

The original treatment of the Hy molecule by Heitler and London[1] as-
sumed a wave function of the form

U = N[1sa(1)15(2) + 1s5(1)15a(2)][e(1)B(2) F B(1)ex(2)], (1)

where the upper signs are for the singlet state and the lower for the triplet,
the “a” and “b” subscripts indicate 1s orbitals on either proton a or b,
and o and J represent the m, = +1/2 spin states, respectively. When the
function of Eq. (1) and the Hamiltonian are substituted into the variation
theorem, one obtains the energy for singlet or triplet state of Hy as

J(R) + K(R)
TLT(R) )

Here Ey is the energy of a normal hydrogen atom, J(R) was called the
Coulomb integral, K (R) was called the exchange integral, and T(R) was
called the overlap integral. The reader should perhaps be cautioned that
the terms “Coulomb”, “exchange”, and “overlap” integrals have been used
by many other workers in ways that differ from that initiated by Heitler
and London. For the present article we adhere to their original definitions,

J(R) = (1sa(1)1s5(2)|V(1,2)[15a(1)155(2)), (3)
K(R) = (1s.(1)15(2)[V(1,2)[155(1)154(2)), (4)
T(R) = (1s4(1)1ss(2)|155(1)154(2)),
= (1s4(1)|1s5(1))* and
V(1,2) = "1/"2.;"‘l/flb+1/1‘12+1/Rab- (5)

These equations are obtained by assigning electron 1 to proton a and 2 to b,
so that the kinetic energy terms and the Coulomb attraction terms —1/y,, —
Yrs give rise to the 2Ey term in Eq. (2). V/(1,2) in Eq. (5) is then that
part of the Hamiltonian that goes to zero for the atoms at long distances.
It is seen to consist of two attraction terms and two repulsion terms. As
observed by Heitler and London, the bonding in the Hy molecule arises
from the way these terms balance in the J and K integrals. We show a
graph of these integrals in Fig. (1). The energy of Eq. (2) can be improved
in a number of ways, and we will discuss the way the Heitler-London theory
predicts bonding after discussion of one of these improvements.

EY3(R) =2Egz +
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Figure 1: The relative sizes of the J(R) and K(R) integrals. The values are in eV.

The 1s orbitals in Eq. (1) represent the actual solution to the isolated
H-atom. When we include an arbitrary scale factor in the exponent of the
1s orbital we symbolize it as

15’ = /¢/zexp(—ar). (6)
When the 15 orbital is used in the place of the actual H-atom orbital, one

has a as a variation parameter to adjust the wave function. The energy
expression becomes

J(aR) £ K(aR) 7)
1+T(aR) ’
which reduces to the energy expression of Eq. (2) when a = 1. The changes
brought by including the scale factor are only quantitative in nature and
leave the qualitative conclusions unmodified.
It is important to understand why the J(R) and K(R) integrals have
the sizes they do. We consider J(R) first. As we have seen from Eq. (5),

V(1,2) is the sum of four different Coulombic terms from the Hamiltonian.
If these are substituted into Eq. (3), we obtain

J(R) = 2j1(R)+ja(R) +1/R,
(R) = (18] = 1/millsa) = (1ss] = 1/ra[1p),
j2(R) = (1sa(1)185(2)]1/r12|154(1)185(2)).

E3(a,R)=2Eg + (a—-1)*+a
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The quantity j;(R) is seen to be the energy of Coulombic attraction be-
tween a point charge and a spherical charge distribution, ja(R) is the en-
ergy of Coulombic repulsion between two spherical charge distributions,
and 1/R is the energy of repulsion between two point charges. J(R) is
thus the difference between two attractive and two repulsive terms that
cancel to a considerable extent. The magnitude of the charges is one in
every case. This is shown in Fig. (2), where we see that the resulting
difference is only a few percent of the magnitudes of the individual terms.

1.6 T T T T T T T

14 P .
12+ -

1} -2j,(R) i
08 | (RH1/R .

06 E

Energy (Hartree)

04 |

0.2 +

J(R)

L L I

-0.2 4
1 1.5 2 25 3 35 4 4.5 5

Internuclear Distance (Bohr)

Figure 2: Comparison of the sizes of j, + 1/R and —2j, that comprise the positive and
negative terms in the Coulomb integral. Values are in Hartrees.

This is to be contrasted with the situation for the exchange integral. In
this case we have

K(R) = 2ki(R)S(R)+ k2(R) + S(R)*/R,
ki(R) = (1s4] — 1/mp|1sp) = (185] — 1/74|18p),
ka(R) = (1s4(1)185(2)]1/712|154(2)1sp(1)).

The magnitude of the charge in the overlap distribution, 1s,1s;, is S(R),
and here again, the overall result is the difference between the energies of
attractive and repulsive terms involving the same sized charges of different
shaped distributions. The values are shown in Fig. (3), where we see that
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Figure 3: Comparison of the sizes of k; + S?/R and —2k,S that comprise the positive
and negative terms in the exchange integral. Values are in Hartrees.

now there is a considerably greater difference between the attractive and
repulsive terms. This leads to a value about 20% of the magnitude of the
individual terms.

These values for J(R) and K(R) may be rationalized in purely elec-
trostatic terms involving charge distributions of various sizes and shapes.*
From the point of view of electrostatics, J(R) is the interaction of points
and spherical charge distributions. The well-known effect, where the inter-
action of a point and spherical charge at a distance R is due only to the
portion of the charge inside a sphere of radius R, leads to an exponential
fall-off J(R), as R increases.

The situation is not so simple with K(R). The overlap charge distri-
bution is shown in Fig. (4) and is far from spherical. The upshot of the
differences is that the ky(R) integral is the self-energy of the overlap dis-
tribution and is more dependent upon its charge than upon its size. In
addition, at any distance there is in k;(R) a portion of the distribution
that surrounds the point charge, and, again, the distance dependence is
decreased. The overall effect is thus that shown in Fig. (1).

*It should not be thought that the result |J{R)] << |K(R)] is peculiar to the 1s orbital shape. K is
fairly easy to show that a single spherical Gaussian orbital in the place of the 1s leads to a qualitatively
similar result.
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Figure 4: The overlap charge distribution when the H-H distance is near the molecular
equilibrium value. We show an altitude plot of the value on the z-z plane.

We have not yet spoken of the effect of optimizing the scale factor in
Eq. (7). Wang[4] showed, for the singlet state, that it varies from 1 at
R = oo to about 1.17 at the equilibrium separation. Since both J and
K have relatively small slopes near the equilibrium distance, the principal
effect is to increase the potential energy portion of the energy by about
17%. The (or— 1)? term increases by only 3%. Thus the qualitative picture
of the bond is not changed by this refinement.

We have gone into some detail discussing the Heitler-London treatment
of Hz, because of our conviction that it is important to understand the
details of the various contributions to the energy. Our conclusion is that
the bonding in Hj is due primarily to the exchange effect caused by the
combination of the Pauli exclusion principle and the required singlet state.
Early texts (see e.g., [5]) frequently emphasized the resonance between the
direct and exchange terms, but this is ultimately due the principles in the
last sentence. The peculiar shape of the overlap distribution leads to the
major portion of the chemical bonding energy.*

*Those familiar with the language of the molecular orbital picture of bonding may be surprised that
no parallel to the delocalization energy seems present in our description. That effect would occur in the
VB treatment only if ionic terms are included. We thus conclude that delocalization is less important
than the exchange attraction in bonding.




2.2 Extensions past the simple Heitler-London-Wang result

After the initial qualitative success of the simple VB calculation, further
refinements that might be called multiconfigurational were investigated.
These involve the introduction of polarization[6] and ionic[7] terms into the
wave function. All of these refinements improve the quantitative agreement
of the bond dissociation energy, D,, with experiment, but any treatment
so heavily dependent upon the H 1s and p, orbitals under-represents the
electron correlation required to obtain better answers. At the time, such
a treatment was carried out by James and Coolidge[8], but this was not
really an extension of the Heitler-London-Wang calculation in any usefully
physical sense.

2.3 Polyatomic molecules

The original Heitler-London calculation, being for two electrons, did not
require any complicated spin and antisymmetrization considerations. It
merely used the familiar rules that the spatial part of two-electron wave
functions are symmetric in their coordinates for singlet states and anti-
symmetric for triplet states. Within a short time, however, Slater[10] had
invented his determinantal method, and two approaches arose to deal with
the twin problems of antisymmetrization and spin state generation. When
one is constructing trial wave functions for variational calculations the
question arises as to which of the two requirements is to be applied first,
antisymmetrization or spin eigenfunction.

1. Methods based upon Slater determinantal functions (SDF). When we
take this approach, we are, in effect, applying the antisymmetrization
requirement first. Only if the orbitals are all doubly occupied among
the spin orbitals is the SDF automatically, at the outset, an eigen-
function of the total spin. In all other cases further manipulations are
necessary to obtain an eigenfunction of the spin, and these are written
as sums of SDFs.

2. Symmetric group methods. When using these we, in effect, first con-
struct n-particle (spin only) eigenfunctions of the spin. From these we
determine the functions of spatial orbitals that must be multiplied by
the spin eigenfunctions in order for the overall function to be antisym-
metric. It may be noted that this is precisely what is done in almost
all treatments of two electron problems. Generating spatial functions



with the required properties leads to considerations of the theory of
representations of the symmetric groups.

It is difficult to recreate today the attitudes that determined which of these
approaches people chose. We can speculate that for small systems the
basic simplicity of the SDF approach was appealing. The group theoretic
approach seemed to some to be over-complicated. We quote from the Van
Vleck and Sherman(3] review.

. . . the technique of the permutation group is complicated, and
more general than needed for practical purposes because the Pauli
principle must be satisfied after the addition of spin. In the lan-
guage of group theory, many “characters” for the orbital permu-
tation group are not compatible with the Pauli principle. . . Thus
the character theory is too general.

One must agree that the precise recipe implied by Van Vleck’s and Sher-
man’s language is daunting. The use of characters of the irreducible repre-
sentations in dealing with spin state-antisymmetrization problems does not
appear to lead to any very useful results. From today’s perspective, how-
ever, it is known that some irreducible representation matrix elements (not
just the characters) are fairly simple, and when applications are written
for large computers, the systematization provided by the group methods
is useful.

2.4 The Heitler-Rumer Method for polyatomic molecules

Heitler and Rumer[9] gave a generalization of the Hy molecule results for
polyatomic molecules. In these the quantities corresponding to the overlap
in the normalization integral (the 7 in (1 & 7)) of Eq. (2) were set
to zero, and permutations of higher order than binary were ignored in
evaluating matrix elements. For the special case of a central atom, C of
high multiplicity bonded to other atoms, P, Q,- - -, they arrived at the total
energy for the state of lowest multiplicity,

E = Ec+Ep+Eq+---+Jcpq.--+ppKcp+pqKcq+- - —pppqKeq—- -,

(8)
where pp etc., are the number of pairs of electrons in the C-P bond etc.,
Jcpq.- is the simple sum of all of the Coulomb integrals and Kcp ete.,
are the exchange integrals. In addition, this formula requires all of the
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atoms be in S states. Eq. (8), although fairly impressive, has too many
restrictions and approximations to be really satisfactory. In Section 4.1 we
return to an examination of some of these approximations.

2.5 Slater’s bond functions

Fairly soon after the Heitler-London calculation, Slater, using his determi-
nantal functions, gave a generalization to the n-electron VB problem[10].
This was a popular approach and several studies followed exploiting it. It
was soon called the method of bond eigenfunctions. A little later Rumer([11]
showed how the use of these could be made more efficient by eliminating
linear dependencies before matrix elements were calculated.

Slater’s bond eigenfunctions constitute one choice (out of an infinite
number) of a particular sort of basis function to use in the evaluation of the
Hamiltonian and overlap matrix elements. They have come to be called the
Heitler-London-Slater-Pauling (HLSP) functions. Physically, they treat
each chemical bond as a singlet-coupled pair of electrons. This is the
natural extension of the original Heitler-London approach. In addition
to Slater, Pauling[12] and Eyring and Kimbal[13] have contributed to the
method. Our following description does not follow exactly the discussions
of the early workers, but the final results are the same.

Consider a singlet molecule with 2n electrons, where we wish to use a
different atomic orbital (AO) for each electron. We can construct a singlet
eigenfunction of the total spin as the product of n electron pair singlet
functions

@ = [2(1)8(2) - B(1)(2)l[a(3)B(4) — B(3)(4)]

X --+ X [a(2n — 1)8(2n) — B(2n — Da(2n)], 9)
where, clearly, S,® = 0. Consider the total spin raising* operator,[14]
2n 2n
S=5,+ iSy = Z Sk +’i5yk = Z Sk, (10)
k=0 k=0

and we operate with it upon ®. This results in zero, since for every pair
function in Eq. (9) there is a corresponding pair of terms in S, and, e.g.,

(Si + Sj)la(®)B(5) — BG)a(i)] = [a(i)a(j) — a(i)a(j)]
= 0.
*The individual spin raising operator satisfies Sa =0 and S8 =«
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Now, the total spin operator may be written as S? = StS + S,(S, + 1),
and, therefore, it is seen that S2® = 0 and is a singlet spin function.

We now multiply ® by a product of the orbitals, one for each particle,
uy(1)u2(2) - - - ugn(2n), where uy, ug, - - - ug, is some particular ordering of
the orbital set. When we apply the antisymmetrizer to the function of space
and spin variables, the result can be written as the sum of 2" SDFs. It is
fairly easily seen that there are (2n)!/(2"n!) different 2n-electron functions
of this sort that can be constructed. Rumer’s result, referred[11] to above,
shows how to remove all of the linear dependences in this set and arrive
at the minimally required number, (2n)!/[n!(n + 1)}, of bond functions to
use in a quantum mechanical calculation.

2.5.1 The perfect pairing function

We have given a general discussion of the bond eigenfunction method and
have pointed out that using all of the Rumer diagrams gives functions that
completely span the subspace of the particular configuration addressed.
Many of the early calculations used only one of the Rumer functions, and
in this case the calculations were called perfect pairing results. Of course,
each Rumer function represents perfect pairing between a particular set
of orbitals, but the perfect pairing approximation always implied that the
paired orbitals had a relation to the actual bonding of the molecule.

As an example, consider methane. If the carbon atom L-shell orbitals
are arranged as tetrahedral hybrids, we can take the ¢ttt ts configuration
and combine this with an s,s)3.54 configuration of the four hydrogen atoms.
Table 1 shows some numbers of states associated with these orbitals. It is

Table 1: Numbers of states under various constraints for methane and four tetrahedral
hybrids and four H-atom orbitals.

Jonic Number of States

All Singlet States  yes 1764

All States of ' 4; Symmetry  yes 164

All States with #4s? no 86

All A, States with t*s? no 11

All States with £,tyt.t280555:94 no 14

All 14, States with £,8t.t43,858c.84 1O 3
Perfect pairing State (!4;) no 1

clear that using only the single perfect pairing function represents a consid-
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erable constraint upon the wave function. Nevertheless, actual calculations
show that it is the largest component of the full wave function, although
not overwhelmingly so.

Pauling’s criterion of maximum overlap led to the idea that the tetra-
hedral hybrids should be the most effective in the the perfect pairing wave
function. People realized, however, that the effective state of the C atom in
this wave function was not the ground state but a mixture of excited states
determined by the detailed nature of the state. Van Vleck dubbed this the
valence state of carbon, and one of the concerns of the early workers was
the determination of the energy of this state and the corresponding influ-
ence this has upon the C-H bond energy in hydrocarbons. We examine
these questions in more detail later in Sec. 4.4, but it must be emphasized
that this whole question hinges upon the use of the perfect pairing wave
function alone in determining energies.

2.6 Symmetric group theoretic approaches

The early workers, when treating two electron systems, usually made the
observation that singlet states spin functions are antisymmetric while triplet
spin functions are symmetric with respect to the interchange of particles,
i.e.,

V72a()B(2) - B(1)a(2)] : singlet

a(1l)a(2)
Vi2la(1)B(2) + B(1)a(2)] : triplet
B(1)8(2)

Consequently, for the total wave function to be properly antisymmetric, the
spatial function to be multiplied by the spin functions must be symmetric
or antisymmetric for singlet or triplet states, respectively. Satisfying these
requirements may be made more explicit in the following way.

The antisymmetrizer for two electrons may be written

A =1/l - (12),(12),], (11)

where (12) stands for the binary interchange and the , subscript indicates
this permutation is to be applied to spatial functions and the , subscript
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indicates application to spin functions.* We thus factor the permutation
into a space and a spin part. We may write idempotent symmetrizers or
antisymmetrizers for either space or spin functions as

Si = o[l +(12)i],
Ai = 121 — (12)y],
where ¢ = r or s. With this we obtain

A=S8A+ A4S, (12)

as a “factored” form of A. We work with Eq. (12) in the following way.

We can use one of the spin eigenfunctions above, symbolizing it by ©3,,
and multiply it by an arbitrary spatial function, =, to obtain a function of
both space and spin,

= ~6r3m (13)
which is, of course, not antisymmetric. Applying A to ¥ we obtain
AV = S,EA,05 + AES,05. (14)

If ©F, is singlet, only the first term on the right of Eq. (14) survives, and
the spatial part of the function, S,.Z, is symmetric. For any one of the three
triplet functions the other term on the right of Eq. (14) is the one that
survives with the consequence that A= is the required spatial function.
These are the familiar results, of course.

We have given a short description of the two electron case. The impor-
tant point is that there is a generalization of Eq. (12) to n electrons. It
takes the general “factored” form

Al---m) = ;(P?” ) (Q7)ss (15)

where P and Q% are sums of permutations with coefficients that are
determined by the irreducible representation matrices of the symmetric
group, S,. We write the general function to be used in our calculations as

¥ = 263, (16)

where E is an n-electron spatial function and 6% is an eigenfunction of
the total spin. The important result is that (Q),0%, is zero for most of

*We write the antisymmetrizer as a properly idempotent operator for this discussion, contrary to the
common practice that uses a /1/2 prefactor.
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the terms,* and this is the source of the simplifications obtained by using
symmetric group methods in atomic or molecular calculations. There is
not room here to give further details of these methods, but we do discuss
the nature of ©3;.

The n-electron spin functions are sums of products of n o or B functions
that satisfy

5?05 = K2S(S+1)65, and
5,05 = mmeS.

Both the S? and S, operators are symmetric sums of operators for each
particle and, thus, both commute with every permutation of the n particle
labels. Therefore, the eigenfunctions and eigenvalues of 5% may be classified
by the irreducible representations of the symmetric group. The important
result is that there is a one-to-one relation between eigenvalues of S? and
nonequivalent irreducible representations of the groups. We will not give
the precise result here, there is a unique generalization of Eq. (12) for the
n electron case. Therefore, applying the antisymmetrizer to an n-electron
space-spin function of the form Z63, results in a space function appropriate
to the total spin quantum number S and satisfying the Pauli principle.

Serber[15] has contributed to the analysis of symmetric group methods
as an aid in dealing with the twin problems of antisymmetrization and
spin state. In addition, Van Vleck espoused the use of the Dirac vec-
tor model[16] to deal with permutations.[17] Unfortunately, this becomes
more difficult rapidly if permutations past binary interchanges are incor-
porated into the theory. Somewhat later the Japanese school involving
Yamanouchi[18] and Kotani et al.[19] also published analyses of this prob-
lem using symmetric group methods.

3 History: PostWWII and automatic computation

The period during and about ten years after WWII saw the beginnings

of the development of automatic computing machinery. Although early

workers made heroic efforts in many calculations, computers allowed cal-

culations of molecular structure that were far too tedious to undertake by

hand or to expect reliable results. The new computers thus allowed many of

the quantitative procedures worked out earlier to be checked and accepted
*In the two electron case one term was zero and the other not.
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or abandoned. Nevertheless, one of the principal developments in the late
1940s was a new way of arranging the orbitals in VB calculations. In this
section we start with the Coulson-Fisher approach and follow with other
proposals that grow naturally out of it. Much more recent developments in
computers have also allowed multiconfigurational VB treatments of a size
unimagined 45 years ago, and we also describe these in this section.

3.1 The Coulson and Fisher treatment of H,

Coulson and Fisher[20] took a new step in molecular calculations with their
treatment of Hy in which the orbitals were non-orthogonal, but extended
over both centers. They do not actually call their treatment a VB calcu-
lation, but their idea is an important step in the development of the ideas
of others who do use the VB label in describing their treatments.

The essence of this method, when illustrated with Hj, is to write the
two orbitals for the covalent Heitler-London function as

A(F) = N(1s), +ecls}), and
B(7) = N(cls, + 1s}).

The constant ¢ provides a parameter to vary during optimization. They,
in effect, used molecular orbital (MO)s in the wave function, but this ter-
minology is not usually used in the current context. The introduction of
this sort of orbital provides the same effect as ionic terms in the more tra-
ditional treatment. The next two sections give modern extensions of this
method.

3.1.1 Goddard’s generalized VB

Goddard[21] made the earliest important generalization to the Coulson-
Fisher method. Goddard’s generalized VB (GGVB) wave function is writ-
ten in terms of orbitals that are linear combinations of the AOs. Using the
genealogical set of spin functions in turn and

U=A1---n)E(1---n)O%;, (17)

there are ¢ =1,2,---, f,

(18)

f__2S+1 n+1
T n4+1\n2-S
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different trial wave functions that can be constructed. Goddard designated
these as the G1, G2, - -, Gf methods, the general one being Gi. For each
of these functions the total energy may be optimized with respect to the
coefficients in the orbitals. In general, the orbitals are grouped into two
sets; orthogonality is enforced within the sets but not between them. Using
the calculus or variations in the usual way, one arrives at a set of Fock-like
operators that determine the optimum orbitals. The result is a set of f
different energies, and one chooses the wave function for the lowest of these
as the best GGVB answer. In actual practice only the G1 or Gf methods
have been much used.

In simple cases the G1 is a HLSP function while the Gf wave function is
a standard tableaux function, which we describe below in Sect. 3.3. For Gf
wave functions one may show that the above orthogonality requirement is
not a real constraint on the energy. On the other hand, no such invariance
occurs with G1 or HLSP functions, so the orthogonality constraint has a
real impact on the calculated energy in this case and with all other Gi wave
functions.

Goddard and his coworkers applied the method to a number of chemical
problems with an emphasis on orbital following results.

3.1.2 The spin-coupled VB

Somewhat later Pyper and Gerratt|22] proposed the spin coupled valence
bond (SCVB) wave function. Further developments are reviewed by Ger-
ratt, Cooper, and Raimondi[23] in an earlier volume of this series. These
workers originally used genealogical spin functions, which produce the ge-
nealogical representation of the symmetric groups[24], but so long as the
irreducible representation space is completely spanned, any representation
will give the same energy and wave function. About the same time van
Lenthe and Balint-Kurti[25] proposed using an equivalent wave function.
The principal differences between these proposals deal with methods of
optimization. We will continue to use the SCVB acronym for this method.

We have seen that with a system of n electrons in a spin state S there
are, for n linearly independent orbitals, f (given by Eq. (18)) linearly
independent spatial functions that can be constructed from these orbitals.
In the present notation the SCVB wave function is written as the general
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linear combination of these.
f
VgovB = 21 Cidi(uy,- -+, un), (19)
=

where the orbitals in ¢; are, in general, linear combinations of the whole
AO basis.* The problem is to optimize the Rayleigh quotient for this
wave function with respect to both the C; and the linear coefficients in the
orbitals. In contrast to the GGVB method the orbitals are subjected to
no orthogonality constraints.

Using familiar methods of the calculus of variations, one can set the first
variation of the energy with respect to the orbitals and linear coefficients
to zero. This leads to a set of Fock-like operators, one for each orbital.
Gerratt, et al use a second-order stabilized Newton-Raphson algorithm for
the optimization. This gives a set of occupied and virtual orbitals from
each Fock operator as well as optimum C;s.

The SCVB energy is, of course, just the result from this optimization.
Should a more elaborate wave function be needed, the virtual orbitals are
available for a more-or-less conventional, but non-orthogonal configuration
interaction (CI) that may be used to improve the SCVB result. Thus
improving the basic SCVB result here may involve a wave function with
many terms.

SCVB wave functions for very simple systems appear similar to those
of the GGVB method, but the orthogonality constraints in the latter have
increasingly serious impacts on the results for larger systems.

3.1.3 The BOVB method

More recently Hiberty et al[26] proposed the breathing orbital valence
bond (BOVB) method, which can perhaps be described as a combination
of the Coulson-Fisher method and techniques used in the early calculations
of the Weinbaum.{7] The latter are characterized by using differently scaled
orbitals in different VB structures. The BOVB does not use direct orbital
scaling, of course, but forms linear combinations of AOs to attain the same
end. Any desired combination of orbitals restricted to one center or allowed
to cover more than one is provided for. These workers suggest that this
gives a simple wave function with a simultaneous effective relative accuracy.
*The requirements of symmetry may modify this.
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3.2 More recent developments in symmetric group methods

Earlier symmetric group procedures were usually based upon the irre-
ducible representation matrices corresponding to the various schemes that
had been developed for determining spin eigenfunction. After WWII the
earlier work of Young on symmetric groups found application to the prob-
lems of implementing VB ideas. Matsen and coworkers|[27] introduced what
they termed a spin-free approach. Somewhat later the present author[30]
introduced VB basis functions based upon Young’s standard tableauz rep-
resentation.

All methods produce one or another of the infinity of irreducible rep-
resentations of the symmetric groups, and, if basis sets always completely
span the representation, the quantum mechanical results are the same.
One of the advantages of Young’s procedure is the way it clearly shows the
connections among the various ways that basis sets can be arranged.

The concept of the tableau is central to Young’s theory, and we use only
the portions of the theory necessary to discuss VB theory. For a particular
set of n orbitals u;---u, and n electrons, symbols for the orbitals may
be arranged in a two-column table, in which the two columns are not
necessarily the same length,

U1 Up—k+1

Un
Un—k
The difference in the lengths of the columns is related to the spin; the total
spin quantum number is S = n/2 — k. Clearly, ¥ < n/2. In the tableau
the orbitals are associated with particles labeled sequentially down the first
and then down the second column. The subscripts on the orbitals label
the functions, not the arguments.

Young defined two operators, the row symmetrizer P and the column
antisymmetrizer N, and we assume the these operate on (permute) the
particle labels not the orbital labels. Each tableau designates a product of
orbitals with a particular ordering

== ul(l)ug(Z) v un(n) (20)

As the names suggest P is the product of k symmetrizing operators for the
particles in the rows,

P =o[l + (1,n — k+1)]--- Y[l + (K, n)), (21)
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and J is the product of the two antisymmetrizers of the columns
N=AQ1---n—-k)An—-k+1---n). (22)

The (i, ) symbol in Eq. (21) stands for a binary interchange of the particles
indicated. It will be observed that the particles operated upon in these
operators are related closely to the way the particle labels occur in the
tableau. As we have defined them, P and N are strictly idempotent.

Using the operators we have defined and the spatial function =, new
functions may be constructed, e.g., P=. It should be clear that this func-
tion now is insensitive to the positions of orbitals in the first k£ rows, i.e.,
one could interchange u; and u,—g41, for example, without changing PZ=.
Similarly, any rearrangement (permutation) of the orbitals in a column
will do no more that change the sign of NZ. Permutations that change
both the row and column position of orbitals will result in changing these
projected functions.

Another central result of Young’s work, when stated in our current
language, is that A"PE is equivalent to the perfect pairing function of Slater
with the orbitals in the same rows paired.[27] At what might be called the
other extreme, Heitler’s and Rumer’s early work assumed that diatomic
molecules interacted with the atoms in their highest spin states consistent
with the configuration, and these functions are equivalent to PA'Z, where
the orbitals in a column are associated with one of the atoms. A polyatomic
analog of this situation exists. Thus, merely inverting the order in which
the operators are applied, passes from one type of function to the other.

In discussions of the total spin[31] of multielectron systems the spin
branching diagram is frequently used. Fig. (5) shows a version. The N'P
operator corresponds to the branch in the diagram where the lowest line
is always taken and the PN operator to the branch where the highest
possible branch is taken. The two Young operators thus correspond to
the first and last rows of the genealogical irreducible representations of
the symmetric groups, and, hence, to Goddard’s G1 and Gf “methods”,
respectively. Therefore, Young’s tableaux and the corresponding operators
constitute a way of, at least partly, unifying the various techniques that
have been devised for dealing with spin and antisymmetrization and VB
calculations.

As a last point we note that the present author and his coworkers[36]
devised an algorithm for the calculation of matrix elements of the overlap
and Hamiltonian based upon the PN operator that is n° in its worst case,
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Figure 5: The spin branching diagram for 0 to 6 electrons (horizontal axis). The total
spin quantum number is on the vertical axis. The numbers in the circles give the spin
degeneracies.

where n is the number of electrons. There are reasons to believe that this
is the best exponent that can be achieved. Transformation to the NP
functions is possible when desired.

3.3 Multiconfiguration methods

The original Heitler-London treatment with its various extensions was a
VB treatment that included several configurations, e.g., the total wave
function is a sum of terms with spatial functions made up of different
subsets of the orbitals. This is the essence of multiconfiguration methods.
The most direct extension of this sort of approach is, of course, the inclusion
of larger numbers of configurations and the application to larger molecules.
The computational power allowed calculations of this sort.

At the same time molecular orbital (MO) methods were seeing a rapid
development, also because of increased computational ability. These, at
least on the surface, appear to provide a simpler approach to molecu-
lar structure calculations. Nevertheless, Matsen and Browne[32] made a
forceful case for the use of MCVB methods,* indicating the difficulties

*They called their suggested procedure an atomic orbital configuration interaction (AOCI) calculation.
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that the enforced orthogonality in molecular orbital configuration inter-
action (MOCI) calculations cause with processes that involve large scale
relative motions of the nuclei.

3.3.1 The multistructure procedure of Balint-Kurti and Karplus

Balint-Kurti and Karplus[28] implemented an earlier suggestion of Moffit[29]
for the evaluation of matrix elements of the Hamiltonian by transforming
the AOs to an orthogonalized set. If carried out correctly, this involves no
approximations. The method was applied to ab initioc and empirically cor-
rected calculations of LiF, Fy, and F5. The transformation of the matrix
elements to the orthogonalized form can be quite time consuming for large
bases.

3.3.2 The MCVB method

The present author and his coworkers[36] devised the multiconfiguration
valence bond (MCVB) procedure. These calculations involve a direct at-
tack on the problem of evaluating matrix elements between n-electron func-
tions of non-orthogonal orbitals. The algorithm depends upon the sym-
metric group methods of Young and the PN operator. Although there is
considerable flexibility allowed in the construction of basis sets, a treat-
ment that uses a full or nearly full set of n-electron functions based upon
a minimal AO set and “excitations” into n-electron functions containing
orbitals designed to provide scaling has been a generally useful strategy.
As was mentioned above, these wave functions are a generalization of the
original Heitler-Rumer high spin atomic calculations. If the results are of
interest a simple transformation to a wave function that is a sum of HLSP
functions is possible. With today’s computers calculations consisting of
> 10° individual n-electron basis functions can be more or less routine.

4 Early ideas

In reviewing the history of VB methods there stand out a few ideas con-
cerning approximations that might be made. The author has chosen four
that allow simple computational tests in today’s world, and these are dis-
cussed in this section. There is little connection between them.
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4.1 Overlap matrices and the neglect of some permutations

When the actual Heitler-London treatment of H, is generalized to n elec-
trons, the matrix elements that arise involve permutations of higher order
than binary. When calculations had to be done by hand, the complexities
could mount rapidly. It was perhaps natural, if not strictly rigorous, for
people to make the approximation of neglecting these higher order per-
mutations. There was actually much debate about the validity of such
an approximation, in general, in spite of its crudeness for Hy. Clearly in
Eq. (2), if the binary permutation would be ignored completely, the same
energy would be obtained for the singlet and triplet states. When it came
to considering the denominator, however, it seemed to the early workers
as if the T(= S$%) might be a higher order effect, and suggestions were
made that it might be safely ignored. Generalizing this led to the idea for
n-electron systems that the above mentioned triple, quadruple, and higher
permutations might be usefully ignored.

This question was not considered completely academic. In Heisen-
berg’s[33] original theory of ferromagnetism the overlaps between the or-
bitals at the various sites were ignored. Inglis[34] criticized this, but sug-
gested that including overlaps made the calculation meaningless since the
correction due to them scales as n, the number of sites involved. Later,
Van Vleck[35] showed that Inglis’ objection ignored cancellations that mit-
igate the problem. We will not examine the ferromagnetism problem, but
will undertake a less ambitious course and investigate the contribution of
various orders of permutations to the value of the normalization constant
for VB wave functions.

The (1+T) in Eq. (2) arises from the normalization of the wave function
for Hy. In this section we will investigate the extent to which it might be
permissible to ignore the permutations of some order and higher when
normalizing a VB function for n electrons. We shall do this for a standard
tableau function, where we have an expression for the wave function of any
multiplicity.

Therefore, consider a standard tableaux function with orbitals u;, ua,
-+, u,, where they need not all be different, of course,

U1  Up—k+1

Un
Un—k
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The orbitals are assumed real, normalized, but not necessarily orthogo-
nal. The overlaps are symbolized by S;; = Sji = (u;|u;). It is shown
elsewhere[36] that the normalization constant for such a standard tableaux
function can be written as the integral of a functional determinant,

gB

C?=(n—k+1) [ qgf B (1 - tyae, (23)

where ¢ = i\/t/(1 —t). It is observed that ¢ is pure imaginary. The
determinant is therefore that for a symmetric matrix, but not an Hermitian
one. In Eq. (23) A is the (n—k) X (n— k) overlap matrix of the first-column
orbitals, C, the corresponding k x k matrix for the second-column orbitals,
and B the (n — k) X k matrix of the inter-column overlaps. A, C, and the
overall matrix are symmetric. Eq. (23) is also written with all of the purely
group theoretic factors implicit in the functions. This would make C~2 =1
if the overlaps between all pairs of orbitals were zero, and, thus, we are
considering only that part of the normalization constant that is affected by
the overlaps. The overall matrix is diagonalizable by an orthogonal matrix,
which is also a function of ¢, of course. We are actually not interested in
the transformation matrix, but only the characteristic polynomial of the
overall matrix. To proceed we prove a theorem.

Consider an N x N symmetric matrix S that has principal diagonal
elements all equal to one.*

Theorem 1 A simple transformation of the characteristic polynomial of
stuch a matriz will present it in a form where the contribution from each
order of permutation to the value of its determinant is displayed as an
elementary symmetric function of the eigenvalues of S — I.

Consider the determinant
[T +t(S - 1),
which is a polynomial in ¢ that may be written
N
H+t(S-Dj=1+3 st (24)
=2

Clearly, the sum is just the determinant |S| when t = 1, and a little
reflection will convince one that s; is the contribution from the Il-order

*We write this with the symbol, S, since the overlap matrix is the sort we consider.
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permuted indices. The term with [ = 1 is zero, of course, since there can
be no permutation of one object.
Let O be the orthogonal matrix that diagonalizes (S — I). Then

(8 — I) = Odiag(dydz - - - dw)O, (25)
and we rewrite the determinant of Eq. (24),
I +t(S—1I)| = |I+tOdiag(didz---dn)O}|,
= T (1+tdn),

N
m=0

where o, is the m*-order elementary symmetric function[37] of the eigen-
values of S — I, each of which is one less than the corresponding eigenvalue
of S. Equating coefficients of equal powers of ¢ in our two expressions we
have s; = 0;. The elementary symmetric functions are simple to determine
recursively from the d,,.* Indeed, the algorithm is essentially that to de-
termine binomial coefficients, as is evident from Eq. (26) if we were to set
each d,, = 1. We note that o is the trace of S — I, which is zero, so that
8 is also zero as it should be.

We consider the application of this theorem to the evaluation of the
integral in Eq. (23) for an STO3G basis calculation of CH4 and a m-only
calculation of naphthalene. As indicated earlier, we do not attempt to
address the ferromagnetism problem, but we can note that the overlaps
in naphthalene much more resemble the magnetism system than do the
overlaps in a small compact molecule like CHy.

4.1.1 Sums of permutations of the same order

It is useful to examine the symmetric functions of Eq. (26) for the nxn
matrix

11 .---1
11 ---1

Sz:: | (27)
11 -1

*For our work we really do not need to diagonalize S — I. A simpler procedure is to tridiagonalize it;
the characteristic equation is available therefrom by an easy recursion.
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which is, of course, invalid as a legitimate overlap matrix. It does, however,
allow us to get some idea of the limits that the symmetric functions can
attain when real overlap matrices are used.

The matrix of Eq. (27) minus the identity has for eigenvalues n—1 once
and -1 n — 1 times. Eq. (26) now gives us

H+¢S-I) = 1—t)" 14 (n-1){]
- Senra-n (7 )4

where the standard symbol for the binomial coefficient has been used. The
significance of this result should be clear. When we consider permutations
that reorder k indices, the coefficient of ¢* is the number of even permu-
tations of that order minus the number of odd permutations of the same
order. We note that the coefficient of ¢ is zero, as it should be, and the
coefficients of ¢2 and #3 are just minus the number of binary interchanges
and plus the number of ternary permutations, respectively. All other terms
involve differences between numbers of even and odd permutations. In the
next two sections we consider the overlap matrices for realistic systems.

4.1.2 Application to the n-system of naphthalene

A ten electron system with each electron in a different orbital could have
a multiplicity of 1, 3, 5, 7, 9, or 11. The singlet and possibly the triplet
states are the only physically interesting cases, but we give all of them so
that trends may be observed. The undecet case has some mathematical
interest, since it just the determinant of the overlap matrix. Table 2 gives
our results for the first three of the possible multiplicities and Table 3 gives
the other three. The tables are arranged in columns showing the order of
the permutation and the values and the accumulated sums for each order
and the integral of Eq. (23). It should be clear that these orders represent
the number of indices permuted at each stage. Except for orders 2 and 3,
however, they involve permutations with different signatures. Order 4 can
have, e.g., the permutations (12)(34) and (1234). These both involve four
indices, but the first is an even permutation and the second is odd. Of
course, only the antisymmetrizer (undecet case) has +1 coefficients that
exactly match the corresponding permutation’s signature. The permuta-
tion operators giving other spin values are more complicated, and it would
be difficult to give rules for the way the terms vary with order.
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The 2p, orbitals in naphthalene all have nearest neighbor distances that
are quite close to one another, and the nearest neighbor overlaps do not
vary much on either side of 0.32. With such a set of overlaps, the nor-
malization constant does not vary greatly with spin state. Even with a

Table 2: Convergence of normalization constants for singlet, triplet, and quintet standard
tableaux functions in the m-system of naphthalene.

Order Singlet Triplet Quintet
0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 ~0.0000 1.0000 0.0000 1.0000 —0.0000 1.0000
2 -0.7896 0.2104 —0.9204 0.0796 —0.9295 0.0705
3 0.0693 0.2796 0.1066 0.1862 0.1223 0.1927
4 0.2017 0.4814 0.2677 0.4539 0.2570 0.4497
5 —0.0320 0.4494 -0.0482 0.4057 —0.0481 0.4016
6 -0.0142 0.4351 —-0.0262 0.3795 —0.0254 0.3762
7 0.0020 0.4371 0.0043 0.3837 0.0055 0.3817
8 0.0002 0.4373 0.0011 0.3849 0.0005 0.3823
9 —~0.0000 0.4373 —~0.0001 0.3848 -0.0002 0.3821
10 0.0000 0.4373 —0.0000 0.3848 0.0000 0.3821

Table 3: Convergence of normalization constants for heptet, nonet, and undecet standard
tableaux functions in the x-gsystem of naphthalene.

Order Heptet Nonet Undecet
0 1.0000 1.0000 1.0000 1.6000 1.0000 1.0000
1 -—0.0000 1.0000 —0.0000 1.0000 0.0000 1.0000
2 —0.9346 0.0654 ~0.9478 0.0522 —1.1902 -0.1902
3 0.1269 0.1923 0.1487 0.2009 0.2168 0.0267
4 0.2526 0.4448 0.2397 0.4407 0.4061 0.4327
5 -0.0422 0.4026 -0.0505 0.3901 -0.1051 0.3277
6 —0.0278 0.3748 -0.0173 0.3729 —0.0469 0.2808
7 0.0044 0.3792 0.0030 0.3759 0.0128 0.2936
8 0.0013 0.3805 0.0004 0.3763 0.0019 0.2955
9 —0.0001 0.3804 ~0.0000 0.3763 —0.0004 0.2951
10 —0.0000 0.3804 0.0000 0.3763 —0.0000 0.2951

fairly small overlap such as we have here, the sums nevertheless require the
inclusion of terms up to order 5 or 6 to reach a number close to their final
values. As we see, the value of C~2 is smallest for the undecet case.

We note that the order 2 term for the highest multiplicity is the most
negative. This must be the sum — 3 S,?j in this case, and so it consists of
all negative terms.
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4.1.3 Application to CH,

An STO3G basis applied to CHy at its equilibrium geometry yields 9 AOs,
and, if the C 1s orbital is relegated to “core”[36] status, there are only eight
orbitals and eight electrons to go into them. For illustration purposes we
consider C~2 for the AO set {2s, 2p;, 2py, 2p;, 185, 185, 18, 134}. In Table 4
we show the values of each of the terms for different orders of permutations
and also the accumulated sum, which gives information about the rate of
convergence. Table 5 gives similar results for the heptet and nonet states.

Table 4: Convergence of normalization constants for singlet, triplet, and quintet standard
tableaux functions in CHy.

Order Singlet Triplet Quintet
0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 —0.0000 1.0000  —0.0000 1.0000  —0.0000 1.0000
2 0.3824 1.3824  —0.1323 0.8677  —0.5916 0.4084
3 —0.0359 1.3465  —0.0798 07879  —0.1242 0.2842
4 0.2049 15514  —0.0101 0.7777 0.0590 0.3432
5 —0.0237 15277  —0.0113 0.7664 0.0383 0.3815
6 0.0916 1.6193  —0.0132 0.7532 0.0051 0.3866
7 —0.0065 16128  —0.0002 0.7530 0.0023 0.3889
8 0.0378 16506  —0.0038 0.7492 0.0025 0.3914

Among these values, only the singlet has any great physical interest, but we

Table 5: Convergence of normalization constants for heptet and nonet standard tableaux func-
tions in CHy4.

Order Heptet Nonet
0 1.0000 1.0000 1.0000 1.0000
1 —0.0000 1.0000 —0.0000 1.0000
2 —1.0190 ~0.0190 ~2.0434 ~1.0434
3 —0.1690 —0.1880 0.2331 ~0.8103
4 0.3249 0.1369 1.3421 0.5318
5 0.1228 0.2597 -0.1549 0.3770
6 —-0.0166 0.2431 -0.3707 0.0063
7 -0.0227 0.2205 0.0261 0.0324
8 —0.0054 0.2151 0.0378 0.0702

again give all so that the trends can be seen. In general, as the multiplicity
increases, the value of C~2 decreases. The overlaps within this basis are
not all positive, so it is difficult to make specific predictions.
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The overlaps in this molecule are rather larger than was the case with
naphthalene. The largest is near 0.5. This results in a larger value for the
singlet state and rather smaller value for the nonet state.

4.2 Orthogonalized AOs

In a fairly early discussion of solids Wannier{38] showed how linear combi-
nations of the AOs could be made that rendered the functions orthogonal
while retaining a relatively large concentration on one center. In more
modern language we would now say that he used a symmetric orthonor-
malization of the AO basis. If we symbolize the overlap matrix for the AO
basis by S, then any matrix N that satisfies

NtSN =1, (28)

constitutes an orthonormalization of the basis. This requirement on N is
insufficient to define it uniquely. Additional conditions could include:

1. Require N be upper triangular. This gives the traditional Schmidt
orthonormalization.

2. Set N = Udiag(s7 %, 53 ",--+,37?) where U is the unitary matrix
diagonalizing S and sy, 32, - -, 8, are the eigenvalues. This gives the
canonical orthonormalization.

3. Set N = S~'/». This gives the symmetric orthonormalization, so-called
because this N is a symmetric matrix for real basis functions.

An important property of the symmetric orthonormalization is that it
produces a new set of orbitals that are the closest possible to the origi-
nal set in a least squares sense. Since evaluating matrix elements of the
Hamiltonian is always much easier with orthonormal orbitals, this change
had great attractions for early workers. Unfortunately, it has developed
that this idea must be used with great care. The requirement of closeness
in the least squares sense, although almost always well defined, does not
guarantee that the resulting two orbital sets are close to one another in a
physically useful sense.

We may demonstrate this difficulty by giving a result due to Slater.[39]
Applying a symmetric orthonormalization to the basis normally used in the
Heitler-London calculation we have a H1ls function on each of two centers,
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1s, and 1s;. The overlap matrix for this basis is

§=[; ‘f] (29)

and the inverse square root is

1 1 11
S — [ 277}’-'@? + 57?:55' 27%+§ 27&—5
2V1+8 ~ 2/1-8 2/1+8 + 2/1-8

where S = (1s,4|1s;), and the signs are appropriate for S > 0. This orthog-
onalization gives us two new functions

|4) = Pl1s,) + Q|1sy),
|B) = Qllsa) + Pllss),

where
1 4 1
2/1+85  2/1-58’
1 1

Q@ = WIi+s 2/1-5

We use these in a single Heitler-London covalent configuration, A(1) B(2)+
B(1)A(2), and calculate the energy. When R — oo we obtain E = ~1 au,
just as we should. At R = 0.741 A, however, where we have seen that the
energy should be a minimum, we obtain E = —0.6091 au, much higher
than the correct value of —1.1744 au. The result for this orthogonalized
basis, which represents no binding and actual repulsion, could hardly be
worse.

Slater says surprisingly little concerning this outcome, but, in light of
present understanding, we may say that the symmetric orthonormalization
gives very close to the poorest possible linear combination for determining
the lowest energy. This results from the added kinetic energy of the orbitals
produced by a node that is not needed. Alternatively, we may say that
we have used antibonding rather than bonding orbitals in the calculation.
We have here a good example of how unnatural orthogonality between
orbitals on different centers can have serious consequences for obtaining
good energies and wave functions.

We add another comment about this example and note that using sym-
metric orthonormalization on the simple two AO basis for the triplet state
of Hy gives the same answer as that obtained with unmodified orbitals.

P =




30

Since the triplet state is represented by the antisymmetric combination of
the orbitals, it is invariant to any nonsingular transformation of the two
orbitals.

4.3 Relation of Hamiltonian matrix to overlap matrix

In work on the electronic structure of solids, Lowdin[40] pointed out that
if the Hamiltonian matrix for a system were a polynomial function of the
overlap matrix of the basis, H and S would have the same eigenvectors and
the energy eigenvalues would be polynomial functions of the eigenvalues of
S. A number of consequences of this sort of relationship are known, but
so far as the author is aware, no tests of such an idea have ever been made
with realistic H and S matrices. This may be accomplished by examining
the commutator, since if

H =Y aS¥, (31)

k

H and S clearly commute, and this would be true even if the sum in Eq.
(31) were a convergent infinite series, rather than a polynomial. Conversely,
if the two matrices do not commute, no relation like Eq. (31) connects
them.

Even if H and S are functionally independent, one still might argue that
the commutator is likely to be small, and, thus, the idea could be a useful
approximation. The difficulty here is with the subtleties of the concept of
smallness in this context. We will not attempt to address this question
quantitatively, but satisfy ourselves by examining the commutators of H
and S for three systems. The first of these is a simple 2x2 system for which
we may obtain an algebraic answer. The other two are matrices from real
VB calculations of CH4 and the n-system of naphthalene.

43.1 A 2x2 system
Let B
ol (32)

and

s:[i i] (33)
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The commutator of these two is

(34)

HS—SH=[ 0 *C_A”y

(C—A)s 0

and we see immediately that the commutator is zero if the two diagonal
elements of H are the same.

We may write H as two terms, the first a part that is a polynomial
function of S and the second a sort of remainder.

_|@A+C)/2 B }+[w~mm 0

H B (A+0)/2 0 w—mm} (35)

Thus, we see in this simple case that the closeness of the approximation
depends upon the size the second term in Eq. (35); whether it is really
a small perturbation upon the system. With these matrices the approxi-
mation would be good only if the two diagonal elements of H are close in
value. The 2x2 case is rather special, however, and we give further more
complicated examples.

4.3.2 The w-system of naphthalene

For naphthalene we examine the H and S matrices based upon the both
the HLSP functions and the standard tableaux functions for the system.
In both cases we include the non-ionic structures, only. This will give a
picture of how the situation compares for the two sorts of basis functions.
In both cases, of course, the dimensions of the matrices are 42x42, the
number of non-ionic Rumer diagrams for a naphthalene structure. Some
statistics concerning the commutator are shown in Table 6. It is clear that,

Table 6: Statistics on commutator HS — SH matrix elements for naphthalene. Lower
triangle only. All are energies in Hartrees.

HLSP STF
Maximum element 6.8380 x 107! 3.5665 x 107!
Minimum element —~6.1237 x 107! —1.4897 x 107!
Minimum absolute value 7.9021 x 10~° 1.1904 x 10~*
Average(Commutator) 1.5308 x 1073 1.0838 x 10~2
RMS(Commutator) 2.0458 x 107! 5.7002 x 102
Average(H;; — Hj;) 1.3997 x 10~ 2.5172 x 107!

RMS(H,'{ - Hjj) 1.1386 x 101 3.2597 x 107!
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while there are quantitative differences between the two bases, qualitatively
the results are similar. It should be emphasized that if the commutator
HS — SH were zero for one of the bases, it would also be for the other. The
important point to be gleaned from Table 6 is that the root-mean-square
(RMS) values of the commutator elements and the Hy — Hj; differences
are all very similar. The conclusion is that the perturbation presented by
the non-commuting part of H is not small in this case, and it would be a
bad approximation to consider H to be a polynomial function of S.

4.3.3 The CHs molecule

When an STO3G AO basis full VB calculation of CHy is carried out, there
are 1716 singlet standard tableaux functions all together. When these
are combined into functions of symmetry 1A; the number of independent
linear combinations is reduced to 164. Thus the symmetry factored H and
S matrices are 164x164. We show the statistics for the HS—SH matrix for
standard tableaux functions in Table 7. The statistics for HLSP functions
are not available in this case. It is immediately obvious that the numbers

Table 7: Statistics on commutator HS — SH matrix elements for CHy. Lower triangle
only. All are energies in Hartrees.

STF

Maximum element 1.5946 x 10+1
Minimum element -1.6021 x 10*!
Minimum absolute value 1.3350 x 10~
Average(Commutator) —2.0447 x 1072
RMS(Commutator) 4.0189

Average(H;; — Hj;) —3.0335 x 10!
RMS(H,',' - Hjj) 8.7425 x 107!

for CHy4 are considerably larger than they were in the case of naphthalene;
the RMS value of the commutator elements is nearly 5 times the RMS value
of H;; — H;;. When one considers this in comparison with the results for
naphthalene, it is not too surprising, since the  system for that molecule
involves AOs of only one kind, whereas with CH, there are AOs from both
K and L shells of the carbon. In spite of the large deviations between
diagonal elements of H, the RMS average of the commutator elements
is still larger, as was emphasized above. The non-commuting part of H
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is very large here and represents a large perturbation. Ignoring it would
constitute a very crude approximation.

4.4 The perfect pairing wave function and the valence state of
carbon

We have defined the “perfect pairing” wave function earlier, and in this
section we will examine some of the effects using this function alone has
on the energies. This will parallel some of the early treatments, but it is
not simple to use the computer programs current today to give an exactly
comparable calculation to those carried out in the early days of molecular
theory. There are two significant differences. The first is that all early
calculations on a molecule as large as methane were semiempirical, at least
to some extent. The second is that they also neglected higher order per-
mutations in the evaluation of matrix elements. These two approximations
interact to some extent, of course, but, in any event, would be difficult to
arrange in a modern program.

In Table 8 we give the results for several different wave functions and
two different basis sets.

1. STO3G. This is the conventional representation of Slater type orbitals
using three Gaussians apiece.[41]

2. EOP3G. This basis is the energy optimized three Gaussian basis set
devised by Ditchfield et al.[42] This is very nearly the same as the
(33/3) basis given by Huzinaga et al.[43]

In each of these there are four valence orbitals on carbon and one on each
hydrogen for a total of eight.

Seven different results are given for each basis set, and in all of them
the C 1s orbital is doubly occupied in a frozen core. They are coded as
follows:

1. FV. The full valence MCVB. According to the Weyl dimension for-
mula eight electrons and eight orbitals give 1716 basis functions, and
these support 164 1 A, states. The energies for these wave functions at
the geometry of the minimum are given as zero in Table 8. All other
energies in each column are given relative to this one, which is the
lowest in each case. The absolute energies are given in a footnote in
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Table 8: Energies for various states and wave functions of CHy.

These are valence only calculations with a C 1s frozen core.

Code® STO3G EOP3G
EMin ch EMin Deb

Fve 0.000 eV 19.491 eV 0.000 eV 17.307 eV
HFC 3.853 18.655 3.055 17.392
HPP 4.138 22.898 3.239 20.992
CFC 9.968 12.540 7.488 12.959
HSTF 10.912 11.596 8.525 11.922
CSTF 10.912 11.596 8.525 11.922
CPP? 23.895 5.405 19.575 6.795

°FV, full valence; HFC, hybrid full covalent; HPP, hybrid perfect pairing;
CFC, Cartesian full covalent; HSTF, hybrid stf; CSTF, Cartesian stf; CPP,
Cartesian perfect pairing. See the text for further details.

5The total four-bond dissociation energy for the corresponding wave func-

tion.

°The full valence total energies: STO3G, -39.80107 au; EOP3G, -39.97968

au

9Not an A; state. See text.

the table, and the absolute energy of any one of the states may be re-
constructed if so desired. For this calculation we need not differentiate
between tetrahedral hybrid and Cartesian p orbitals.

. HFC. The carbon orbitals are formed into the standard tetrahedral
hybrids, “pointing” at the H atoms. There are 14 covalent basis func-
tions and the this row gives the relative energy for the 14 term wave
function.

. HPP. This is the single perfect pairing HLSP function with tetrahe-
dral hybrids. At the geometry of the energy minimum this function
is no more than 0.2-0.3 eV higher than the HFC wave function. This
difference represents the deviation from perfect pairing that occurs
with the covalent only functions. This row also has the largest disso-
ciation energies, since the C atom is forced into the “valence state” of
van Vleck at the dissociated geometry.

. CFC. The standard Cartesian 2p;, 2p,, and 2p, orbitals together with
the unchanged 1s orbital are used in the 14 term covalent wave func-
tion. This change produces a considerably larger jump in the energy
than those before.
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5. HSTF. This is the single best standard tableaux function with the hy-
brid orbitals. It corresponds to the high-spin wave function of Heitler
and Rumer and has C in its S state exactly.

6. CSTF. These energies are the same as the previous set, since the C 55
state is equally well described by the Cartesian or the hybrid orbitals.

7. CPP. The Cartesian perfect pairing wave function is by far the worst
on the energy scale, but this arrangement of AOs is not really appli-
cable to the present discussion. It is unclear, of course, even how to
pair the orbitals in this case, and, although it is the energy of a singlet
state, unlike all the others, a single function cannot have A; symmetry
with this sort of wave function and, thus, does not approximate an
energy eigenstate..

Voge[44] used the conventional techniques* of the time to determine
the actual atomic carbon states in the “valence” state. Table 9 shows
the populations of atomic states that Voge determined. Nevertheless, the

Table 9: Populations of carbon atom states in “valence state”.

State  Population
s’p* 3P 0.1406

1p 0.0466
sp® 38 0.3125
3ip 0.2820
1p 0.0313
pt P 0.1406
1p 0.0466

valence state concept, although well defined, seems artificial today, since
it is not experimentally available and since full calculations are so easily
accessible and give better results.

There is, however, interest in examining some energy differences from
Table 8. We may estimate the energies of the valence and the ®S states(above
the calculated ground state), and these are are shown in Table 10. Thus,
the HPP row shows the perfect pairing valence state to be around 7 eV
above the ground state, similar to the value obtained by van Vleck. The
row marked CSTF gives the estimated energy of the °S state, and it is

*Le., neglecting higher order permutations in evaluating Hamiltonian matrix elements and even binary
permutations in the overlaps.
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Table 10: Energies of C atom states at asymptotic C + 4H distances.

STO3G EOP3G  Exp.
HPP 7.545 6.924 NA
CSTF 3.017 3.140 4.183

seen to be about 1 eV below the experimental value. This is expected
since there should be more correlation energy in the ground state than in
the 59 state, and these bases are too restricted to give any good account
of correlation.

Both the historical results and the modern indicate that, without a
doubt, the excited valence configuration, sp3, figures large in bonding in
the CH4 molecule. The hybridized orbitals give a better energy in the
restricted calculations than do the Cartesian, but, of course, this difference
goes away for the full calculations. These have no early counterpart, of
course.
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APPENDIX

A Acronyms

AO atomic orbital

AOCI atomic orbital configuration interaction
BOVB breathing orbital valence bond

CI configuration interaction

GGVB Goddard’s generalized VB

HLSP Heitler-London-Slater-Pauling

MCVB multiconfiguration valence bond

MO molecular orbital

MOCIT molecular orbital configuration interaction
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RMS root-mean-square

SCVB spin coupled valence bond
SDF Slater determinantal functions
STF standard tableau function

VB valence bond
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The combination of the spin-coupled formulation of modern valence bond
theory with intrinsic reaction coordinate calculations provides easy-to-interpret
models for the electronic rearrangements that occur along reaction pathways. We
survey here the information revealed by such studies of the mechanisms of
various gas-phase six-electron pericyclic reactions: the Diels-Alder reaction
between butadiene and ethene, the electrocyclization of cis-1,3,5-hexatriene, the
1,3-dipolar cycloaddition between fulminic acid and ethyne, and the 1,3-dipolar
cycloaddition of diazomethane. The fully-variational CASVB strategy proves
particularly efficient for such studies.

1. INTRODUCTION

The elucidation of reaction mechanisms, and endeavours to predict the
outcome of wide ranges of chemical reactions, lie at the very heart of chemistry.
Electronic structure theory has made very significant progress in the
quantitative description of one very important aspect, namely the changes in the
geometry and energy of the reacting system on the way from reactants to
products. The relevant potential surfaces can be studied using a wide range of
correlated post-Hartree-Fock quantum-chemical approaches, the most advanced
of which are already capable of providing essentially conclusive results for gas-
phase processes involving relatively small molecules.

A second, equally important, aspect of the theoretical modelling of chemical
reactions is related to the elucidation of the often radical changes in the
electronic structure of a reacting system as it evolves from reactants, through one
or more transition structures and/or reaction intermediates, to one or more sets
of products. There is a well-recognized need to develop qualitative models based
on quantitative wavefunctions but highlighting general features and tendencies
in chemical structure and reactivity; this can be a very difficult task, especially if
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one attempts to base such models on the multiconfigurational wavefunctions
used in most post-Hartree-Fock approaches.

Most chemists still tend to think about the structure and reactivity of atomic
and molecular species in qualitative terms that are related to electron pairs and
to unpaired electrons. Concepts utilizing these terms such as, for example, the
Lewis theory of valence, have had and still have a considerable impact on many
areas of chemistry. They are particularly useful when it is necessary to highlight
the qualitative similarities between the structure and reactivity of molecules
containing identical functional groups, or within a homologous series. Many
organic chemistry textbooks continue to use full and half-arrows to indicate the
supposed movement of electron pairs or single electrons in the description of
reaction mechanisms. Such concepts are closely related to classical valence-bond
(VB) theory which, however, is unable to compete with advanced molecular
orbital (MO) approaches in the accurate calculation of the quantitative features
of the potential surface associated with a chemical reaction.

Modern valence bond theory, in its spin-coupled form, is an attractive
approach for elucidating the changes in electronic structure that accompany the
variations in energy and geometry of a reacting system on its way from reactants
to products. Our recent work has indeed shown than the spin-coupled approach
yields easy-to-interpret models for various organic reaction pathways, including
the mechanisms of six-electron gas-phase pericyclic reactions. For such systems,
the flexibility of the wavefunction allows it to describe, with equal ease, the
various heterolytic and homolytic possibilities. In all cases, the spin-coupled
wavefunction recovers a fairly consistent proportion (typically somewhat more
than 90%) of the nondynamical correlation energy incorporated in the
corresponding ‘six electrons in six orbitals’ CASSCF construction. In the present
account, we survey the descriptions that emerge for the Diels-Alder reaction
between butadiene and ethene 1], the electrocyclization of cis-1,3,5-hexatriene
[2], the 1,3-dipolar cycloaddition between fulminic acid and ethyne [3], and the
1,3-dipolar cycloaddition of diazomethane to ethene [4].

2. SPIN-COUPLED APPROACH

As described in other Chapters in this book, the single-configuration spin-
coupled wavefunction takes the form [5]

Y, =4 [ [To.c 0,8 ﬁw GZ,,] 1)
i=1 p=1

in which the active electrons are accommodated in N singly-occupied
nonorthogonal spin-coupled orbitals y,, which are optimized as completely
general linear combinations of atom-centred basis functions, without any overlap
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or localization constraints. The corresponding total spin function, @, which is
labelled according to its eigenvalues of §* and S, is fully optimized in the full
spin space. The orthonormal inactive orbitals ¢, may be optimized simultaneously
with the spin-coupled orbitals and the total spin function, or they may be fixed to
match those in appropriate preliminary calculations.

The closest MO-theory analogue of such a compact N-electron spin-coupled
wavefunction is the corresponding many-configuration ‘N electrons in N orbitals’
CASSCF function. It is of course relatively straightforward nowadays also to
construct fully-variational multiconfiguration VB wavefunctions for ground and
excited states, should the need arise. However, high accuracy numerical results,
as required for various applications, are normally achieved instead using
nonorthogonal CI calculations involving excitations into fixed virtual orbitals. A
common feature of such calculations is that the very compact spin-coupled
descriptions dominate the final ground state wavefunction, so that we may claim
that the essential physical picture remains essentially unchanged. As such,
useful chemical insight may often be derived even from single-configuration spin-
coupled wavefunctions, simply by examining the variations in the shapes of the
spin-coupled orbitals and in the changes to the mode of spin coupling during the
course of a chemical reaction. A convenient way to follow reactions is of course in
terms of the minimum energy path or intrinsic reaction coordinate, IRC, which
consists of the steepest-descent paths (in mass-weighted coordinates) leading
from transition state(s) toward reactants or products.

A useful basic strategy for studying gas-phase organic reaction pathways could
be to locate the transition states and several points along the minimum energy
paths, to check that the ‘N in N° CASSCF is qualitatively correct, and then to
perform fully-variational spin-coupled calculations at each geometry. Efficient
computational algorithms, often relying on group theory and/or on graphical
indexing techniques, have led to tractable schemes for the direct optimization of
spin-coupled wavefunctions [6,7], and these have been used in some of our work
on organic reactions. An attractive alternative for carrying out fully-variational
spin-coupled calculations is provided by codes which we have named CASVB [8].
Some key features of our CASVB strategy, which we have used in many of our
studies of pericyclic reactions, are outlined in the next section.

3. OVERVIEW OF CASVB

As is well known, CASSCF wavefunctions are invariant to general @.e.
nonunitary) linear transformations of the active orbitals. As such, we may seek
alternative, but equivalent, representations in which a small number of
configurations are dominant. This is achieved in our case by means of efficient
computational schemes for carrying out exactly the transformations of full-CI
spaces induced by nonunitary transformations of orbital spaces [9].
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In its simplest form, the CASVB approach may be used simply to generate
representations of a CASSCF wavefunction ¥, in which a single- or
multiconfiguration modern-VB component ¥, is dominant. Writing

¥ =S, ¥, +(1-S2)*¥,. @)

in which ‘Pvl,; denotes the orthogonal complement of ¥,,, such a task may be
achieve by maximizing the overlap quantity S, defined according to

_ g‘{!cm I ‘Yvné
So=1g, 1¥,)" @)

This procedure is relatively inexpensive and, with suitable choices of the general
form of ¥, it is fairly robust. An obvious alternative is to minimize the energy
quantity E_,, defined according to

VL HIP,)

- (Pl HIYy (4)
(P, 1V,
By its very nature, minimization of E, is more expensive than the maximization
of S,, because it requires the construction of quantities corresponding to
applications of the hamiltonian operator, but this may be achieved by adapting
the efficient procedures already available in various CASSCF codes. It turns out,
however, that the two sets of orbital representations tend to be rather similar,
and so maximization of S, tends to be preferred. In either case, the actual
optimization uses reliable Newton-Raphson-like procedures that utilize first and
second derivatives.

The CASVB strategy for the fully-variational optimization of modern VB
wavefunctions relies on a linked two-step strategy, based on alternating steps,
until convergence is reached. Active and inactive spaces are chosen, in the usual
way, alongside an appropriate form for ¥,,. The ‘nonorthogonal step’ involves the
minimization of E ,, using the basic CASVB algorithms, whereas the ‘orthogonal
step’ involves inactive-active, inactive-virtual and active-virtual orbital rotations
using standard CASSCF procedures. Particularly when starting from a
converged CASSCF wavefunction, convergence to the final VB wavefunction can
involve a remarkably small number of iterations, such that, overall, the
calculations tend to be somewhat cheaper than our traditional direct
optimization of spin-coupled wavefunctions. The full CASVB module [8] is
incorporated in the MOLPRO package [10], that has been used in most of our
studies, and it has also recently been ported to the MOLCAS package [11].

4. PERICYCLIC REACTIONS

The choice of basis sets and the generation of geometries along the IRC are
described in detail in our previous work [1-4,12], together with the corresponding
energies. Instead, we concentrate here on the evolution of the electronic structure
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revealed directly by the spin-coupled wavefunctions. For each of the gas-phase
processes considered, six electrons were treated as active in the spin-coupled
calculations, as in the usual organic chemistry descriptions of such systems.

4.1 Diels-Alder Reaction

Symmetry-unique spin-coupled orbitals for the Diels-Alder process are shown
in Figurel for IRC values (in amu“bohr) of 0.6 (towards reactants), zero
(transition state, TS) and —0.6 (towards products) [1]. It is clear that each orbital
remains associated with the same carbon atom throughout the reaction, with the
main changes being in the degree of sp® character and in the amount and
direction of the deformations of the orbitals. Initially, the n bonds in butadiene
are formed by the symmetry-related pairs (y,y,) and (y,y,), while (y,y,)
corresponds to the 7 bond in ethene (see right-hand column of Figure 1). Moving
to the transition state (middle column of Figure 1), the distortion of y, towards y,
(its symmetry-related counterpart) becomes much more noticeable, at the
expense of reduced overlaps within the (y,,y,) and (y,,y,) pairs. At the same time,
the overlap between y, and vy, is reduced in favour of distortions towards the
orbitals of the butadiene moiety. It is clear from the left-hand frame of Figure 2
that all of the key overlaps tend to much the same value in the vicinity of the
transition state. Continuing towards reactants (left-hand column of Figure 1),
orbitals y, and v, become much more sp’-like, and correspond to one of the new ¢
bonds. Similarly, the pair (y,,y,) corresponds to the new 7 bond.
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Figure 1. Symmetry-unique spin-coupled orbitals for the Diels-Alder reaction.
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Figure 2. Overlap integrals (left) and spin-coupling weights (right) for the Diels-Alder reaction

These various changes to the shapes of the orbitals are accompanied by a
recoupling of the electron spins. As shown in the right-hand frame of Figure 2,
the total spin function @, is easily interpreted in the present case by means of
the familiar Rumer basis. The two Kekulé-like functions (1-2,3—4,5-6) and (1—
6,2-3,4-5) are dominant over the entire IRC segment considered, with one
corresponding to reactants and the other to the products. They attain equal
weight in the vicinity of the transition state. Indeed, the orbital overlaps, the
mode of spin coupling, the estimated “resonance energy”, and the location and
nature of the first excited singlet state [1] are all strongly reminiscent of the spin-
coupled description of benzene [13], and so it is tempting to argue in favour of an
“aromatic” transition state.

Given that the orbitals remain associated with the same carbon atom
throughout the reaction, but with a recoupling of the corresponding electron
spins, it seems appropriate to label the changes as “homolytic”, as might be
represented by the following simplistic scheme:

Y — |

4.2 Disrotatory Electrocyclic Ring-Opening of Cyclohexadiene

The IRC was followed from the transition state, with twelve points in the
direction of cyclohexadiene and a further twelve in the direction of cis-1,3,5-
hexatriene, with steps of ca. 0.1 amu”bohr [2]. Symmetry-unique spin-coupled
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orbitals y,~y, are shown in Figure 3 for IRC values (in amu”bohr) of =~1.2 (ring
begins to open, left-hand column), zero (transition state, middle column) and
=+1.2 (ring almost open, right-hand column). Reflection of y,, v, and y, in the
symmetry plane retained over this IRC interval results in y,, vy, and w,,
respectively.

Y

Cyclohe)lzadiene — TS —» Cyclohexadiene
ring begins to open ring almost open

Figure 3. Symmetry-unique spin-coupled orbitals for the disrotatory electrocyclic ring-opening of cyclohexadiene.

At the start of the IRC interval, the length of the bond being broken is already
2.094, but y, and v, still take the form of sp™like hybrids with significant s
character. The pair (y,,y,) accounts for one of the  bonds in the cyclohexadiene
ring. Orbitals y,—y, at the transition state (middle column of Figure 3) are
starting to attain much the same ‘symmetrically-distorted’ shape as orbital y, at
the Diels-Alder transition state. The increased distance between the two terminal
atoms (2.29 A) is reflected in less distortion of v, and y, towards one another, and
a reduced overlap. However, for this system, the most dramatic changes in the
orbital overlaps and in the mode of spin coupling occur a little after the transition
state (see Figure 4), when the carbon-carbon bond lengths in the chain become
almost equal. The near-perfect ‘resonance’ of two Kekulé-type modes, as well as
the near equalization of bond lengths and of orbital overlaps, suggests that this is
another reaction that passes through an ‘aromatic’ structure.

At the end of the IRC interval, the distance between the terminal carbon
atoms is 2.49A. Orbital y, is now essentially a n orbital. The three m bonds
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correspond to the pairs (y,,y,), (w,,w,) and (y,,y,), and the corresponding perfect-
pairing mode of spin coupling becomes the most important, as shown in Figure 4.
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Figure 4. Overlap integrals (left) and spin-coupling weights (right) for the disrotatory electrocyclic ring-opening of
cyclohexadiene.

The orbitals remain associated with the same carbon atom throughout the
reaction, but with a recoupling of the corresponding electron spins. As in the case
of the Diels-Alder reaction, it seems appropriate to label the changes as
“homolytic”, as might be represented using half-arrows as:

~C

One difference from the Diels-Alder reaction [1], however, is that the aromatic
structure in the present case occurs a little after the transition state [2].

4.3 1,3-Dipolar Cycloaddition of Fulminic Acid to Ethyne

Given the concerted, almost synchronous nature of this gas-phase reaction it
might seem reasonable to suppose that the electronic mechanism would resemble
those for the Diels-Alder and cyclohexadiene ring-opening reactions, described
above. However, our spin-coupled calculations along the IRC reveal a somewhat
different picture [3].

The right-hand column of Figure 5 corresponds to separated fulminic acid
(HCNO) and ethyne moieties. Orbitals y,, v,, ¥, and y, are associated with the
fulminic acid molecule and, taken together with the corresponding dominant
mode of spin coupling, they suggest a ‘hypervalent’ central N atom, as described
in previous work [14]. The remaining orbitals, vy, and v,, are associated with the
‘in plane’ ethyne 7 bond that is broken during the course of the reaction.
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Isoxazole - TS -«—  Fulminic acid and
ethyne far apart

Figure 5. Symmetry-unique spin-coupled orbitals for the 1,3-dipolar cycloaddition of fulminic acid to ethyne.

For this system, we find that the spin-coupled orbitals do not remain
associated with the same first-row atom throughout the reaction. Instead, orbital
Y, from the ethyne moiety becomes a linear combination of an sp*like hybrid
from the ethyne and another such hybrid from the HCNO, as is shown for the
transition state in the middle column of Figure 5. After the transition state, this
orbital becomes almost entirely associated with the HCNO carbon atom.
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Somewhat less dramatic changes are observed for orbital y,, which undergoes
rehybridization that is reminiscent of orbital y, in the Diels-Alder reaction.
Ultimately, the (y,,,) pair describes one of the two new bonds that close the
isoxazole ring, as shown in the right-hand column of Figure 5.

Orbital y,, originally from the highly polar ‘in plane’ N-O = bond, also ‘moves’
during the course of the reaction. At the transition state, it takes the form of the
combination of two sp*“like hybrids, one associated with its original location on
oxygen and the other with the incoming carbon atom of ethyne. After the
transition state, it becomes primarily associated with the ethyne carbon. Orbital
y, changes relatively little during the course of the reaction. Ultimately, the pair
(w,,y,) accounts for the other new bond that closes the isoxazole ring, as shown in
the right-hand column of Figure 5. The remaining orbitals, y, and y,, originally
associated with the ‘in plane’ C-Nn bond of HCNO, shift relatively little, so as to
form a nonbonding pair on the isoxazole nitrogen atom (but with some
polarization towards the oxygen atom).

Analysis of the total spin function reveals that the spins associated with the
pairs (y,,v,), (y,,w,) and (y,,y,) remain essentially singlet coupled throughout the
course of the reaction, with no evidence for any aromatic structure along the IRC.
As such, the spin-coupled description corresponds to a mechanism that involves
the simultaneous relocation of three orbital pairs, as might be represented by the
following simplistic scheme:

N [ — N I
N C N _C
0/(: \H /C \H
H H

Using a somewhat different methodology, based on orthogonal localized
molecular orbitals (LMOs), Nguyen et al. [15,16] conclude that the circulation of
charge for this reaction is in the opposite direction to that described here.
However, it is worth pointing out[17] that the weights of even the most
important configurations within their CI-LMO-CAS wavefunctions tend to be
fairly small. In the case of the 1,3-dipolar cycloaddition of fulminic acid to ethyne,
the two configurations that are used to deduce the electronic reaction
mechanism, never have weights that exceeding 0.28 and 0.16. As a rule, the spin-
coupled wavefunction consistently accounts for more than 90% of the
nondynamical correlation energy of a ‘6 in 6° CASSCF wavefunction using just
one product of six singly-occupied active orbitals. The overlap between the spin-
coupled and CASSCF wavefunctions is even higher (often more than 0.99). It is
this proximity between the two wavefunctions that justifies the use here of
changes to orbital shapes, orbital overlaps and/or the mode of spin coupling in
order to describe the electronic mechanism of a chemical reaction. In a sense, we
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are faced with choosing between a description that is backed by more than 90% of
the CASSCF wavefunction, and another one which has behind itself a very much
smaller proportion.

44 1,3-Dipolar Cycloaddition of Diazomethane to Ethene

In an analogous spin-coupled study [4] of the gas-phase concerted 1,3-dipolar
cycloaddition of diazomethane (CH,N,) to ethene (C,H,), we found that the total
spin function for the active electrons remains dominated by a single perfect-
pairing mode (i.e. by singlet-coupled pairs) throughout the course of the reaction.
Orbital pair shifts were observed, as in the previous example, indicating a
heterolytic mechanism that does not pass through an aromatic structure. One
minor difference arises from the fact that the N-O n bond in HCNO is much more
polar than the corresponding N~-N bond in CH,N, [14,18]. The orbital pair
responsible for this N-N bond is somewhat less mobile and shifts over to form
one of the bonds closing the 1-pyrazoline ring well after the transition state, in
contrast to the previous case, in which the corresponding orbital shifts were
already well advanced at the transition state. Overall, the orbital changes in the
present reaction may be summarized by the simplistic scheme

N N

A CH /" ~CH,
N\\ (—” 2 :N\ (IZH
CH, CH, CHZ/ 2

in which the hollow dots represent a nitrogen lone pair that was not treated as
‘active’ in the spin-coupled calculations, and the ‘hypervalent’ central N atom of
the diazomethane molecule is represented as in our previous work [18].

5. CONCLUSIONS

For each of the gas-phase pericyclic reactions considered here, the spin-coupled
approach produces a very clear picture of the electronic rearrangements that
accompany the changes in geometry and energy along the IRC from reactants to
products. In general, the changes in electronic structure in the vicinity of the
transition state tend to be much more rapid than are the corresponding
geometrical changes.

During the Diels-Alder reaction [1] and in the electrocyclization of cis-1,3,5-
hexatriene 2], bonds break and form in a homolytic fashion, with orbitals
remaining associated with the same centres throughout the reaction. For such
systems, there is a major recoupling of the electron spins. This last takes place
most rapidly at or near the transition state. The resonance pattern, taken
together with other characteristics, is reminiscent of the spin-coupled description
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of benzene. These gas-phase reactions appear to pass through an ‘aromatic’
structure.

An entirely different description emerges for the two 1,3-dipolar cycloaddition
reactions that we have studied [3,4]. For such systems, the bond breaking and
bond formation involves instead the shifts of well-identifiable orbital pairs,
rather than any spin recouplings. Such heterolytic mechanisms, that do not pass
through an aromatic structure, now seem to be a likely outcome of studies on
other gas-phase concerted 1,3-dipolar cycloaddition reactions.
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Complete active space valence bond (CASVB) method and
its application to chemical reactions

Haruyuki Nakano, Kazushi Sorakubo, Kenichi Nakayama, and Kimihiko
Hirao

Department of Applied Chemistry, Graduate School of Engineering, University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

The complete active space valence bond (CASVB) method is an approach for
interpreting complete active space self-consistent field (CASSCF) wave func-
tions by means of valence bond resonance structures built on atom-like local-
ized orbitals. The transformation from CASSCF to CASVB wave functions
does not change the variational space, and thus it is done without loss of infor-
mation on the total energy and wave function. In the present article, some
applications of the CASVB method to chemical reactions are reviewed follow-
ing a brief introduction to this method: unimolecular dissociation reaction of
formaldehyde, H,CO — H,+CO, and hydrogen exchange reactions, H,+X —
H+HX (X=F, Cl, Br, and I).

1. INTRODUCTION

The complete active space self-consistent field (CASSCF) method is one of
the electronic structure theories that is employed most frequently in the study of
chemical reactions. This method is feasible and gives potential energy sur-
faces of good quality, and hence it is also used as a starting point for
higher-level multireference methods. In fact, the CASSCF method has many
advantages: (1) it is well defined on the whole potential energy surface of a
chemical reaction if an appropriate active space is chosen; (2) it is applicable to
excited states as well as the ground state in a single framework, and (3) it pro-
vides size-consistent results, etc. However, it often generates too many con-
figurations, and therefore there is a problem as to how we could extract a
chemical description from the lengthy CASSCF wave functions.

The complete active space valence bond (CASVB) method [1,2] is a solution
to this problem. Classical valence bond (VB) theory is very successful in pro-
viding a qualitative explanation for many aspects. Chemists are familiar with
the localized molecular orbitals (LMO) and the classical VB resonance concepts.
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If modern accurate wave functions such as CASSCF can be represented in terms
of such well-known concepts, chemists’ intuition and experiences will give a
firm theoretical basis and the role of computational chemistry will undoubtedly
expand.

The CASVB functions can be obtained by transforming the canonical
CASSCEF functions without loss of energy. First we transform the CASSCF
delocalized MO to localized MO using the arbitrariness in the definition of the
active orbitals. Then we perform the full configuration interaction (CI) calcu-
lation again in the active space. Here, we also use the arbitrariness in the defi-
nition of the expansion configuration functions. The configuration functions
used are spin-paired functions based on the LMOs. This form of spin eigen-
functions plays a special role in the VB method. The CASVB wave functions
can be readily interpreted in terms of the well-known classical VB resonance
structures. The total CASVB wave function is identical to the canonical
CASSCF wave function. In other words, the MO description and the VB de-
scription are equivalent, at least at the level of CASSCF. The CASVB method
provides an alternative tool for describing the correlated wave functions.

With this method, we clarified the electronic structures of the ground and ex-
cited states of benzene, butadiene, methane, and hydrogen molecules [1,2].
We also applied the method to valence excited states of polyenes [3] and their
cations [4]. In previous studies, we put our focus on the formalism of CASVB
and its applicability to molecules in their equilibrium structures.

Even today, however, it is not a simple task to obtain chemical pictures at the
transition state (TS) or along a reaction path. Discussion on the nature of TS is,
for instance, often conducted using other features such as molecular structures
and energy profiles rather than the wave functions themselves: if the bond
length at TS is closer to that of the product than reactant, it is called a late TS,
or if the reaction is highly exothermic, this reaction is assumed to proceed via
an early TS. These discussions are qualitative and ambiguous. A more
quantitative and clear-cut chemical description is necessary.

In this article, we present applications of CASVB to chemical reactions: the
unimolecular dissociation reaction of formaldehyde, H,CO — H,+CO [5], and a
series of hydrogen exchange reactions, H,+X — H+HX (X=F, Cl, Br, and I).
The method in this article is based on the occupation numbers of VB structures
that are defined by the weights of the spin-paired functions in the CASVB func-
tions, so that we could obtain a quantitative description of the nature of elec-
tronic structures and chemical bonds even during reactions.

In Sec. 2, we briefly survey the CASVB method. In Sec. 3, the CASVB
method is applied to the unimolecular dissociation HyCO — H,+CO and the
hydrogen exchange reactions H,+X — H+HX (X=F, Cl, Br, and I), and the
applicability to the reaction is discussed. Conclusions are given in Sec. 4.
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2. OVERVIEW OF CASVB METHOD

We have proposed two types of CASVB method. The first one is a method
where the valence bond structures are constructed from orthogonal localized
molecular orbitals (LMOs) [1], and the second is one from nonorthogonal lo-
calized molecular orbitals [2].

The idea of CASVB is based on the fact that the densities of variational wave
functions are invariant under the transformations which hold the variational
space unchanged. In the CASSCF case, a complete active space (CAS) is
invariant under the linear transformation of active orbitals and also that of con-
figuration state functions (CSFs).

We may re-define the active orbitals utilizing the invariance of the active or-
bital space. In the CASVB with nonorthogonal LMOs, we employ Rueden-
berg’s procedure of projected localized MOs [6-8] and obtain quasi-atomic
CASSCF MOs that have maximal overlaps with atomic orbitals (AOs) of the
free atoms. Consider an AO, y,4, centered on a nucleus A. Diagonalizing the
matrix,

B = (| 24) (24 |¥;) )

in the CASSCF MO basis, y,, and choosing the eigenvector with the largest
eigenvalue gives the LMO, ¢4, which has the maximum overlap with y,. Simi-
larly, we can define ¢g, ¢c, ... . The LMOs, ¢,, determined in this manner are
nonorthogonal to each other. These atom-adapted LMOs are Ruedenberg
orthogonalized, but we leave them as nonorthogonal. On the other hand, in the
CASVB with orthogonal LMOs, we use LMOs produced by a Boys’ localiza-
tion procedure as {¢;} [9].

The full configuration space that is spanned by all possible configurations
generated from these quasi-atomic CASSCF MOs is identical to that of full CI
space that is constructed from the canonical CASSCF MOs. Thus, we use
{@.} as orbitals from which a CASVB wave function is constructed. To obtain
the corresponding VB structures, we project a canonical CASSCF wave func-
tion onto a VB wave function. The projection does not modify the original
wave function but simply re-expresses it in the VB language. Let W45 be a
CASSCF wave function,

\PCASSCF _ Z C.0%", O = @°F ({V/z }) @

where @,°°F are the configuration state functions constructed by the orthogonal
orbitals set {;} and C; are the known CAS-CI expansion coefficients. Simi-
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larly define the CASVB function in terms of spin-paired functions as

OASVE _ ZAiq)iVB , D=0 ({Q}) 3)

where @;'® are spin-paired functions constructed by LMOs. The number of
independent spin-paired functions is equal to the dimension of CAS, and the
spaces spanned by {®5F) and {®,"®} are identical. Since Eqgs. (2) and (3) are
different expressions of the identical wave function, we may write

Z A0 = chcbj?“ : )
J J

Left-multiplying Eqs. (2) and (3) by &, and integrating the products, we get

20,4, =C, with Q, =(07 |0}, )
J

whose dimension is equal to the dimension of CAS. Solving this linear equa-
tion, we obtain CASVB wave function W45V,
The occupation number (or weight) of a VB structure is calculated with

n = A;ZS,.J.AJ. , (6)

where §;; are overlaps between the structures i and j, defined by
s, =(@*|0}®), (7)

and satisfies the normalization,

dom=1, 8)

Note that the occupation number n; could be negative because of the nonor-
thogonality of resonance structures.

Fig. 1 is a schematic expression of coefficient A; and occupation number #; in
a two dimensional case.

Thorsteinsson et al. also investigated the transformations of CASSCF func-
tions to modern valence bond representations [10-12]. They examined trans-
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Fig. 1. Schematic expression of coefficient A; and occupation number »; in a two dimen-
sional case: ¥ =AD" + A,®,".

formations for which the total wave function is dominated by some VB struc-
tures (e.g. covalent structures) built from common products of nonorthogonal
orbitals. This method was also named “CASVB method.” Some recent
works of their CASVB method can be seen in review articles [13-15] and refer-
ences therein.

To obtain more insight into CASVB functions, let us consider the hydrogen
molecule as an example [2]. Fig. 2 shows CASSCF, orthogonal localized,
nonorthogonal localized, and generalized valence bond (GVB) molecular orbi-
tals obtained for active space CAS(2,2) with correlation consistent valence
double zeta (cc-pVDZ) basis set [16] at a bond distance of 0.7 A. We observe
that the orthogonal LMO is deformed significantly from the atomic 1s function
and has a small tail on the other hydrogen atom due to the orthogonality con-
straint. The orthogonality requirement between LMOs forces small anti-bond-
ing admixture from orbitals on neighboring atoms into each LMO. On the
contrary, the nonorthogonal LMO looks very much like an atomic 1s function
(the overlap is 0.9859) and the LMOs overlap strongly with each other (0.7775).

The CASSCF wave function for the hydrogen molecule is written as,

|CASSCF) =0.994807 —0.10216**, )

This wave function is transformed to CASVB function with orthogonal LMOs,
|CASVB 1000 ) = 0.77995 [ 4 0y, (0B — ) | /2

+0.4426( A [ 0y, 4, 0B |+ 1 [ 030, 00,28 ]) (10)
=0.6082[H, —H, ]+0.3918{[H, H; |+[H; H; ]},
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and with nonorthogonal LMOs,

CASSCF MOs

— was —— —

Orthogonal localized MOs

Fig. 2. CASSCF, orthogonal localized, non-orthogonal localized, and generalized valence
bond molecular orbitals for the hydrogen molecule.
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|CASVB, 1010 ) = 0.91245( [ 9y 01, (0B - f) | /N2

+0.0503(¢9([¢HA¢HA05/5']+&([¢HB¢HBa,B:|) (an
=0.9122[H, ~H,]+00878{[H; H;|+[H; H; ]},

where the numbers before the VB structures are occupation numbers 7; (Eq. (6))
and <f denotes the antisymmetrizer. Nonorthogonal LMOs change the

1Ay © @ ]
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Fig. 3. CASVB description for the ground and z—=* singlet excited states of benzene.
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picture of ionic-covalent resonance dramatically from CASVB with the or-
thogonal LMOs. Orbital relaxation increases the covalent character of the HH
bond and decreases the ionic character. Thus, the nonorthogonal description
seems more reasonable conceptually.

The GVB function is also an equivalent expression to the CASSCF and
CASVB functions in the CAS(2,2) case. In the GVB description, the wave
function is written by the covalent structure only,

|GVB) =t [ 9y, @4, (@ff - Be) |/V2 =[H, -H,], (12)

and no ionic structure contribution. The orbitals are distorted compared to the
nonorthogonal LMOs due to this unphysical constraint.

For one more example, a CASVB description for benzene is given in Fig. 3.
See Refs. 1 and 2 for the computational details. The CASVB affords a clear
view of the wave functions for the various states. The excitation process is
represented in VB theory in terms of the rearrangement of spin couplings and

) Py

Fig. 4. The nonorthogonal LMOs at the equilibrium structure of H,CO determined with
Ruedenberg’s projected localization procedure.
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charge transfer. The former generates the covalent excited states and the latter
gives rise to the ionic excited states, in which the covalent bond is broken and a
new ionic bond is formed. Thus, the singly, doubly, ... , polar structures are
generated from their respective parent ground state covalent (nonpolar), sin-
gly, ... , polar structures.

The ground state is represented by two covalent Kekulé structures as ex-
pected. The lowest excited 'B,, state is again described by a combination of
the Kekulé structure. There are no significant contributions from the Dewar
structures or the corresponding orthopolar structures. The linear combinations
of the two equivalent Kekulé structures generate the plus and minus states.
Their positive combination gives rise to the totally symmetric 'Azg_ ground state,
while the negative combination yields the excited 1B2u_ state. The second and
third 7—z* excited states are described by a number of ionic structures. There
is no contribution from the covalent structures. The ionic character of these
states can easily be found from a CASVB description. The highest valence
excited states are the covalent 1E2g_ state. The state has a predominantly De-
war character with no contribution from the Kekulé structures. Thus, the Ke-

Fig. 5. The nonorthogonal LMOs at the TS structure of the H,CO —» H,+CO reaction.
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kulé structures dominate the ground state and the singly excited 1B,, state
while the Dewar structures dominate the doubly excited degenerate lEzg_ states.
The states described by Dewar structures are described by doubly, triply, ...
excitations in an MO language.

In this article, we use only the CASVB description with nonorthogonal
LMOs. Thus, it is hereafter referred simply as CASVB functions.

3. APPLICATION TO CHEMICAL REACTIONS

In this section, we examine how the electronic structures of molecules during
chemical reactions are described by the CASVB method and how they are ana-
lyzed with the VB language. Two examples are shown: one is the unimolecu-
lar dissociation reaction of formaldehyde, H;CO — H,+CO [5], and the other is
the hydrogen exchange reactions, H;+X — H+HX (X=F, Cl, Br, and I).

Table 1
Spin-paired functions and VB structures of formaldehyde (Normalization and phase
factors are omitted.)

Spin-paired function VB structure
P P2 (B — P) -0, P (@B — ) H—C —H, 63}
PerPcr @ G P (0 = B2) } H' “C_H o
Pe1PerCB PP (@f— P) 2 '
Pu ¢Hzaﬂ'¢c1¢m(aﬂ_ﬂa) } H; +C_Hl (I
Py Pz aﬂ' Pz P (aﬂ - ﬂa)

(aff - ) Qe pcif
P2 P 5a) 9, @cy H,—C 'H, av)
P Per(af~ ) 90,08

(off - pa) -9y, Py
Pr2 P2 £y oy Py HZ—C+ H, V)
P Pei(0f~ B2 Py P
¢’cz¢c2aﬁ'¢c1¢c1aﬂ H; C +H] (VI)
Pz ¢Hzaﬂ'¢m¢maﬂ H; ct _H1 (VII)
P Peni (O = f2) - 020,08
Pr Pen (B ~ ) -0, 0cy (@ - fr) H, C H (VI
P P (O — ) P, Per O
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P P OB P10 0 The other (doubly polarized) XD
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3.1. Unimolecular dissociation reaction of formaldehyde H,CO — H, + CO

This reaction is Woodward-Hoffmann forbidden and proceeds via a highly
asymmetric TS structure. Diabatically H,CO (IAI) dissociates to H, (]Zg+) +
CO ('T1), while H, ('Z,;") and CO ('T") interact repulsively and correlate with an
excited state of H,CO. An avoided-crossing of these two diabatic potential
energy surfaces gives rise to a barrier for dissociation on the adiabatic ground
state potential energy surface.

A qualitatively correct description of the dissociation process requires at least
four active electrons in the two CH bonds of H,CO. During the dissociation
process, two electrons, one from each CH bond, pair up to form the HH bond
while the other two form a lone pair on C in CO.

The basis set used is Dunning’s cc-pVDZ [16]. The CASSCF wave func-
tion was obtained with CAS(4,4). The geometries of the equilibrium and TS
structures were determined with this basis set and active space. The orbitals
were then localized in the active orbital space. The orbitals were transformed
so as to have maximum overlap with two carbon sp® orbitals and hydrogen 1s
orbitals. The sp* orbitals were used with the fixed hybridization ratio of 2s to
2p orbitals (1:2) and with a fixed angle of 120° relative to the CO axis

Equilibrium _ Transition state
[ H\ " H 1
0.6748 /:—-———-o 03891 |, \L
L H L ~ =0
rH H, r " T
\ _ *
+0.3506 =0 + ; ==0 +0.1973 H+\ +0.0442 e
L Wt H -c==0 C==0
[ H_ H\ H H
-0.0657 ‘e==0 4+ c==o0 +0.0907 |4 ~0.0179 \
- N H-
H H L C===0 ] L te===0 ]
[ H, H_ [ # H
+0.0057 T==0 -0.0186 =0 +0.0036 | w, -00159 |,
| N W L “C==0 ] +E==0
r H r -
-0.0111 c==0 +0.2232 H/
L H Cex==0 J
H_ H, H ] M
-0.0036 C==0 + Cm==s0 +0.0544 |4t +0.0041 |
H‘ H C===0 C==0
+ +..

Fig. 6. The CASVB descriptions at the equilibrium and TS structures. The numerical
values are occupation numbers.
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throughout the reaction. The resulting orbitals are shown in Figs. 4 and 5.
All the orbitals are well localized on the atomic centers, except LMOs on the
carbon atom, which have a small contribution from the oxygen 2p orbital.

There are 20 linearly independent spin-paired functions corresponding to the
dimension of CAS(4,4), which are listed in Table 1. Structures (I) to (VII) are
classified as CH bond structures and the structures (VIII) to (X) as HH bond
structures. Structure (XI) is classified as neither of the above, since these
structures can be regarded both as structures polarized further from one of (II)
to (V) and (IX) to (X).

The CASVB wave functions obtained for the equilibrium and TS structures
are given in Fig. 6.

In the equilibrium structure, the main VB structure is the covalent CH bonds
structure (I) as expected. The second most important are those where one of
the CH bonds is connected with a covalent bond and the other with an ionic
bond made by electron transfer from the hydrogen atom to the carbon atom, (IT)
and (IV). In contrast, the contribution from the structures that describe elec-
tron transfer from the carbon atom to a hydrogen atom is small and negative.
The contribution from the HH bond structure (VIII) and ionic structures, (IX)
and (X), is very small. The total occupation number of CH bonds is 0.9654,
while that of HH bond is —0.0147. This indicates almost no bond formation
between two hydrogen atoms in the equilibrium structure.

In the TS structure, the main structure is still the covalent structure (I), al-
though the occupation number decreases. The structure (II), where the longer
CH bond is covalent and the shorter CH bond is ionic, is also important, but

)

Occupation Number
(-]
F-9

-3.0 -2.0 -1.0 0.0 1.0
IRC / bohr(amu)”2

Fig. 7. Changes in the occupation numbers of the covalent CH bonds (e), ionic CH bonds
(m), covalent HH bond (©), ionic HH bond (o), and the other (doubly ionic) (x) VB struc-
tures of H,CO along IRC. The origin of the horizontal axis corresponds to the TS and the
left end to the equilibrium structure of formaldehyde.
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their occupation numbers also decrease. One the other hand, the structure (IV),
where the shorter CH bond is covalent and the longer CH bond is ionic, is no
longer important. The total occupation number of CH bonds structures is
0.6893, which shows a decrease from the value in the equilibrium structure
0.9654, but it is still large. The total occupation number of HH bond struc-
tures is 0.2817. Much of it comes from the covalent contribution (VIII),
0.2232. The contribution from the CH bonds overwhelms the contribution
from the HH bond in the TS.

The occupation numbers of the covalent CH bonds, ionic CH bonds, covalent
HH bond, ionic HH bond, and the other (doubly ionic) structures are defined by

vl
ReovatenicH = n, Monic CcH = Z nS 3 (13)
s=n
nCovalent HH = n‘VIII ’ n’[onicHH = nIX + nX 4 (14)
and
Ppoupty pol. = Pxr - (15)

Using Eqgs. (13) and (14), we may further define the total occupation numbers of
the CH and HH bond structures,

Occupation Number
o
o+

0.0 G A*Gjyﬁé

-3.0 -2.0 -1.0 0.0 1.0
IRC / bohr(amu)'’?

Fig. 8. Changes in the occupation numbers of the total CH bonds (e), total HH bond (0),
and the other (doubly ionic) (x) VB structures of H,CO along the IRC.
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Fig. 9. The structure where the total occupation numbers of the CH bonds and HH bond
valence bond structures are equal. The hydrogen atoms not bonded to the carbon atom
represent the position at the TS.

Pen = Neovatent et T Monic cH » Ny = Negatent 5 Monic a - (16)

Fig. 7 shows the changes in the occupation numbers of the covalent CH
bonds, ionic CH bonds, covalent HH bond, ionic HH bond, and the other (dou-
bly ionic) structures along IRC. The origin of the horizontal axis corresponds
to TS and the left end of each curve to the equilibrium structure. The occupa-
tion numbers of CH and HH covalent bond structures change rapidly near TS
and the curves cross immediately after TS (0.1 bohr(amu)m), while the occupa-
tion numbers of CH and HH ionic bond structures change slowly.

Fig. 8 shows the changes in the total occupation numbers of the CH and HH
bond structures along the IRC. The crossing point is located after TS, 0.42
bohr(amu)"?. The structure at this point is given in Fig. 9. Compared to the
TS, the longer and shorter CH bonds have stretched by 0.14 and 0.06 A, respec-
tively, and the HH bond has become shorter by 0.18 A. These bond lengths
are 1.03, 1.62, and 1.80 times longer than the corresponding equilibrium CH
and HH bond distances. That point is the structure where the bonds switch; in
other words, the point is the transition state of chemical bond between the CH
bonds and HH bond.

The results here demonstrate the total occupation number defined in Eq. (16)
is a useful concept for studying quantitative description of chemical bonds at TS
and along reaction paths.
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3.2. Hydrogen exchange reactions H,+X — H+HX (X=F, Cl, Br, and I)

In the previous subsection, we applied the CASVB method to the unimolecu-
lar dissociation reaction H,CO — H, + CO, and examined how chemical bonds
and electronic structures are described along the chemical reaction path. Our
focus was on the chemical bond nature in the transition (TS) structure, that is,
which bonds are dominant in TS, the dissociating CH bonds or the forming HH
bond. The CASVB method shows that CH bonds are dominant in TS, based
on the contribution of the VB structure of each bond. This kind of question is
not easily answered using the CI picture with canonical molecular orbitals
(MOs), and hence this is an example that demonstrates CASVB as a useful tool
for analyzing electronic structures and chemical bond during chemical reactions.
Howeyver, in this reaction the dissociating and forming bonds are both of cova-
lent nature, that is, the bias of the charge is not so large, and thus the description
is relatively easy compared to the reaction including ionic bonds.

In the this subsection, we examine a series of reactions including ionic bonds,

H,+F — H+HF, (R1)
H, +Cl — H+ H(C, (R2)
H, + Br — H + HBr, R3)
H,+I —H+HIL (R4)

The reaction for fluorine (R1) is highly exothermic, while the reactions for
chlorine (R2), bromine (R3), and iodine (R4) are endothermic. The heats of
these reactions are 30.8, —1.2, —16.7, and —32.7 kcal/mol for reactions (R1),
(R2), (R3), and (R4), respectively. According to Hammond’s postulate, reac-
tion (R1) should have an early TS, and reactions (R2) and (R3) should have late
TSs. On the other hand, the electronegativity (in Pauling’s definition) for
hydrogen, fluorine, chlorine, bromine, and iodine are 2.2, 4.0, 3.2, 3.0, and 2.7,
respectively. This suggests that all the reactions (R1)-(R4) might have early
TSs, since halogen atoms tend to receive an electron and form the bond with a
hydrogen atom at early stage. What the electronic states are during these reac-
tions, and how the CASVB method describes the electronic structure, are our
interests in this subsection.

We first determined IRC for each reaction and then obtained the CASVB
functions along IRC.

The basis sets used in the reactions including F and Cl are the augmented
correlation consistent polarized valence double zeta (aug-cc-pVDZ) sets [16].
In the reactions including Br and I, the relativistic effective core potential (ECP)
due to Stevens et al. [17,18] and their associated basis sets were used for Br and
I, and the cc-pVDZ set for H. The basis sets of Br and I were augmented by
adding a d polarization function with an exponent of 0.389 (Br) / 0.266 (I) and
sp diffuse functions with an exponent 0.03574 (Br) / 0.03007 (I). The diffuse
p polarization function of the aug-cc-pVDZ set of H was omitted for consis-
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tency with the Br and I basis sets.

The active spaces were constructed by distributing three electrons in three
orbitals consisting of H;(1s), Hx(1s), and X(2po), i.e. CAS(3,3). The dimen-
sion of the CAS is eight. According to this CAS, eight linearly independent
VB structures,

Py, Pu, (@ — Pa)- oy H, -H, X, y

Py, Pu, OB - Px H, H, X, (I
Pu, Pu, OB P H, 'H, X, am
Pq, @ Py, Px (P - pa) PiA Hp -X, Iv)
Pu, @ P, Pu, OB H, H; "X, V)
Pu @ 0 Px0P H, H} X, VD)
P, Py Py IB H, H, X, vy

and
O, Pu, OB 9, H, H, 'X, (V)

were used to construct CASVB functions, where the normalization constants
and antisymmetrizers are omitted.

The contributions of the covalent HyHg bond, ionic HyHg bond, covalent
H;iX bond, ionic HgX bond, and ionic HaX bond are defined by

Peovatent v, Hy — T s PionicH,Hy = M + P amn
Peovatent Hyx = Mv » Mionic Hyx = v + Pyp, (18)
and

Prionica,x = Pvn + Py - (19)

Furthermore, the contributions of the total HyHy and HgX bond structures are
defined by the sums of the covalent structure (I)/(IV) and ionic structures
(ID/(V) and II)/(VI),

n’HAHB = Peovatent H,Hp + n’lonic H,Hp » nHBX = nCovalent HpX + n’[onic HgX - (20)
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Table 2
Occupation numbers of the VB structures in the products

(H+) HF (H+) HC1 (H+) HBr (H+) HI
P.I H-X dVv) 0.538 0.710 0.752 0.786
H H X ) —0.018 0.041 0.064 0.101
H H X VD 0.480 0.249 0.184 0.113

Let us first examine the electronic structure at the TS structure of the four re-
actions as well as those at the reactant and product structures.

The nonorthogonal LMOs were determined in the same manner as in the pre-
vious subsection. The atomic orbitals used for the determination are two 1s
orbitals of the hydrogen atoms and 2p(o) orbitals of the halogen atom. All the
overlaps between the atomic orbital (AO) and the nonorthogonal LMO are
greater than 0.9 (0.9004 at minimum). The molecular orbitals are therefore
well localized.

The reactant in all the reactions is the system consisting of a hydrogen mole-
cule and a halogen atom. Since the hydrogen molecule is expressed with VB
structures as

¥y, =0.889] 0y, 0y, (@ - Ba)/N2|+0.111[ gy 05 G+ 0, 0,08 ], 21)

Table 3
Occupation numbers of the VB structures at the TS

H+H+F H+H+Cl H+H+Cl H+H+Cl

H-H X @ 0.485 0.328 0.217 0.172
H* "H X () 0.053 0.059 0.043 0.034
H "H X (W) 0.017 ~0.022 -0.023 ~0.019
H H-X av) 0252 0.385 0514 0.591
H B X (V) -0.005 0.018 0.042 0.073
H H X (VD 0.147 0.155 0.142 0.100
H H X (VD) 0.006 0.013 0.011 0.010
o OO X (VID 0.045 0.064 0.053 0.039

HH bond 0.555 0.365 0.237 0.187

HX bond 0.394 0.558 0.698 0.764

Others 0.051 0.077 0.064 0.049
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the reactant is written as

¥ =0.889[(1)]+0.111{(II) + (1I1)] (22)

Reactant

in all the reactions.

On the other hand, the products are the systems consisting of a hydrogen
atom and a hydrogen halide. The VB structures are summarized in Table 2.
As mentioned before, the electronegativities of all the halogen atoms are larger
than that of the hydrogen atom. In particular, the difference between the elec-
tronegativity of F and H atoms, 4.0 and 2.2, respectively, is rather large.
Hence, the bond nature of the HF molecule is thought to be ionic. However,
the covalent nature is found to be dominant in all the hydrogen halide in the
CASVB picture, even in the case of HF.

Table 3 shows the VB structure at the TSs of H,+X — H+HX. Just as for
the equilibrium structures, the covalent VB structures are dominant: the struc-
tures are well described by the superposition of the HH and HX covalent struc-
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Fig. 10. Changes in the occupation numbers of the total HH bond (), total HX bond (0),
and the other (x) VB structures along IRC. The origin of the horizontal axis corresponds
to the TS.
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ture with small H'H and H"X" ionic contributions.

Using Eq. (20), these structures are further classified as the HH and HX
bonds, as shown in Table 3. For X=F, the contribution of the HH bond
(55.5%) is larger than that of the HX bond (39.4%). This relation is reversed
for X=C], Br, and I. The contribution of the HH bond increases as the halogen
atom becomes heavier (55.8 (Cl), 69.8 (Br), and 76.4% (I)). This means that
the TS of chemical bonds (that is, the point where the occupation numbers of the
two chemical bonds are equal) defined in the previous subsection is placed in
the reactant side in the X=F case and in the product side for the case of X=ClI,
and it shifts more to the product side as the halogen atom becomes heavier.

We now examine the bond nature during the reactions.

Fig. 10 shows the changes in the total occupation number of the HH and HX
bond structures along the IRC. Similarly to the previous reaction, the occupa-
tion numbers of the HH and HX bond structures change rapidly and the curves
cross near the TS. The crossing points are located at 0.07, —0.11, —0.25, and
—0.33 bohr(amu)”2 for X=F, Cl, Br, and I, respectively, where a negative sign
means the crossing point is located before the TS and a positive sign after the
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Fig. 11. Changes in the occupation numbers of the covalent HH bond (), ionic HH bond
(m), covalent HX bond (©), ionic HX bond (D), and the other (x) VB structures along the
IRC.
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TS. We can see the trend that the crossing point shifts from the reactant side
to the product side as the halogen atom gets heavier. (We can also consider
that the TS shifts from the product side to reactant side if we take the crossing
point as the origin.)

The changes in the contents of the HH and HX bonds are plotted in Fig. 11.
As expected in these reactions including ionic bonds, the contribution of ionic
bond increases as that of the covalent bond increases. This feature contrasts
with that in the dissociation reaction of H,CO, where the ionic bonds do not
change so much. However, the crossing point of HH and HX covalent bonds
are still close to that of the HH and HX bonds in Fig. 10. Thus, also in these
reactions, we can say that the covalent bonds are mainly responsible for deter-
mining the crossing points.

To analyze the crossing points, that is, the TS structures of the HH and HX
bonds, we further examine the geometrical changes of the HH and HX bonds
and the dipole moment of the systems.

Fig. 12 presents the difference of the HH and HX bond lengths from the
equilibrium lengths along the IRC. It is rather difficult to determine the point

H2+F~>H+HF H2+CI—>H+HCI
14 1.4
% 1.2 s 12
s 10 & 10
£ £z /....--"
@ ca T =) 0.8 g
c - = -
2 08 . s o 06 T -
= y L po
a . e s - -
5 04 = - c 04 \ -4
A o /
Y \\ @ 02 > 4
‘ s 7N
- - - -
0.0 - e =T . 0.0 ———oc—o—0—= e . .
-1.0 05 0.0 0.5 1.0 1.0 05 0.0 0.5 1.0
IRC / bohr(amu)''? IRC / bohr{amu)''?
H2+Br->H+HBr H2+l—>H+HI
14 14
. 12 .12 |
= o -
& 10 —>= & 10 o
£ 08 I, £ 08
=] o N
& 06 - S 06 .-
; . o ‘;
c 04 . c 04
o “ / Q
® 02 5 & Y
00 - —o= e e e e 00—
1.0 05 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
IRC / bohr(amu)''? IRC / bohr(amu)''?

Fig. 12. Differences of the HH (o) and HX (e) bond lengths from the equilibrium lengths
along the IRC.
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Fig. 13. Changes in dipole moment of the systems along the IRC.

that characterizes the TS. However, for qualitative discussion, the crossing
points of the curves are enough to be the characterizing points: they are located
at 0.20 (X=F), —0.02 (Cl), —0.14 (Br), and ~0.25 bohr(amu)"* (I). The trend in
these positions is similar to the crossing points of the HH and HX bonds. The
same can be seen in the changes in dipole moment of the systems plotted in Fig.
13. The curves are drawn so that either dipole moment value for HH+X or
H+H™X® could be smooth. The crossing points are considered the points
where the charge transfer from H to X occurs (in other words, the points where
the electronic structure changes drastically). The points are located at 0.19
(X=F), 0.04 (C1), —0.04 (Br), and —0.13 bohr(amu)"” (I).

We have now another TS, the TS of the HH and HX bonds, besides the real
TS. What is the significance of this TS?

If we measure the crossing points in Figs. 12 and 13 from the crossing points
of the HH and HX bonds, the values become 0.13 (F), 0.09 (Cl), 0.11 (Br), and
0.08 (I) for geometrical change, and 0.12 (F), 0.15 (Cl), 0.21 (Br), and 0.20 (I)
for dipole moment. The ranges of the values are 0.05 for the former numbers
and 0.09 for the latter numbers. These are rather small compared to those for
the numbers measured from the real TS: 0.45 and 0.32. We may therefore say
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that the TS of chemical bonds reflects the geometrical and electronic structure
information more than the real TS. If we consider Hammond’s postulate,
probably we should not say that the TS of chemical bonds are shifted from the
real TS, but instead say that the real TS is shifted from the TS of chemical bonds
due to the systematic changes in heat of the reaction.

4. CONCLUDING REMARKS

In this article, we investigated the nature of bonds at TS and during the
chemical reaction using the CASVB method with nonorthogonal LMOs. The
nature of bond dissociation and formation can be viewed quantitatively by the
use of the occupation number of the VB structure, which is defined by the
weight of the spin-paired function of VB structure. The results in the previous
section demonstrate that the occupation number is a useful concept for studying
quantitative descriptions of chemical bonds at TS and along reaction paths.
This analysis is applicable to reactions involving excited states as well as just
the ground state. We believe that the CASVB occupation number analysis is a
useful tool for understanding chemical reaction mechanisms.

ACKNOWLEDGMENT

The present research is supported in part by a Grant-in-Aid for Scientific Re-
search on Priority Areas “Molecular Physical Chemistry” from the Ministry of
Education, Culture, and Sports, Science and Technology of Japan. One of the
authors (HN) acknowledges a Grant-in-Aid for Scientific Research from the
Japan Society for the Promotion of Science. The CASSCF and CASVB wave
functions were obtained by a modified version of HONDO98 (Ref. 19). The
orbital contour maps were plotted using a PLTORB program in GAMESS (Ref.
20).

REFERENCES

[1] K. Hirao, H. Nakano, K. Nakayama, and M. Dupuis, J. Chem. Phys. 105
(1996) 9227.

[2] K. Hirao, H. Nakano, and K. Nakayama, J. Chem. Phys. 107 (1997) 9966.

[3]1 K. Nakayama, H. Nakano, and K. Hirao, Int. J. Quantum Chem. 66 (1998)
157.

[4] Y. Kawashima, K. Nakayama, H. Nakano, and K. Hirao, Chem. Phys.
Lett. 267 (1997) 82.

[5] H. Nakano, K. Nakayama, and K. Hirao, J. Mol. Struct. (Theochem)
461-462 (1999) 55.



(6]
(7]
[8]

(91
[10]

(11}
[12]

[13]

(14]

[15]

[16]
(17]
(18]

[19]

[20]

77

K. Ruedenberg, M.W. Schmidt, M.M. Gilbert, and S.T. Elbert, Chem.
Phys. 71 (1982) 41.

K. Ruedenberg, M.W. Schmidt, and M.M. Gilbert, Chem. Phys. 71 (1982)
51.

K. Ruedenberg, M.W. Schmidt, M.M. Gilbert, and S.T. Elbert, Chem.
Phys. 71 (1982) 65.

J.M. Foster and S.F. Boys, Rev. Mod. Phys. 32 (1960) 300.

T. Thorsteinsson, D.L. Cooper, J. Gerratt, P.B. Karadakov, and M.
Raimondi, Theor. Chim. Acta 93 (1996) 343.

T. Thorsteinsson and D.L. Cooper, Theor. Chim. Acta 94 (1996) 233.

T. Thorsteinsson, D.L. Cooper, J. Gerratt, and M. Raimondi, Theor. Chim.
Acta 95 (1997) 131.

T. Thorsteinsson, D.L. Cooper, J. Gerratt, and M. Raimondi, in: R.
McWeeny, J. Maruani, Y.G. Smeyers, and S. Wilson (Eds.), Quantum
Systems in Chemistry and Physics: Trends in Methods and Applications,
Kluwer, Dordrecht, 1997.

D.L. Cooper, T. Thorsteinsson, and J. Gerratt, Adv. Quantum Chem. 32
(1998) 51.

T. Thorsteinsson and D.L. Cooper, in: A. Herdndez-Laguna, J. Maruani,
R. McWeeny, and S. Wilson (Eds.), Quantum Systems in Chemistry and
Physics. Volume 1: Basic problems and models systems, Kluwer,
Dordrecht, 2000.

T.H. Dunning, Jr. J. Chem. Phys. 90 (1989) 1007.

W.J. Stevens, H. Basch, and M. Krauss, J. Chem. Phys. 81 (1984) 6026.
W.J. Stevens, M. Krauss, H. Basch, and P.G. Jasien, Can. J. Chem. 70
(1992) 612.

M. Dupuis, S. Chin, and A. Marquez, in: G.L. Malli (Ed.), Relativistic
and Electron Correlation Effects in Molecules and Clusters, NATO ASI
Series, Plenum, New York, 1992,

M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H.
Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M.
Dupuis, and J.A. Montgomery, J. Comput. Chem. 14 (1993) 1347.



This Page Intentionally Left Blank



D.L. Cooper (Editor)

Valence Bond Theory

Theoretical and Computational Chemistry, Vol. 10 79
© 2002 Elsevier Science B.V. All rights reserved

Chapter 4

TURTLE - A gradient VBSCF Program
Theory and Studies of Aromaticity

Joop H. van Lenthe, Fokke Dijkstra, Remco W. A. Havenith

Theoretical Chemistry Group, Debye Institute, Utrecht University,
Padualaan 14, 3584 CH Utrecht, The Netherlands

The Ab Initio Valence Bond program TURTLE has been under development
for about 12 years and is now becoming useful for the non-specialist
computational chemist as is exemplified by its incorporation in the GAMESS-
UK program. We describe here the principles of the matrix evaluation and
orbital optimisation algorithms and the extensions required to use the Valence
Bond wavefunctions in analytical (nuclear) gradient calculations. For the
applications, the emphasis is on the selective use of restrictions on the orbitals in
the Valence Bond wavefunctions, to investigate chemical concepts, in particular
resonance in aromatic systems.

1. INTRODUCTION

Valence Bond theory has always struck a sympathetic chord in chemist's
minds, because it can be linked so closely to the familiar Lewis structure. A
bond is immediately translated in the wavefunction by two non-orthogonal
orbitals on neighbouring atoms that are singlet coupled. An ionic structure may
contain an atomic orbital, that is occupied twice, or alternatively two orbitals on
the same atom. So it is simply possible to translate the assumed concept of the
bonding in a molecule into a (small) set of structures. Alternatively, if the nature
of the bonding is in question, the relative importance of the different structures
may give insight. Vital for an unbiased wavefunction is the ability to optimise
the wavefunction, both its orbitals and its structure coefficients. An efficient
way to perform such an optimisation is implemented in the spin-coupled
program and in its later incarnation the CASVB method [1,2]. These methods
usually consider all spin-couplings and often a single set of singly occupied
optimised orbitals.

In the development of the TURTLE program [3], we started by considering
a multi-structure Valence Bond wavefunction and added the capability to
optimise the orbitals. We tried to avoid putting restrictions on the way the
wavefunction is built and to allow great flexibility in the choice of orbitals. For
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instance if covalent and ionic structures are employed, the orbitals used in these
structures may be identical, which just mimics the effect of orbital
optimisations. Also all orbitals in an ionic structure, both doubly and singly
occupied ones, may be chosen to be different from those in the covalent
structure. This yields a very compact and accurate wavefunction (the Breathing
Orbital Valence Bond method) [4,5] at the cost of a troublesome orbital
optimisation, due to the near identity of the orbital spaces. The orbitals used
may be fully optimised as in the spin-coupled approach, but they may also be
restricted to a subspace of the full orbital space, e.g. just the one atom. This
enhances the interpretability of the wavefunction considerably. Recently we
added gradient capabilities to the program and integrated it into the GAMESS-
UK [6] program.

We will describe the main features of our program and give examples of the
use of the code for studying the aromaticity in various molecules.

2. WAVEFUNCTION OPTIMISATION

Qur wavefunction is build as a linear combination of structures

v=YcCo,
> 0

Each structure is a spin-adapted linear combination of determinants. Both
Rumer diagrams and Branching Diagrams may be chosen. If required, even
individual determinants may be employed as building blocks. The coefficients
in Eq. (1) are usually determined by solving the corresponding generalised
eigenvalue problem

(H-ES)C=0 2)
Alternatively, they may be fixed from the outset. To the structures, weights

can be attributed, which add up to one, using a formula given by Chirgwin and
Coulson [7].

W, = Zcichij (3)

2.1 Orbital Optimisation
The orbital optimisation is based on the Generalised Brillouin Theorem [8]
as extended to non-orthogonal wavefunctions [9,10]:
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(W, |H - E,|¥,;)=0 @

where Wj; is the singly excited state, a Brillouin state, obtained by applying the
unnormalised excitation operator C;_;; to the wavefunction:
lPij =C,, jTO (5)
The excitation operator does not have to adhere to the unitary condition, as
is the case for orthogonal orbitals. Each Brillouin matrix element (Eq. (4))
represents the stationary condition for the mixing of orbitals y; and y; according
to ¥, >y, +oy ;+ The wavefunction consisting of Wy and all singly excited
states

¥ =5, + Y b, (6)

ij

is obtained by solving the corresponding generalised eigenvalue problem, the
Brillouin state interaction problem. One can employ the coefficients b; to
determine improved orbitals according to

v, oW, +by, (7)

For orthogonal orbitals this procedure is often called the SuperCI method.

When the new orbitals are determined, the Valence Bond function is re-
determined using Eq. (2), and the procedure is repeated until convergence is
obtained, i.e. all b;'s in Eq. (6) are zero and the Generalised Brillouin theorem
(Eq. (4)) is satisfied.

The usual convergence acceleration/stabilisation tools may be employed in
this orbital optimisation. For instance, we have implemented level shifting and
DIIS [11].

The SuperClI itself is usually quite stable, but involves solving a non-
orthogonal CI of a considerable dimension, with each Brillouin state containing
the same number of determinants as the Valence Bond wavefunction, which is
rather time consuming. The SuperCI matrix can be approximated by its first row
(the Brillouin theorem elements) and the diagonal at a considerable time saving,.
Then the Brillouin state coefficients b are estimated following

(¥, |H—E0|‘PU>
b. =— 8
N CATEAT ®
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which is the non-orthogonal equivalent of the first-order Raleigh-Schrédinger
perturbation expression [12]. This approach produces, for not so complicated
wavefunctions, acceptable convergence behaviour, especially when
convergence aids like DIIS are invoked.

3. EXPRESSIONS FOR THE ENERGY AND ITS DERIVATIVES
[13-15]

The wavefunction consists of a linear combination of structures, which
themselves are spin-adapted linear combinations of determinants:

Y=Y CA, 9)

According to Léwdin [16] the interaction between two determinants A, and A,
is:

<AP|I:I|A > Zh S0+ Y Lkt — (5| te) } S+ (10)

i<j.k<l

The overlap is obtained by expanding along an arbitrary column (k):
(A,]8,)=181= X 5,5 (11)

In these equations A and Sj; are the one-electron matrix elements for orbital i
and k (¢,(Dr(D)Y, (1) and (9,(1)|¢,(1)). The <ijlki> are the two-electron

integrals <¢[(1)¢j(2)|1/ .10, (D9,(2)). S4Y and S&*Y are the first and second

order cofactors of the overlap matrix, which are signed minors of it. The orbitals
in Egs. (10) and (11) are the orbitals occupied in the determinants A, and A,. So
the indices 7 and j refer to the occupied orbitals in A,, and the indices & and /to
occupied orbitals in A,. S is the overlap matrix between the occupied orbitals of
A, and A,. More about cofactors and adjugates can be found in for example a
book by Aitken [17]. The approach used to obtain the various cofactors will be
discussed in the next paragraph.
Assuming a normalised wavefunction, we can now write the energy as

<‘P’H|‘P> 2 q(Zh,ks“ku 3 {(|&t) — (i ik }s“fk”J (12)

i<j k<l
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By rearranging the summations and realising that S.¥ and S%*" are sub-

determinants of the determinant representing the overlap between A, and A, and
that they are zero if the orbitals i;j and %,/ do not appear in the respective
determinants, we obtain

- (o)

= (Zhik 228+ Y k) - by, XSy ""”C,,CqJ
ik P q P g

i<j k<l

(13)

or

E=(¥Y[HY) (Zh,kd,ﬁ Y {jlkt) - zj[lk)}Dijk,) (14)

i<jk<l

with the one and two electron reduced density matrices
- (k)
dy = 2 Z Spq Cqu

Dy, ZZS(”“)C c (15)

This is of course the familiar expression from orthogonal MO theories. The
complexity due to the non-orthogonality is now hidden in the cofactors in the
reduced density matrices.

3.1 Hellmann-Feynman theorem

For exact wavefunctions, the Hellmann-Feynman [18,19] theorem states
that the derivative of the energy with respect to a nuclear co-ordinate x equals
the expectation value of the derivative of the Hamiltonian.

dE oH

— =(¥Y|—¥ 16
When the wavefunction is expanded, using expansion parameters c, this
theorem still holds if dE/dc=0, or when dc/ox=0. The first is the case for
completely optimised wavefunctions and the second for wavefunctions where

some, or all, of the coefficients are frozen. This can be seen when we write the
derivative of E with respect to x as a sum of two terms:
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dE(x) _ JE(x;c) N JE(x;c) de
dx ox dc  ox

(17)

The first term contains the direct dependence on x, the second the dependence
on x through ¢. When dE/dc=0 (optimised), or dc/dx=0 (frozen coefficients) the
second part disappears:

dE(x) _ JE(x;c)
dx o«

(18)

Therefore, the dependence on the coefficients does not enter the gradient
expression; not for fixed orbitals, which is the classical Valence Bond approach
and not for optimised orbitals, irrespective of whether they are completely
optimised or if they are restricted to extend only over the atomic orbitals of one
atom. If the wavefunction used in the orbital optimisation differs, additional
work is required. This would apply to a multi-reference singles and doubles VB
(cf. [20,21]). Then we would require a yet unimplemented coupled-VBSCF
procedure. Note that the option to fix the orbitals is not available in orthogonal
(MO) methods, due to the orthonormality restriction.

3.2 Gradient expression
The only restriction for the gradient evaluation is that the wavefunction has
to be normalised, i.e.

(P|¥)=1 or [(¥|¥)-1=0] (19)
To take this restriction into account, the Lagrange multiplier formalism is

employed. We devise a Lagrangian by adding the restriction multiplied by a
Lagrange multiplier A.

L=E-A[S-1]=(¥|A¥)- A(¥¥)-1] (20)

The Lagrange multiplier A is determined by requiring that the derivatives of
the Lagrangian with respect to all optimised variables like the structure
coefficients Cy are zero:

ac =3, {EC.C].HU—A{ZCCS ﬂzzzc,.{ﬂ,k—/ls,.k}=o (21)
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This is clearly equivalent to the secular equations

Z C{H, - ES,}=0 (22)

Thus A equals the energy E. Similarly one can derive the expression involving
the orbital coefficients, which involves the generalised Brillouin theorem
(Eq. (4)) which again yields A=E.

The required energy derivative is

JE_JdL_J

=5 = <‘P|H|‘I’> (‘Pl P) (23)

Another way to see that E is the required Lagrange multiplier is by taking
the derivative of the energy expression for an unnormalised wavefunction:

) iy g 0
3wy (YIS CFIAN) -~ (YY) 2 ()
dx (YY) (¥]¥)

(24

Now add normalisation of ¥ so that ('¥|'¥) =1, and use:
E=(¥YHY¥) (25)
and obtain:

JE _Jd

= 8x<‘P‘H“P> (‘PI ¥) (26)

Eq. (26) gives the final expression for the derivative of the energy. The
derivatives of the energy (Eq. (14)) and the norm of the wavefunction have to be
evaluated, using partial differentiation, since both one- and two-electron
integrals and the density matrices (through the cofactors) may change with the
geometry:

acqu\m:(zah,k d+ Y {a(tflkl)_é’(ijllk)}l)w)

o > o o

i<jk<l

(27)

(thk EW + 2 {Ulkl Ullk} Dykl)

i<j,k<l
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This equation has two parts. The first part contains derivatives of the one
and two electron integrals. These are supplied by any standard gradient package
and also appear in gradient expressions for orthogonal MO methods. The other
part contains the derivatives of the density matrices, more specifically the
derivatives of the first and second order cofactors. These are absent in the
orthogonal methods by virtue of the fact that all cofactors are either 1 or 0. The
orthonormality of the wavefunction is handled by the orthonormality
restrictions, which in their turn give rise to Lagrange multipliers. We will gather
all terms involving derivatives of the overlap in the derivatives expression into a
matrix L, which can take the place of the Lagrange multiplier matrix of MO
based gradient packages.

3.3 Density matrices and Cofactors

As a cofactor is itself a determinant, we may just consider the determinant
of an overlap matrix. A determinant can be expressed as a sum of products of its
matrix elements. The derivative of a product of matrix elements is obtained by
taking the derivative of one matrix element and multiplying this by the product
of the other matrix elements. This has to be done for all the matrix elements in
the product, and the results have to be added. Another way to look at a
determinant is by expanding it in its first order cofactors (cf. Eq. (11)) :

N
=Y s, SO (28
- ik

Now the determinant is a linear combination of matrix elements of a row (or
column) times the corresponding cofactors. The weight of a certain matrix
element in the determinant is given by its first order cofactor. The derivative
must be the sum of the derivatives of the matrix elements times their cofactors,
like shown in the next equation:

dls| ds
IO § B giro) 29
— D . (29)

rs
Because cofactors are sub-determinants, one can immediately write down
their derivatives. The first order cofactors of first order cofactors are second

order cofactors, and first order cofactors of second order cofactors introduce
third order cofactors.
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s AT
=(si Dors Glisrkas)
(szgn); -
dSE+h S B 0
4 = (sign)z d_l’qs(w,r,k,l,s)
* o dx

In these equations there is also a sign involved, which depends on the
relative positions of the original indices 7,7,k and / with respect to » and s. The
first indices refer to the original overlap matrix, while r and s should refer to the
matrix where row i (and ;) and column £ (and /) have been removed. To keep
the equations simple we will omit this sign in our equations’.

Thus the derivatives of the density matrix elements are
;k dS U kos) dsm
X0 0 R O
tjkl_zdsrszzls(urkl:)cc 2
ijrkis

€19

Thus, we now need also a third order reduced density matrix, which involves
the corresponding third order cofactors.

Eq. (28) can now be used to derive the expression for the derivative of the
norm of the wavefunction, which is also required in Eq. (26).
I(F]Y) dIS
At/ CC

Pqi E Z 2 CquS;'qs) —Z%d” (32)

rs

Combining Egs. (27), (31) and (32) the final expression for the derivative of
the energy with respect to say a geometrical parameter is

NVIHY) (v Aij[kl)  Aij|ik) %w

1 The sign depends on the relative position of the rows and the columns, which are removed.
For instance, if r<i, the sign is unchanged when removing #, but if » lies beyond i the sign
should reflect, that 7 actually should be moved 1 place back and therefore a —1 is produced
cf. [22].



88
with

L, =E,d; - Zhrsdrisk - Z{(rJlSl> - (rj|ls>}Drjislk (34)

r<j,s<l

This expression is very similar to those in the normal orthogonal case. We
may therefore use any general gradient package. Our VB program generates the
density matrices and the matrix L, which is used instead of the Lagrange
multiplier matrix of for instance a MCSCF function.

3.4 Cofactors [23,24]

For the calculation of cofactors we use algorithms based on work by
Lowdin [16], and Prosser and Hagstrom [25,26]. An overview of the theory of
determinants, cofactors, adjugates and compound matrices can be found in a
book by Aitken [17]. The symmetry and possible orthogonality in the orbital
spaces give rise to a block-structure in the overlap matrices. This structure is
exploited [22,27] to minimise the size of the matrices in the L-d-R
decomposition, described below, an n® process for each matrix.

The calculation of the first order cofactors is simplified by performing an
L-d-R decomposition of the overlap matrix. L and R are lower and upper
diagonal matrices respectively. They have ones on the diagonal and therefore
their determinant is one as well. L and R are chosen in such a way, that when S
is pre-multiplied by L and post-multiplied by R the result is a diagonal matrix d.

d=L-S-R
ILi=[R|=1 35)
S=L"-d-R"

Because the determinants of L and R are one, the determinant of S equals
the determinant of d.

'Sl = |d| = Hdii (36)

Now the adjugate matrix of S, which contains the first order cofactors can be
calculated using [17] and Eq. (38)

adj(S) = adj(L" -d-R™) = adj(R™)- adj(d) - adj(L™") = R - adj(d) - L (37)
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The nullity of the overlap-matrix S, is its dimension minus its rank, so the
nullity of S corresponds to the number of zero diagonal elements in d. Nullity
above 0, implies a singular S-matrix. The algorithm depends on the nullity.

3.4.1 Nullity 0

Using the fact that the inverse of a diagonal matrix is a diagonal matrix with
inverse elements, and that the adjugate of a matrix is directly related to its
inverse

adj(d)=|d|.d™ (38)

the complete first order cofactor matrix can be calculated using Eq. (37) at a
cost of ~1® operations per overlap matrix, where # is the number of electrons.
For the higher order cofactors we use the Jacobi ratio theorem to express higher
order adjugates in terms of the compound matrices of the first order adjugate

adji®(A) = Al (adj(A))* (39)

The £ order compound matrix B® is a matrix with the £ order minors (™
order sub-determinants) as elements. So the £™ order adjugate can be expressed
in terms of the ™ order compound matrix of the first order adjugate.

The 2™ order cofactors cost 2 multiplications each, at a total cost of 2.n*, no
more than the cost of multiplying them by the two-electron integrals. Similarly,
3" order cofactors take 6.#° in total.

3.4.2 Nullity 1
Now the first order adjugate of the matrix d contains only 1 nonzero

element, simplifying the application of Eq. (37). The Jacobi ratio theorem
cannot be used straightaway for the higher order cofactors, when the overlap
matrix is singular, since its determinant is zero. However, we can make use of
the fact that determinants and thus cofactors, which are sub-determinants, are
linear in their elements. If we change a matrix element of S as [13,28]

S, = S, tt (40)
then the determinant of S changes as:
IS(2)| = |S] + 1S (41)

The changes in the cofactors are similar.
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S’ ()" =8 + (sign)SE-rHo
S/(t)(i,j,l,m) - S(i,j,l,rn) + (Sl-gn)ts(i.j,p.l,m,q) (42)

S/(t)(i,j,k,l.m,n) — S(i,j,k,l.m,n) + (Sign)tS(i,j,k,p,l,m,n,q)

This procedure can be used to eliminate the singularities by changing the
zero (diagonal) element of d after an L-d-R decomposition. The sign in these
equations depends, like in the derivation of the derivatives of cofactors, on the
ordering of p and g with respect to ij,k,/,m and n. However, in a standard L-d-R
decomposition the singularity is moved to the last position of d and the sign is
just plus.

To obtain the n™ order cofactors for a singular matrix, with nullity 1 we
have to interpolate between two values of ¢, i.e. = +1 and 7= -1. The n™ order
cofactors of S’ for =1 and =-1 are added to obtain the n™ order cofactors of S

o (8) = a5 )+ adf (5 -1) .

3.4.3 Nullity 2
When the nullity equals 2, all first order cofactors are eliminated. For the

higher order adjugate matrices, two parameters have to be introduced and we
need four points to interpolate and obtain

1

adj”(S) = ——[ (44)

adj™(S”(1,1)) + adj ™ (S"(1,-1)) J
4

+adj™ (S”(-1,1)) + adj™ (8" (~1,-1))

3.4.4 Nullity k

When the nullity is k& there are also k parameters. The interpolated
expression for the adjugate has now 2* terms and we have to evaluate
determinants of order n, where n is the order of the adjugates we require. When
n<k all cofactors are zero.

A special case is when k& equals n, i.e. the nullity equals the order of the
adjugates. Then one can extend an algorithm by Prosser and Hagstrom [25,26].

Writing S as L™-d-R™ the adjugate of S is

adj™(8) = adj" (L -d-R™)

45
= adj(R™)- adj(d)- adj”(L™") @



91

The determinants of L and R are one, and we can introduce the n'™ order
compound matrices of R and L.

adj™(R™)-adj"(d)- adj” (L") =R"™ - adj(d) - L™ (46)

The nullity equals #, and therefore the n™ order adjugate of d has only one
non-zero element. Now only one row of R® and one column of L* remain in
the product, and the #»™ order adjugate of S reduces to the product of this row
and column multiplied by the only element of the »™ order adjugate of d.

4. PROGRAM

The formalisms derived above were implemented in the 45 Initio Valence
Bond program TURTLE [3]. The logo for the program is shown in Fig. 1. This
is the logo for the parallel version, as is obvious from the number of turtles
depicted.

Currently the program has been parallellised using MPI[29,30], following
the scheme in Fig. 2. This implies parallellising over 99% of the program, since
contrary to MO programs, the matrix elements, both those needed when
calculating the wavefunction and those required in the SuperCI, dominate
completely. In the present implementation, a speedup of 54 is obtained when
using 64 processors[31]. An implementation using Global Arrays[32-34] is in
progress. In this implementation, the integral transformation and all calculations
of density matrices are parallellised.

t t 1
t t 1
tttt u u rrrrr ttet 1 eee
t u u r r t 1 eeeee
t t u u T t t 1 1 e
ttt uu T ttt 111 eee
-—=- ———— NNy - -———- N
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-——— e () () ALY (L))
(D) (L)) (L) () (L)) ()
-———- - 17 17 17y /717 /717

Fig. 1. TURTLE logo. The logo was originally developed by J. Verbeek.
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<®i|H| P> <@i[H| D> <®j|H|D>
orbital . . . . . .
diagonalise diagonalise |e ---» diagonalise
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<‘[’ij|H|‘*’k|> <‘*’ij|H|‘Pk|> <‘{"ij|H|‘Pk|>
diagonalise diagonalise je ---ml diagonalise
change
orbitals
converged? n

Fig. 2. The structure of the parallellised version of TURTLE.

S. APPLICATIONS

The concept of aromaticity has been intriguing chemists for years. An
overview of the discussion about aromaticity and the various experimentally
measurable effects can be found in textbooks as Garratt’s [35], a paper by Von
Schleyer and Jiao [36], and in a review by Wiberg [37].

There is still much dispute about what aromaticity really is. As a
consequence of induced ring currents in aromatic m-systems [38,39] the
magnetic properties of aromatic compounds differ with respect to those of non-
conjugated alkenes. Hence, magnetic properties [36] (large anisotropy of the
magnetic susceptibility [Ay], exalted magnetic susceptibility [A], deshielded
ring protons and negative Nucleus Independent Chemical Shift (NICS) [40]) are
also frequently used as aromaticity criteria. There are many other criteria, for
instance based on geometric criteria [41-43]. The anomalous magnetic
properties and bond equalisation all result from the cyclic electron
delocalisation, with which aromaticity is associated.
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The theoretical models start with Kekulé’s [44] description of benzene, as
having two structures. Later Hiickel [45,46] discovered his [4n+2] and [4n]
rules, and was able to account for the stability of benzene ([4n+2]) and the
instability of cyclobutadiene and cyclo-octatetraene (both [4n]). The [4n+2]
compounds were called aromatic after benzene, while the [4n] compounds were
given the designation anti-aromatic.

A natural way to study aromaticity would be to make use of the concept of
two structures, as introduced by Kekulé. The first to use this view were Pauling
and Wheland [47]. They used an approximate form of the valence bond (VB)
method developed by Heitler and London [48], for describing the aromaticity of
benzene.

Classical VB calculations using fixed orbitals and containing all possible
covalent and ionic structures for the -system were done by Norbeck and Gallup
[49] and by Tantardini ef al. [50]. They both used c-orbitals from an SCF
calculation. The resonance energy used by them is the energy difference
between benzene (described with all the structures) and 1,3,5-cyclohexatriene
(described with a subset of structures) at a certain geometry. In these
calculations, high resonance energies of -61.4 and -67.4 kcal/mol are obtained
for benzene.

More recently, Mo and Wu [51] used this type of description for benzene
and cyclobutadiene as well. They also optimised the geometries of these
molecules and of the ones with localised bonds. In their calculation of
resonance- and stabilisation energies, they took another set of structures for the
description of the cyclohexatriene, which leads again to a different definition of
the resonance energy.

The first calculations on benzene using optimised orbitals were done by
Cooper et al. [52], using their spin-coupled VB method [20]. A review [53] has
appeared with an overview of their work on aromatic and anti-aromatic
compounds.

Resonating Generalised Valence Bond (GVB) calculations were performed
on cyclobutadiene by Voter and Goddard [54]. They find a resonance energy of
-22 kcal/mol for this molecule. According to them its geometry cannot easily be
predicted, and is determined by the interaction between resonance and bond
strain,

In the last 15 years new theories about aromaticity appeared. Since the
discovery of the Hiickel rules, aromaticity was considered as an effect of the
interacting 7-electrons. Shaik, Hiberty and co-workers [55-61] challenged that
view, and stated that the 7-system of benzene favours a distorted geometry with
localised bonds, and that the o-system forces the molecule to be symmetric.
Glendening et al. [62] on the other hand conclude from their calculations on
benzene with localised bonds that the interaction between the two Kekulé
structures is necessary for the molecule to have a symmetric geometry.
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In classical Valence Bond theory, a bond is simply defined as a singlet
coupled orbital (electron) pair. Thus, a single bond is obtained using;:

(Bond)n = (|¢1$2| - |$1¢2 I)/‘/5 =(12) 47

Then a total wavefunction is obtained by multiplying these units together
and proper antisymmetrisation, thus

¥ = (12)(34)(56)(78)--- (48)

This resembles the GVB picture of chemical bonding as promoted by
Goddard et al. [63]. However, in contrast to this, here we have no orthogonality
imposed and the number of structures is, in principle, unlimited.

Ionic structures are most easily represented, as are lone pairs, by a doubly
occupied orbital or, by two orbitals on one atom located in the same region [4],
which is a more balanced picture. Finally, not all bonds have to be designated
explicitly. Instead, one might define an orthogonal core, which contains these
doubly occupied orbitals.

Thus, the simplest wavefunction describing say three bonds using the
Valence Bond model in addition to an orthogonal core is given by

¥ = |(core)(12)(34)(56)| (49)

The wavefunction in Eq. (49) could be the wavefunction for a simple
molecule, allowing for three bond dissociating, or it could be one of the
structures of benzene. The wavefunction for benzene, containing two Kekulé
structures for the m-system, is pictorially given in Fig. 3 and in formula by :

¥ = ¢[(0.,, )12)(34)(56)| + ¢;(0.,,. J(23)(45)(61) (50)
The spin-space for the m-space of benzene is completed by adding the three
Dewar structures shown in Fig. 4.

The wavefunction in Eq. (50) does describe the resonance between the two
Kekulé structures through the interaction between the two structures.

Fig. 3. The two Kekulé structures of benzene
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Thus one can study the ‘hypothetical’ situation without resonance by just
including one of the structures in the wavefunction, so as to assess the
importance of resonance.

There is still freedom in the choice of “atomic” orbitals used in Eq. (50). For
instance, one can use fixed atomic orbitals, which eliminates the (sometimes
costly) orbital optimisation. One can also use fully optimised, potentially
delocalised orbitals in the spin-coupled / Coulson-Fischer sense. Finally, one
can use “real atomic” orbitals by limiting each orbital to its own atom. This
often gives a clearer physical picture of chemical bonding. It generates for
instance optimal hybrids [9,10].

Since a restriction is applied to the wavefunction, the energy goes up and
the bond-strength is diminished. This is used in assessing the effects of the
strengths of the bonds in cyclobutadiene. The orbitals may also be restricted to
extend just over a part of the molecule [64], inhibiting delocalisation.

The applications we present are all related to the concepts of aromaticity,
resonance and delocalisation.

5.1 The importance of resonance - benzene and cyclobutadiene[24,65-67]

Our VB program TURTLE [3] allows for both a more extensive and a more
restrictive description of benzene and cyclobutadiene than was available in the
previous studies. We included full orbital and full geometry optimisation. Two
orbital models were used. The first has p-like (p,) orbitals strictly localised on
the carbon atoms. This corresponds to the classical Heitler-London model [48],
but with optimal orbitals. The second uses delocalised fully optimised [68] p,
orbitals, which include tails to neighbouring atoms.

The main difference between them is that the delocalisation of the orbitals
mimics the effects of ionic structures, giving stronger bonds in the molecule.
This allows us to study the effect of the bond-strength in the mt-system on the
geometry. The local orbitals allow a description closer to the Pauling picture
[47], since the orbitals lack freedom.

Since we can assign bonds at will, we may distinguish four molecules, some
of which are not real in a chemical sense. First there is benzene which we
described using just the two Kekulé structures (Fig. 3). The three Dewar
structures (Fig. 4) were not taken into account.

Fig. 4. The three Dewar Structures of benzene
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Fig. 5. The two resonance structures for cyclobutadiene

Earlier calculations [52,69] showed that they have a weight of about 6-7%
each. Because these weights are relatively small, compared to the total weight of
the Kekulé structures of about 80%, and since they obscure the view of the
resonance, they were left out.

Next, we have cyclobutadiene, which is described using two structures as
well (Fig. 5), though the two are not expected to have equal weight in the
wavefunction.

Strictly adhering to the Pauling definition [47], the resonance energy (E)
of an aromatic hydrocarbon is obtained as the difference between the total VB
energy and the energy of the most stable structure (Eres=FEot-Elowest)-

The energy difference between the two-structure calculation and a one-
structure calculation at the same geometry with optimal orbitals but lacking
resonance/n-electron delocalisation gives the vertical resonance energy (VRE)
[70].

Finally, we can just use one structure, which for C¢Hg gives the elusive
cyclohexatriene (D3, symmetry) (fig. 6). Of course, for cyclobutadiene, nothing
out of the ordinary is observed and the normal 1,3-cyclobutadiene results. The
difference in energy with the two-structure calculation gives the theoretical
resonance energy (TRE) {51].

The energy of the hypothetical cyclohexatriene was previously estimated by
Dewar et al. using experimental data by taking three times the C=C and C-C
increment [71].

For all the compounds, orbitals and geometries were optimised using a
6-31G basis set [72].

Fig. 6. 1,3,5-cyclohexatriene and 1,3-cyclobutadiene
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5.1.1 Benzene and Cyclohexatriene

The benzene calculations using delocalised orbitals yielded a symmetric
structure with a C-C bond length of 1.399 A, in excellent, be it fortuitous,
agreement with the experimental value (1.399A [73]). In the calculations where
orbitals were restricted to the atoms, the C-C bonds were weakened and
correspondingly they lengthened to 1.426 A. This elongation was also found
when the local approximation was applied to the n-system of ethene [67]. The
cyclohexatriene calculations (1 structure), resulted in a D3, geometry, with C-C
bond lengths of 1.433 and 1.369 A, in reasonable agreement with linear
1,3,5-hexatriene (1.458 and 1.368 A [74]). If the m-orbitals are restricted to the
atoms the effect is only noticeable on the single bonds, which elongate to 1.509
A, whereas the double bonds even contract very slightly to 1.368 A.

This suggests, that in the delocalised calculation the formal single bonds still
have some double bond character, as they have in 1,3,5-hexatriene. They lose
this in the purely localised calculation. This throws some doubt on the clear
interpretability of the delocalised calculation. However if a two-structure
calculation is performed at the optimised geometry of cyclohexatriene, the
weights according to Eq. (3) of the structures are quite similar in both models,
viz. 0.74/0.26 for the delocalised calculations vs. 0.79/0.21 for the strictly
localised ones.

In Table 1 we collect all resonance energies. The values for both the VRE
and TRE are considerably lower than most previously reported values (range -5
to -95 kcal/mol [51,75-77]). We note that in previous calculations the 1,3,5-
cyclohexatrienes (D¢, and Dsj,) were accessed with non-optimised orbitals [76],
or with pre-determined ethene m-orbitals [77]. Note the large difference between
the Pauling resonance energy and the vertical resonance energy for the
delocalised orbitals, whereas there is no difference for strictly localised orbitals.
Obviously just for benzene, the extra freedom offered by the delocalisation is
utilised to the full. If anything, the other resonance energies are remarkably
similar, showing that the resonance persists even in cyclohexatriene. The two-
structure calculation on cyclohexatriene does not represent a true minimum. It
lies just 1.2 kcal/mol (delocalised orbitals) above benzene and will revert to that
geometry if the geometry is relaxed.

Table 1

Resonance energies for benzene and cyclohexatriene
Molecule Benzene Cyclohexatriene
model delocalised localised delocalised localised
Pauling Resonance Energy -19.8 -254 -8.4 -1.7
Vertical Resonance Energy -9.6 -25.1 -6.2 -1.7

Theoretical Resonance Energy -7.4 -11.3
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The calculations show that the resonance energy is the driving force behind
the symmetrisation of benzene (cf. [62]). Indeed benzene is easy to distort to
e.g. a cyclohexatriene geometry [61]. This, however, should not be construed to
be an indication of the unimportance of resonance but, on the contrary, to be
taken as a sign of its persistence (cf. [69]).

Some of the previous calculations in the literature stressed the importance of
ionic configurations. They are indeed needed for a proper description of the
bonding when localised orbitals are used, as shown by the poor bond lengths
obtained without. The calculations with ionic structures also give huge
resonance energies, due to the large number of ionic structures used in the
description of benzene. It is our feeling that the only reasonable definition for
the resonance of benzene is the interaction between two Kekulé structures.
Inclusion of the full set of ionic structures makes it difficult to obtain a balanced
description of both cyclohexatriene and benzene. Different choices can be made
for the description of cyclohexatriene as well (cf. [51] and [49]). The application
of the spin coupled method[53], where the orbitals are optimised, gives
essentially the same result (-20.0 kcal/mol) for the resonance energy as our
calculations using delocalised orbitals. The only difference is that the Dewar
structures of Fig. 4 were also present in the spin-coupled wavefunction.

5.1.2 Cyclobutadiene

A calculation using the delocalised orbital model yields a rectangular
structure as expected [78], both with the two-structure and with the one-
structure calculation. The bond lengths are 1.552 A and 1.367 A for the two-
structure calculation and hardly different for the one-structure calculation. The
resonance energy is quite small (-0.98 kcal/mol).

However when the m-bond strength is diminished, when using strictly
localised orbitals, a molecule with equal C-C bondlengths (1.465 A) is obtained.
Now the resonance energy is quite large (Pauling E.s= -17.66 kcal/mol). So is
the stabilisation energy of -7.85 kcal/mol with respect to the one-structure
calculation, which obviously still yields a rectangular structure with bond
lengths of 1.556 and 1.395 A. The m-bonds are relatively weak in this system,
due to the use of strictly localised orbitals. Thus, the square geometry can be
explained by a preference of the o-system for equal bond lengths.

In order to see if it is possible to neutralise this effect of the o-system we
performed a second calculation which used localised orbitals for the o-system
as well as for the n-system. In this calculation one perfect-pairing structure was
used for the C-C bonds of the o-system. All orbitals were localised on the C-H
fragments. Doubly occupied orbitals were used for the C-H bonds, and strictly
localised singly occupied orbitals for the C-C bonds. This calculation again
yields a rectangular geometry with a much lower resonance energy. The bond
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lengths are also longer than for calculations with only localised m-bonds, which
shows that the bonds are indeed weaker.

We may conclude that the relative strengths of the - and the m-bonds
determine the geometry of cyclobutadiene. For relatively weak m-bonds, the
resonance, together with the o-bonds, prevails to yield a square geometry. With
stronger m-bonds or weaker o-bonds the, expected, rectangular structure is
produced.

5.1.3 Concluding remarks on the importance of resonance

Of the views expressed in the literature, we find two of them to be partly
compatible with our findings. The model developed by Shaik, Hiberty and co-
workers [55-61] states that the G-system prefers equal bond lengths, while the 7t-
system prefers alternating bond lengths. The resonance of the -system is also a
symmetrising influence.

The viewpoint expressed by Glendening et al. [62] is that the resonance
between the structures is the key factor for delocalisation. We find this as well.
When there is no resonance in cyclobutadiene (and benzene), the molecule
becomes asymmetric. Just resonance is not enough, however. Both benzene and
square cyclobutadiene have large resonance energies.

Finally, we have to disagree with Zilberg and Haas [79]. They state that the
geometric distortion of cyclobutadiene is a fundamental property of [4n]-
electron ring systems. We were able to generate a square symmetric system just
by weakening the m-bonds. Voter and Goddard[54] correctly suggest that the
geometry of cyclobutadiene is a result of a balance between bond strain and
resonance.

We can therefore now conclude that there are three contributions that
determine the geometry of benzene and cyclobutadiene. The first contribution is
that of the o-system which prefers equal bond lengths. The other two
contributing factors are the m-bonds and the m-resonance. The m-bonds by
themselves give rise to two states with a minimum at one of the geometries with
alternating bond lengths. The resonance provides interaction between the two
states and stabilises the symmetric structure.

5.2 Aromaticity of bent benzene rings [69]

An interesting question [80] is: “What happens when the benzene ring is
bent from its planar structure?” Will it still be aromatic? The only experimental
way to get insight into the possible behaviour of bent benzene molecules is by
attaching bridges over the ring that put the ring under strain. Examples of such
molecules are [n]meta- and [n]paracyclophane molecules, the number n
denoting the length of the carbon chain that is attached to the benzene ring. The
only way to study bent benzene molecules, without the disturbing influence of
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the bridges, is to use theoretical methods, where the Born-Oppenheimer
approximation [81] allows one to freeze the molecular geometry.

For the description of the bent benzene, the flat benzene ring was the
starting point. For this system, there is a clear ¢ © separation. There is a clear
distinction between the doubly occupied orbitals for the o-core and the 6 non-
orthogonal p-orbitals for the w-system.

The m-system is described by all five Rumer structures, which is the
complete spin-space (i.e. Fig. 3 and Fig. 4). This allows a smooth transition
from benzene, where the 2 Kekulé structures are most important, to the highly
bent Dewar benzene, where only one of the Dewar structures (Fig 4) is
important. All the orbitals, doubly occupied and singly occupied are fully
optimised. For each bent structure, the orbitals from the preceding less bent
structure were used as initial guess. This and the choice of wavefunction ensure
that an aromatic “m-system” can be identified, even when no symmetry
separation exists. All orbitals were completely optimised so we have a
wavefunction of the spin-coupled type. This is the type of wavefunction used by
Cooper et al. [52] in their study of benzene.

To obtain geometries, 10-orbital 10-electron complete active space self-
consistent field (CASSCF) [82-84] calculations were performed with the
GAMESS-UK program [6]. The occupied orbital order in an SCF for flat
benzene is m,20,27. In the bent molecule, there is no clear distinction between
o- and m-orbitals and we want to include all the m-orbitals in the CAS-space.
Thus, 10 orbitals in the active space are required. Obviously, the 5 structure VB
wavefunction would have been a preferable choice to use in the geometry
optimisation. However, at that time, the VB gradients were not yet available.
The energies of the VBSCF at the CASSCF geometries followed the CASSCF
curve closely.

The geometry of the molecule at each point was optimised for a fixed
bending angle ¢ (Fig. 7), while all the other geometrical parameters were free.

C,

Fig. 7. Important geometrical parameters: ¢ is the angle between the plane of the.displaced

carbon atom 4 with carbon 3 and 5 and the plane of the 4 lower carbon atoms.
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C,, symmetry has been used throughout. Calculations were performed for ¢
from 0° to 90° with a step-size of 5°. All calculations were performed using the
6-31G basis set [72].

The carbon-carbon bond lengths remain very similar, with differences of
less than 0.03 A, up to a bending angle (¢) of 55°. The end-CH (o) bending
increases up to 40° at 0=55°, thus maintaining the 7-system as much as possible.
Beyond ¢=55°, the end-CH turns upwards (a=-1° at $=60°), signalling the end
of the aromatic ring. At that angle the equivalence between the C-C bonds is
gone as well. There is a drastic change in the geometry between 55° and 60°,
where the molecule attains the shape of Dewar benzene. The barrier in the
potential energy curves is also here.

The clearest picture of the bonding is given by considering the weights of
the Rumer structures (Eq. (3), Fig. 8). The weights for equivalent structures are
added; So the weights of the two Kekulé structures are summed and the weights
of two of the Dewar structures are summed. It is clear that at low angles the two
Kekulé structures are the most important ones. They make up for more than
70 % of the wavefunction, up to 55°. Then one Dewar structure takes over
completely and the molecule has become Dewar benzene.

The energies of the individual structures behave more smoothly. They are
continuously rising (except for the bonding Dewar structure beyond 60°),
though there is sudden change at 60° because of the change in geometry.

The resonance energy (Pauling definition [47]) is -20.30 kcal/mol for flat
benzene and it decreases to -17.39 kcal/mol at 55°. Thus, we still have an
aromatic molecule at 55°. After 55° one Dewar structure dominates the
wavefunction and the resonance energy decreases to -0.10 kcal/mol; the
aromaticity is gone.

1.1
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Fig. 8. Structure weights in bent benzene
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Fig. 9. m like orbitals on carbon atoms 3 and 4 for some important bending angles. The
orbitals on the other atoms may be obtained by mirror-symmetry. The pictures were produced
with the help of Molden [85]
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Orbital pictures for the different bending angles are shown in Fig. 9. The
pictures show iso-surfaces with an absolute value of 0.1. The different signs are
shown by the dark and light grey-shades, and the orbitals extend to
neighbouring atoms, reflecting the delocalised model employed. They show that
the orbitals try to adapt to the form of the molecule and to maintain bonds for
the Kekulé structures. At 60° the p-like orbitals on carbon atom 1 and 4 rotate to
form a bond between those two atoms. So. first of all, the overlaps are
maximised for the bonds in the Kekulé structures. Then the orbitals on the two
carbon-atoms, which are bent out of plane (atom 1 and 4) rotate to form a bond
in the Dewar structure with correspondingly much larger overlap.

The orbitals in bent benzene try to adapt to the bent ring as much as possible
while still keeping large overlaps for the Kekulé structures. This also has to do
with the geometry of the molecule, especially the hydrogen atoms attached to
the carbon atoms 1 and 4. First, they are bent down making it possible for the
p-orbitals on the carbons to stay perpendicular to the plane of the other 4 carbon
atoms. In the Dewar form, they are bent up and the p-orbitals are again
perpendicular to the plane of the hydrogen. So the geometry and the bonds adapt
to each other.

If now the geometry would be forced to inhibit the aromatic system, as is
the case in the experimental systems, where bridges are attached to bend the
molecule, the aromaticity disappears at much lower angles. Test calculations
[86], where the angle o is reversed to simulate this situation, indicate that then
the aromaticity is only maintained up to 30°.

5.3 Aromaticity of Pyrene and its Cyclopentafused Congeners [65,87]

Polycyclic aromatic hydrocarbons (PAH’s) with external cyclopentafused
five-membered rings, such as the cyclopentafused pyrene derivatives (Fig. 10),
belong to the class of non-alternant polycyclic aromatic hydrocarbons.

Several qualitative models, e.g. Platt’s ring perimeter model [88], Clar’s
model [89] and Randié’s conjugated circuits model [90-92] have either been or
are frequently used for the rationalisation of their properties. All these
qualitative models rationalise the properties of aromatic and anti-aromatic
hydrocarbons in terms of the Hiickel [4n+2] and [4n] rules. The extra stability of
a PAH, due to m-electron delocalisation, can also be determined,
computationally or experimentally, by either considering homodesmotic
relationships [36] or by the reaction enthalpy of the reaction of the PAH towards
suitable chosen reference compounds [93].

In a related study on the cyclopentafused pyrenes [94] in which regular ab
initio methods were used (RHF/6-31G* and B3LYP/6-31G*), we found that the
magnetic properties suggested that the aromatic character decreases upon
cyclopentafusion. The aromatic stabilisation energies were unaffected, though.
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These effects prompted us to study the effect of cyclopentafusion in the
cyclopentafused pyrene series on the interaction between the different Kekulé
resonance structures and thus on the resonance energy.

All geometries of 1-7 were optimised at the RHF/6-31G level. Structures 1-
6 are really flat but 7 was found to be bowl-shaped [94]. In a treatment of the
conjugated system in this geometry, the o orbitals cannot easily be excluded, as
the strict 6 7 separation is destroyed.

The deviation from the planar form of 7 is rather small. Since an aromatic
structure is not easily destroyed by bending (cf. Section (5.2), [69]), the VB
results obtained for the planar transition state are expected not to deviate much
from those of bowl-shaped 7. Of course, the calculation on planar 7 is
computationally much cheaper.

The o-core was taken from a preceding RHF/6-31G calculation. The 7t-
system was described by strictly atomic non-orthogonal p-orbitals, which were
optimised for benzene. Test calculations on cyclopenta[cd]pyrene (2) indicated
that the structure energies and weights change only marginally upon
optimisation of the p-orbitals.

For pyrene (1) 1430 covalent structures can be generated. Only six of those
have all n-bonds along the o-bonds. These six structures are the Kekulé
resonance structures of pyrene. In the case of tetracyclopenta[cd, fg,jk, mn]-
pyrene (7), 208012 covalent structures can be generated. Only ten Kekulé
resonance structures exist for this molecule. It is expected that only the Kekulé
resonance structures are important in the description of these molecules and that
the other structures can be ignored at a considerable saving in time and gain in

e
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Fig. 10. The structures of 1-7.
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In the spirit of Pauling [95], only the Kekulé resonance structures were
considered.

To identify the most important resonance interactions between Kekulé
resonance structures and thus the most aromatic subsystems the total resonance
energy had to be partitioned. Therefore the H matrix was transformed to an
orthogonal basis using Léwdin-orthogonalisation [96], yielding H". The total
energy can then be partitioned in the weighted diagonal contributions of the
structures and the weighted resonance contributions between them

E:ZZCiCjH; ZZQC,-H.? '*2:2:20101'1!11';+ =E$ag +Ep, (1)
{ j i

i ji

where ¢; is the coefficient of structure i in the wavefunction.

The sum of the resonance contributions ( E” ) is again another measure of
the resonance energy, namely with respect to the weighted mean value of the
energy of all structures. This mean resonance energy is thus more negative
(stabilising) than the Pauling resonance energy (E,.;). In Table 2 we give the
total energies and resonance energies of the 7 compounds. The E values for
1-7 follow the same trend as the E,.; values.

The contribution to E, of a particular interaction between two structures is
twice the weighted resonance contribution (2c¢,c jHijL). The differences between

a pair of Kekulé resonance structures elucidate the conjugated circuit in which
the 7 electrons are delocalised by resonance as shown in Fig. 11.

Table 2
Total energies of compounds 1-7 (a.u.) and resonance energies (kcal/mol).
Compound® RHF VB E,.° En®
1(6) -611.555550  -611.286631 -62.3 -100.9
2(6) -687.242053  -686.940798 -58.5 -101.1
3(6) -762.918242  -762.584880 -62.2 -101.8
4 (7) -762.922606  -762.592661 -54.5 -101.5
57 -762.925727  -762.595225 -56.4 -101.8
6 (8) -838.595341  -838.236025 -58.6 -102.7
7 (10) -914.259921  -913.873884 -62.5 -104.2

?The number of Kekulé resonance structures is indicated between parentheses.

*For comparison the resonance energies of benzene, calculated with local p-orbitals (6-31G
basis set) and two structures, are E,,, = -25.4 kcal/mol (Table 1) and E = -44.2 kcal/mol.
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Fig. 12. Contributions of the individual rings to the resonance energy.
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Using this method, the resonance energy was divided over the rings. The
result is displayed in Fig. 12. The percentages below each structure give the
amount of resonance energy accounted for by just the rings indicated. The
remainder is resonance in 10/12/14/.. rings.

The partitioning of the resonance energy shows large contributions to the
mean resonance energy (E” ) from the resonance interactions in the top and
bottom six-membered rings. The right and left central six-membered rings
contribute less than a third to the resonance energy.

In a previous study, it was shown that the aromatic stabilisation energies of
the compounds 1-7 are all nearly equal [94] i.e. cyclopentafusion has no effect
on the resonance energy. This conclusion is confirmed by the VB calculations.
The resonance energy (both E,.; and E] ) of the compounds 1-7 are all of the

same magnitude (Fig. 12 and Table 2).
More generally, upon the addition of externally fused five-membered rings,
the weights and energies of the pyrene sub-structures are only marginally
affected. The contributions of the different conjugated circuits to E;. show for
all compounds the same trends; the six m-electron (benzene-like) conjugated
circuits in the top and bottom six-membered rings have the highest contribution
to E, , independently of cyclopentafusion. Hence, all compounds should be

seen as substituted pyrene derivatives.
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Fig.13. The NICS values of the individual rings.
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Nucleus Independent Chemical Shift (NICS) values in the ring centres [40]
were calculated using the Direct IGLO [39,97] program, at the RHF/6-31G
geometry using the IGLO-III basis set. The chemical shift shielding tensor is
given as a sum of the diamagnetic and paramagnetic part by the IGLO program.

The NICS values calculated at the ring centres for the compounds 1-7 are
depicted in Fig.13. Large negative NICS values are found for the top and
bottom six-membered rings. The NICS values for these rings are shifted 10 ppm
upfield with respect to the NICS values of the central six-membered rings,
which is in line with the resonance criterion, derived above.

Upon addition of externally fused five- membered rings, the NICS values at
the ring centres suggest a reduction of the aromatic character in this series. The
resonance criterion (both E,,; and E ), however, does not suggest that the
aromatic character of 1-7 decreases.

This apparent discrepancy might be understood by realising that the
diamagnetic contribution of the chemical shielding tensor perpendicular to the
molecular framework (NICS¢) is indicative for the induced ring currents.

Unfortunately, the paramagnetic contribution, which is zero in benzene due to
symmetry, is included in the NICS values and the relation between dia- and
paramagnetic contributions is gauge dependent. Thus, the NICS values can only
be used for comparing the aromatic character of similar rings.

5.4 The enhanced acidity of carboxylic acids and enols relative to alcohols

[98-100]

In this early application of the TURTLE program, the ability to restrict the
wavefunction is used to ascertain the relative importance of m-electron
delocalisation and induction to the enhanced acidity of carboxylic acids and
enols compared to alcohols. These generic classes of molecules are represented
by formic acid, vinyl alcohol and ethanol respectively.

The enhanced acidity of carboxylic acids and enols relative to alcohols has
long been attributed to the stabilisation of the carboxylate and enolate anions by
delocalisation of their © electrons (see 1 and 2 below). Alkoxide anions, as
saturated systems, are not subject to resonance stabilisation.

The parent acids and alcohols, on the other hand, are not expected to display
any significant mesomeric stabilisation, because this would involve the
participation of some rather unreasonable Lewis structures with separated
positive and negative charges. As a consequence, the nt-delocalisation in 1 and 2
is a factor that lowers the deprotonation energy of carboxylic acids and enols,
thus reinforcing their acidity, according to standard organic-chemistry
textbooks.
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Fig. 14. Resonance structures for carboxylic acids and enols

Since the molecules are planar, there is a strict separation between the o-
and the m-system. In the calculations, the o-system was handled with the usual
delocalised orbitals. For the nt-system two different models were defined.

In the localised VB the orbitals are only allowed to extend over part of the
molecule. For instance, for an enolate anion, the basic wavefunction would have
a doubly occupied m-orbital, localised only on the oxygen atom and a doubly
occupied 7-orbital extending over both carbon atoms. Thus, while describing
structure 2a in Fig. 14, a single determinant is still employed. Since the orbitals
are completely optimised, the o-system can partly counteract the charge
separation.

The delocalised model entails a normal Hartree-Fock calculation, allowing a
complete delocalisation of both the o- and m-systems, and thus describing the
complete delocalisation of the 7-system.

In both models inductive effects are included, so one can calculate the
energetic effect of m-delocalisation in a direct way. The calculations were
performed at three different levels of theory, with an increasing degree of
electron correlation. For instance one might allow left-right correlation in the -
bond in the localised model and perform a corresponding CASSCF in the
delocalised one. The results were found to be insensitive to the degree of
electron correlation, so we present only the results of the simplest level here. It
should be noted that in all cases inductive effects are fully operational,
irrespective of the degree of localisation.

The calculations were performed with a standard 6-31G™* basis set [101]
augmented by diffuse p-functions [102]. The geometry optimisations of the
delocalised states were carried out through a standard gradient technique with
the GAUSSIANO2 program [103].
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Table 3
Delocalisation energies of the deprotonated anions and their parent acids.
Anions AE Acids AE
(kcal/mol) (kcal/mol)
HCOO"- 40.2 HCOOH 17.5
CH2CHO" 34.9 CH>CHOH 13.6
CH3CH0" 14.6 CH3CH20H 6.6

Because no gradient routines were available at that time for the VB calculations,
the geometries of the localised states were partly optimised by hand.

From a consideration of the optimised geometries, it could be concluded
that both the acids and the deprotonated anions are subject to some 7-electron
delocalisation. In accord with chemical intuition, the effect of delocalisation is
more important in the carboxylate and enolate anions than in the other species.
However, the geometry changes that the acids undergo under deprotonation are
only partly explained by m delocalisation.

The delocalisation energy (AEq.oc) Of the parent acids and their anions is
defined as the energy difference between the localised wavefunction, §joc, and
the delocalised ground state, ¢q4¢ in their optimal geometry, i.e. the adiabatic
delocalisation energy [104]

AE

deloc

=E, (52)

Il Y
The energetic effects of m-delocalisation as calculated through Eq. (52) are
summarised in Table 3.

The results show that the carboxylate and enolate anions have the largest
delocalisation energies among the six species, in accordance with the principles
of resonance theory. This is because none of these anions can possibly be
described by a single Lewis structure. For example, the carboxylate anion, with
its symmetrical geometry, requires besides structure 1a at least the contribution
of 1b. This also applies to the enolate anion, but with an important difference:
1a and 1b are degenerate structures, a factor that is expected to maximise the
resonance energy, while the structures 2a and 2b are not equivalent and have
different energies. Accordingly, the delocalisation energy is expected to be
smaller in the enolate anion than in the carboxylate anion, which is indeed found
to be the case (see Table 3).

As expected, because the parent acids of these two anions can be reasonably
well described by a single Lewis structure, they have much smaller
delocalisation energies. In ethanol and its deprotonated anion, for which no
resonance between low-lying Lewis structures may be expected, the
delocalisation energy is relatively small.
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As delocalisation reinforces acidity only if it stabilises the anion more than
the parent acid, the contribution of delocalisation to the acidity is best defined as
the difference of the two delocalisation energies: (AAE = AE(anion) — AE(acid)),
Using this criterion, it appears that delocalisation contributes rather little (8
kcal/mol) to the acidity of ethanol, as expected from chemical intuition. In
contrast, delocalisation contributes as much as 21-23 kcal/mol to the acidity of
formic acid and of vinyl alcohol. Perhaps surprisingly, the AAE values are the
same for the two species, while one might have expected resonance effects to be
more important in formic acid, for which the mesomeric description of its anion
involves two equivalent structures. The explanation probably lies in the polar
nature of the C-O bond, which results in a large contribution of structure 1c¢ to
the anion. Since an ionic structure of the same type is also important in the
undissociated acid, the nature of the 1 electronic system changes less than
expected from acid to anion, so that the change in delocalisation energy remains
relatively moderate. To push this reasoning to the limit: if the C-O bonds were
entirely ionic, there would have been no resonance at all.

This does not mean that enols and carboxylic acids have comparable
acidities, since inductive effects may also contribute to the acidities. In that
respect, it is useful to compare the AAE values obtained with the total acidity
enhancements of formic acid and vinyl alcohol with respect to ethanol. The
experimental gas-phase acidities of formic acid and ethanol are known to be 345
and 376 kcal/mol, respectively [105]. The acidity of vinyl alcohol has been
accurately calculated by Streitwieser et al. [106], who predicted a value of 359.5
kcal/mol. So, the acidities of formic acid and vinyl alcohol are reinforced by 31
and 16.5 kcal/mol, respectively, relative to ethanol. The calculations indicate
that delocalisation contributes 23, 21 and 8 kcal/mol, respectively, to the
acidities of formic acid, vinyl alcohol and ethanol. Delocalisation therefore
reinforces the acidities of the two former species by 15 and 13 kcal/mol,
respectively, compared to ethanol. This is 48% and 78% of the total acidity
enhancement, which is the major part of the acidity enhancement in vinyl
alcohol. Delocalisation and inductive effects are found to be of equal
importance to formic acid.

The calculations support the traditional view by showing that delocalisation
is an important factor responsible for the enhanced acidity of carboxylic acids
and enols relative to alcohols.

The same methodology was applied to the study of the role of conjugation
in the stability and rotational barriers of formamide and thioformamide [100].
Here it was found that resonance accounts for roughly one-half of the rotational
barrier of formamide and for two-thirds in the case of thioformamide.
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6. CONCLUSIONS

We have given an account of some of the inner workings of the gradient
VBSCF program TURTLE. The program is especially conceived to allow the
optimisation of wavefunctions of arbitrary form. This feature is exploited in the
study of resonance and delocalisation phenomena.

For instance it allows the complete optimisation, orbitals and geometry, of
benzene (Dg, symmetry), which is described by two resonating structures and of
the fictional molecule cyclohexatriene (D3, symmetry), whose wave function
consist of just one of the structures. A comparison of the results gives a better
insight in the nature and the persistence of resonance.
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ABSTRACT

The Generalized Multistructural Wave Function (GMS) [1,2] is
presented as a general variational many-electron method, which encompasses
all the variational MO and VB based methods available in the literature. Its
mathematical and physico-chemical foundations are settled. It is shown that
the GMS wave function can help bringing physico-chemical significance to
the classical valence-bond (VB) concept of resonance between chemical
structures. The final wave functions are compact, easily interpretable, and
numerically accurate.

1. THEORETICAL FOUNDATIONS

1.1. Introduction

Ab initio calculations of electronic wave functions are well established
as useful and powerful theoretical tools to investigate physical and chemical
processes at the molecular level. Many computational packages are available
to perform such calculations, and a variety of mathematical methods exist to
approximate the solutions of the electronic hamiltonian. Each method is based
(or should be) on a well defined physical model, specified by a certain
partition of the electronic hamiltonian, in such a way as to include a subset of
all the interactions present in the exact one. It is expected that this subset
contains the most important effects to describe consistently the situation of
interest. The identification of which physical interactions to include is a major
step in developing and applying quantum chemical theory to the study of real
problems.
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From the conceptual point of view, there are two general approaches to
the molecular structure problem: the molecular orbital (MO) and the valence
bond (VB) theories. Technical difficulties in the computational
implementation of the VB approach have favoured the development and the
popularization of MO theory in opposition to VB. In a recent review [3],
some related issues are raised and clarified. However, there still persist some
conceptual pitfalls and misinterpretations in specialized literature of MO and
VB theories. In this paper, we attempt to contribute to a more profound
understanding of the VB and MO methods and concepts. We briefly present
the physico-chemical basis of MO and VB approaches and their intimate
relationship. The VB concept of resonance is reformulated in a physically
meaningful way and its point group symmetry foundations are laid. Finally it
is shown that the Generalized Multistructural (GMS) wave function
encompasses all variational wave functions, VB or MO based, in the same
framework, providing an unified view for the theoretical quantum molecular
structure problem. Throughout this paper, unless otherwise stated, we utilize
the non-relativistic (spin independent) hamiltonian under the Born-
Oppenheimer adiabatic approximation. We will see that even when some of
these restrictions are removed, the GMS wave function is still applicable.

1.2. Molecular Orbital Theory

Proposed shortly after the VB theory, the MO theory became the most
popular approach to molecular structure calculations, mainly because this
theory is much more amenable than VB to computer implementation. As a
consequence, there is a great number of results of MO calculations on many
chemical systems. With the improvement of the numerical techniques and of
auxiliary interpretative tools by many research groups, together with the wide
availability of computer codes, MO theory was soon established as “the”
computational (and for some also “the” conceptual) approach to the molecular
structure problem. Due to its widespread use, MO theory is frequently pushed
beyond its conceptual limits. In this section we will briefly outline some
aspects of MO theory and highlight its physico-chemical interpretation.

Application of ab initioc MO theory usually begins at the
monoconfigurational level, with the Hartree-Fock-Roothaan or LCAO-SCF
methodology [4,5]. In this scheme the wave function for a closed-shell
molecule containing N electrons is approximated as an antisymmetrized
product (determinant) of spin-orbitals {¢;}:

Py, Xz, o xn) = (NDY 2 det | 1) @22 .. on(xn) |
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The best spin orbitals will be the eigenfunctions of the one-electron Fock
operator:

Fip; = gip; , where F(?) = h(i) + g(i,)).

The Fock operator is divided into two general terms: h(i), called the core-
hamiltonian, contains the one-electron terms (electron kinetic energy, electron
nucleus attractions); g(i,j) contains the two-electron operator, composed of
coulomb and exchange terms, which average the interactions among
electrons. The spin-orbitals are almost always expanded in a basis of known
functions (usually gaussians), and the expansion coefficients are variationally
optimized to minimize the total electronic energy. At the end of the
optimization process we have a set of orbital energies {g;}, and of spin-
orbitals {¢;} associated with the electrons. Physically speaking, we have
approximated the state of a many-electron system by an antisymmetrized
product of N one-electron states, each one of them determined so as to
respond to the average field generated by the other NV - 1 electrons.

The Hartree-Fock wave function is only valid as an approximation to
the many-electron state when it obeys the so-called SCF theorems [6], which
govern the physical interpretation of the SCF solution functions. The
Brillouin theorem states that singly excited determinants do not mix with
converged ground state determinants in a configuration interaction expansion.
The Delbruck theorem says that the spatial-spin symmetry of the SCF
solutions must be the same of the exact many-electron wave function. In
another words, the Hartree-Fock wave function must have a non-vanishing
overlap with the exact many-electron wave function [7]. When either or both
of these two restrictions are not met it is said that the Hartree-Fock solution
presents instabilities [8], meaning that by removing the space-spin symmetry
constraints one obtains a solution with lower energy. However, the physical
meaning of the Hartree-Fock instabilities is a more complex subject, which
will be addressed in a separate paper [9]. Unrestricted wave function based
approaches [10} (UHF — unrestricted Hartree-Fock and GHF — general
Hartree-Fock) will not be considered here. The corresponding wave functions
are not eigenfunctions of the S® operator, and therefore do not obey
Delbruck’s theorem. This is a well known and documented problem of the
UHF and GHF wave functions [4]. However, what is never mentioned is the
fact that although the UHF wave function is antisymmetric in the o and/or 3
electrons, the full wave function is not antisymmetric and therefore it does not
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obey the Pauli principle. For the moment we just anticipate that only closed
shell many-electron systems can be approximated by a physically meaningful
monoconfigurational wave function.

Chemically speaking there is little to say. Canonical Hartree-Fock
molecular orbitals leave no place for classical chemical concepts such as
bonds between atoms or groups, lone pairs, resonance hybrids, etc. However,
chemists still utilize these concepts because they are extremely useful in
correlating and understanding chemical facts. Even when one manages to
localize the canonical molecular orbitals (which is not always
straightforward) in regions such that they could be associated with lone pairs
or individual chemical bonds, it is important to bear in mind that the orbitals
represent localized one-electron states, and not a two-electron chemical bond
between atoms or a lone pair of electrons, as will be discussed further.

From the physical point of view, we are representing a many-electron
state by an antisymmetrized product of one-electron states. The density matrix
formalism [4,11-13] allows one to analyse in the same footing calculations
resulting from different levels of approximation. The density matrix is called
reduced when is formed from a pure state:

I'= fyXyi

If we form the reduced density matrix from the one-electron states
obtained from a Hartree-Fock calculation, we will have the so-called Fock-
Dirac reduced density matrix which is an approximation to the many-electron
state. The analysis of this density matrix reveals the physical features of the
many-electron state under the Hartree-Fock approximation. The first-order
density matrix provides the natural 1-particle states (or natural states) of the
system, that in some situations (especially in the presence of degeneracies or
near-degeneracies) can differ considerably from the canonical Hartree-Fock
orbitals. The pure many-electron state of a system, under a given
approximation, is fully specified by the occupation numbers and natural
orbitals of the reduced first-order density matrix (RDM1). In the Fock-Dirac
DM, the occupation numbers are fixed, since we are dealing with a
monoconfigurational wave function. The second-order reduced density matrix
(RDM2) provides information on the interaction between the electrons in a
given state. The total energy of a given state is determined by its first and
second-order reduced density matrices. At the monoconfigurational level, one
can see that there is no correlation between electrons of different spins.
However, in the absence of any sort of correlation (dynamic or non-dynamic)
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between electrons of different spins, it would be impossible to understand the
formation and the breaking of a covalent bond as resulting from the pairing or
unpairing of electrons of the atoms involved in the bond. Consequently, at the
Hartree-Fock level we cannot speak of “chemical bonding” involving two
electrons, but only of the binding energy of the whole system. However,
electrons with the same spin factors are rigorously kept apart (Fermi hole) due
to the antisymetrization imposed to the wave function.

Extensions of the monoconfigurational MO theory attempt to improve
the description of the electronic correlation. In practice this means including
in an explicit or implicit form other space-spin symmetry adapted orbital
configurations (configuration state functions — CSF), and expanding the wave
function in this extended basis. Under certain circumstances, this procedure
allows one to obtain VB-type wave functions from MO calculations, that is,
chemical bond descriptions. This is a manifestation of the Unitary Group
invariance of the hamiltonian, meaning that if one performs an exact MO
calculation (“full-CI” — superposition of all possible CSFs), the roots obtained
(“many-particle” electronic states) are exactly the same ones that would have
been obtained in an exact VB calculation [4]. It must be noted that the
eigenfunctions are completely different in form, in spite of providing the same
eigenvalues. In the next section we will briefly outline the VB theory,
emphasizing the special form of the wave function and its physico-chemical
interpretation.

1.3. Valence Bond Theory

VB theory is the quantum-mechanical translation of the classical ideas
about chemical bond and chemical structure developed by Kekulé, Lewis,
Pauling and others. From the most elementary levels, chemists are trained to
regard molecules as a collection of atoms held together by individual
chemical bonds. Specific properties of a molecule are assigned to atoms or
groups of atoms present in its structure, and our chemical reasoning is based
on these ideas. However, when one tries to ground these concepts into
quantum mechanical language, many practical and some conceptual
difficulties arise. This situation has led to an uneven development of the VB
method in comparison to MO methods. In the last three decades, due to an
increase of computational power and the development of new models, VB
theory is slowly recovering its place as the conceptual basis for the quantum
description of chemical phenomena [14,15]. In what follows we will sketch
the main features of VB theory. An alternative view to the chemical structure
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problem is presented by Bader [16] with his “Atoms in Molecules” theory.
However his theory is subject to so many mathematical, physical and
conceptual objections that it will not be considered here.

In its most general form, the classical VB wave function is the
antisymmetric product of atomic centred singly occupied orbitals and their
spin factors. Each spin coupling scheme defines a “chemical structure” by
associating to each two singlet-paired electrons in two different orbitals a
“chemical bond”. The spatial orbitals are not necessarily orthogonal, and their
non-zero overlap is essential for the VB description of chemical bonding [4].
The linear superposition of all possible coupling schemes is the exact VB
wave function for the molecule. The exact VB wave function (full-VB) has
the same energy eigenvalues as the exact MO wave function. However, just as
for its MO counterpart, it is computationally unpractical for all but the very
small molecular systems. The use of only one kind of spin coupling, defines
what is called the perfect pairing approximation. The Heitler-London wave
function for the singlet H, molecule can be taken as example:

W(xs, x2) =N [a(r)b(r) + b(r)a(r)] x [a(s) f(s2) - Bs) a(s2)]

The first term in the product is associated with the spatial part and the second
with the spin labels. The letters “a” and “b” stand for atomic orbitals centered
in hydrogen atoms H, and H, respectively. To account for the
indistinguishability of the electrons, spatial and spin factors appear in two
products  (configurations). Consequently, the VB approach is
multideterminantal from the outset. This superposition of determinants causes
the VB wave function, even in its most simple form, to maintain the
indistinguishability of the electrons within the chemical bond. This effect is
called “exclusion correlation”, a non-dynamical correlation effect.

We can calculate the natural one-particle states from the density matrix
generated by the VB wave function. However, for chemical interpretation
purposes it is better to analyse the non-orthogonal singly-occupied orbitals
since each one will correspond to an atomic localized electron overlapping
(making a chemical bond) with another one. To illustrate the importance of a
non-zero overlap among the spatial orbitals we can calculate the energy
expression for this simple case:

E=Q+K
1+A
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where

Q = (alta) + (b|n|b) + {ablg|ab)
K=2S, <alhlb> + <ab|g‘ba>
A= <ab ba) = Sjb

The Q term contains the usual J (coulomb integral) plus the one electron
diagonal terms among the electrons. The K term contains the Hartree-Fock
exchange term plus an overlap dependent one-electron term. For singlet
coupling this term is large and negative, contributing to the stabilization of
the system. Thus, the chemist’s view of the formation of the chemical bond
through the overlap of atomic orbitals is preserved. In addition, since the VB
wave function is built from individual atomic wave functions, it behaves
correctly upon molecular dissociation, a feature not shared by MO
monoconfigurational wave functions.

On the other hand, the non-orthogonality among atomic orbitals turns
out to be a great problem in evaluating the matrix elements of the
hamiltonian. While in the MO theory, developed with orthogonal orbitals, one
can use the Condon-Slater rules to eliminate a priori many matrix elements
from the calculation, in VB theory the number of these matrix elements
increases enormously due to non-zero overlap. This fact, together with the
problem of diagonalizing dense hamiltonian matrices, posed great difficulties
to the computer implementation of the VB method. Another more serious
problem, from a conceptual point of view, arises when one attempts to
calculate classical VB wave functions. Most of the time, reasonable numerical
accuracy can only be attained with the inclusion of highly unrealistic ionic
structures. This is so, even for the simplest covalent system, the hydrogen
molecule, causing VB theory to lose its most important characteristics:
chemical interpretability and compactness of the wave functions. Coulson and
Fischer [17] identified the origin of the problem and showed that the need for
the ionic structures could be associated with the lack of orbital relaxation
upon formation of the bond. However, the solution of this problem in feasible
terms required new approaches to calculate VB wave functions that only
began to appear almost 20 years later. In the meantime, unfortunately, VB
theory fell into disuse, and the MO approach became the only practical model
for molecular structure calculations.
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In the late sixties, independent works of Goddard [18] and Gerratt [19],
gave new impetus to VB theory. They explicitly considered the problem of
orbital optimization, and generalized the definition of VB structure by
considering a complete set of spin functions associated with a given orbital
product. They named their models as GVB (generalized valence bond) and
SCVB (spin coupled valence bond) respectively. These models optimize
explicitly the form of the singly-occupied orbitals, (therefore, implicitly
including the effect of ionic structures) yielding highly accurate
monoconfigurational VB wave functions. Since the orbitals are non-
orthogonal, the final wave functions incorporate a great deal of electronic
correlation. Nowadays almost all VB related methods include orbital
optimization to at least some extent.

Among the VB related methods existent in the literature, besides GVB
and SCVB, it is worth mentioning the VB-SCF and the BOVB (breathing
orbital valence bond) methods [3]. The VB-SCF method incorporates orbital
optimization to the classical VB scheme. When one has more than one
important perfect pairing scheme (or “resonance”, but see the next Section)
the BOVB method can be utilised. More recently McWeeny also presented
his version of the classical VB method including orbital optimization and
multistructural capabilities [20].

1.4. Resonance, Symmetry Breaking and Conical Intersections

One of the most characteristic concepts of VB theory is resonance.
When just one perfect pairing scheme is unable to represent qualitatively the
chemical structure of a given molecule, two or more perfect pairing schemes
have equal or nearly equal importance for the representation of the molecule.
The linear superposition of these “chemical structures” is called resonance in
classical VB theory. Each chemical structure is called a resonance hybrid.
Resonance is a concept to which chemists are deeply rooted [21]. In the
classical VB literature it is stressed that the resonance hybrids have no
individual physical significance, only their superposition. In quantum-
mechanical terms, resonance is a coherent superposition of states. This
superposition is sustained due to some sort of “mechanical stabilization”
(energy lowering) originating in the coupled system. In applying the classical
qualitative VB theory, chemists have made great (perhaps exaggerate) use of
the concept of resonance. In spite of its great power in explaining and
rationalizing many chemical facts, we have sometimes the unavoidable
feeling when reading those classical works that the resonance concept brings
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an artificial complexity to the description of some systems. In modern
quantum chemistry literature, resonance is used in many contexts in very
different forms. In what follows we will try to formulate the concept of
resonance on more precise grounds and then analyse the arosed consequences.

Before getting into a deeper analysis of the concept of resonance, we
must define precisely what we understand by “chemical structure”. One of the
most basic concepts in molecular quantum mechanics is the one of potential
energy surface (PES). It allows us to define a “molecular structure” as an
arrangement of nuclear positions in space. The definition of “molecular
structure” depends on the validity of the Born-Oppenheimer approximation
for a given state. Actually, its validity is limited to selected portions of the
entire Born-Oppenheimer PES. When a state is described by one PES, we call
it an adiabatic state. It is clear that the concept of “chemical structure”,
depends on the existence of a previously defined “molecular structure”. Only
adiabatic states have a “molecular structure”. From now on, we will always be
dealing with adiabatic states.

Considering only the valence electrons, we define chemical structure
as a configuration of singly occupied non-orthogonal atomic-localized spin-
orbitals in a given molecular structure. We do not make restrictions on the
topology of the spin pairing, that is, we can have two or more electrons
involved in the same “bond”. In fact, the reference to “spin” is somewhat
misleading. There is no physical coupling between electron spins in a non-
relativistic hamiltonian. Although the symmetry requirements imposed to the
orbital part of an electronic wave function, as to conform to a given spin state,
are very stringent, the final results can be analysed without specific reference
to spin. In other words, provided that the orbital part possesses the correct
permutational symmetry of a given spin state, they can be understood
independently of spin. Thus, considering only the valence electrons,
“chemical structure” can be redefined as a configuration of singly-occupied
non-orthogonal atomic-localized orbitals. These concepts are implicit in
GVB and SCVB theories but we think that they are not thoroughly explored,
since in the papers describing applications of VB theory, the authors are
usually more interested in reproducing classical concepts than in exploring
the new ones suggested by their own calculations. A good example is the
SCVB calculation on the benzene molecule [22]. The classical Kekulé
structures for benzene are the archetype of resonance hybrids. However, its
SCVB wave function suggests that benzene is described by one configuration
of equivalent singly occupied non-orthogonal atomic-localized orbitals,
making a six-electron chemical bond, beautifully illustrating the “aromatic
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effect”. The Kotani spin functions used form an orthogonal set [23] defining
unambiguously the total electronic wave function, allowing the spatial part to
be considered independently of the spin part. In spite of that, the authors put
more emphasis on the representation of this wave function in terms of the
biased Rumer non-orthogonal spin basis to yield Kekulé and Dewar
structures. These representations scramble the spin and spatial parts of the
SCVB wave function, destroying the “chemical structure” originally defined,
since the wave function is no longer monoconfigurational, the original spatial
configuration topology being annihilated. Moreover, as we will show later in
this paper, the spectroscopic ground state of benzene is not described by a
superposition of Kekulé and/or Dewar structures.

Resonance is related to degeneracy or near-degeneracy effects.
Degeneracy may arise in molecular quantum mechanics due to the existence
of symmetry groups that commute with the molecular hamiltonian [24-26]. It
is easily shown that the eigenfunctions of the exact hamiltonian must
transform as irreducible representations of the commuting symmetry groups.
When a given group has degenerate representations, some or all eigenstates of
the hamiltonian of the system will reflect its degeneracy. A k-degenerate
eigenvalue induces in the Hilbert space of functions, a k-dimensional
subspace spanned by its eigenfunctions. Since they span the same subspace,
the eigenfunctions can always be made orthogonal. This is the ordinary case
of degenerate representations. However, under certain circumstances, another
kind of degeneracy is possible. When the degenerate eigenvalues do not
belong to the same subspace one says that there exists an ‘“accidental
degeneracy”. In this case the tensorial Hilbert space is factored into
irreducible non-overlapping subspaces, each one associated to an eigenvalue.
The well known example of accidental degeneracy is the hydrogen atom. Its
eigenfunctions should transform as irreducible representations (S, P, D, F, ...)
of the SO(3) group. However the eigenfunctions associated with the same
principal quantum number are degenerate: [1s], [2s,2p], [3s,3p,3d] ... In fact,
the correct (non-relativistic) group of symmetry of the hydrogen atom is
SO(4), which is the rotation group in four spatial dimensions. Accidental
degeneracies signal that a given system has more symmetry than it appears to
have. From the group theory point of view, it seems natural to relate
degenerate resonance structures to point group degeneracy, or accidental
degeneracies. This attribution is essential if one wants to relate “resonance” to
identifiable physical effects, and to associate a “chemical structure” with the
resonance hybrids. The structure of the resultant partitioned Hilbert space will
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guide us in understanding the fundamental nature of the resonance
phenomenon in each case.

A curious effect, prone to appear in near degeneracy situations, is the
“artifactual” symmetry breaking of the electronic wave function [27]. This
effect happens when the electronic wave function is unable to reflect the
nuclear framework symmetry of the molecule. In principle, an approximate
electronic wave function will “break” symmetry due to the lack of some kind
of non-dynamical correlation. A typical example of this case is the allyl
radical, which has C,, point group symmetry. If one removes the spatial and
spin constraints of its ROHF wave function, a lower energy symmetry broken
(C,) solution is obtained. However, if one performs a simple CASSCF or a
SCVB [28] calculation in the valence “pi” space, the “symmetry breaking”
disappears. On the other hand, from the classical VB point of view, the
bonding of the allyl radical is represented as a superposition of two resonant
structures.

X T AN

However, as we will show below, a molecule possessing C,, symmetry cannot
possess two degenerate resonance hybrids. Thus, the allyl radical has a three
electron “pi” bond, which cannot be described properly at the MO
monoconfigurational level. This type of symmetry breaking is called
“artifactual”.

On the other hand there are other situations where the effects are
difficult to identify precisely, and the wave function presents an intrinsic
localization that breaks the symmetry. Typical examples are the core-hole
states of homonuclear molecules. When one electron is removed from the core
orbital of a molecule that has another equivalent core orbital, the symmetry
broken ROHF wave function is usually 10eV more stable than the symmetry
constrained one. In this case, we have two or more accidentally quasi-
degenerate states, and their correct calculation demands a special wave
function. The GMS wave function is perfectly suitable for these cases of
“accidental degeneracy”, since it can treat different states on the same footing.
Apart from accidental degeneracies, there are the normal point group
degeneracies, leading to Jahn-Teller nuclear framework distortions. In this
case, the interaction between the degenerate states can also be treated, when
they arise. Thus, there is a fundamental difference between artifactual and real
“symmetry breaking”. The first one is a calculation artefact and the other is a
physical effect. More mathematical details on the symmetry character of wave
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functions will be given in a forthcoming paper [9]. It should be clear that in
the presence of either point group or “accidental” degeneracies, one
configuration of singly occupied non-orthogonal atomic-localized orbitals is
not enough to qualitatively describe the system. It is necessary to consider
other configurations, leading naturally to the concept of resonance.

The study of nonadiabatic effects [29,30] in potential energy surfaces is
one of the most active research areas of chemical dynamics. Conical
intersections and intersection seams are found to be omnipresent in molecular
potential energy surfaces. They seem to appear when different adiabatic states
happen to have the same or nearly the same energy eigenvalues at the same
region of nuclear configurations. That is precisely what happens when there is
“resonance”. In the presence of such degeneracies the Born-Oppenheimer
approximation is no longer valid and different states interact directly giving
rise to the so-called nonadiabatic effects, that include photochemical
processes, charge transfer processes and spin forbidden reactions. The
signature of a conical intersection is the so-called geometric phase effect; the
sign of an adiabatic wave function is changed when transported along a
closed loop, through a specific pseudorotation path around the conical
intersection [31]. This pseudorotation connects the states at the vicinity of a
conical intersection, and mediates their interaction. Since we are dealing with
different adiabatic states, they will not cross each other, their adiabatic wave
functions remaining intrinsically real by creating singularities in the
hamiltonian. The pseudorotation that connects them is performed in the
complex plane parametrized by an angle of mixing, allowing the total wave
function to be single valued. Thus, at a conical intersection, the total
adiabatic wave function is described by the coupling of different states
connected through a mixing angle. But this is the same idea behind the
concept of resonance! Thus, the resonance hybrids can be identified with
adiabatic states which are related, through VB theory, to their individual
chemical structures. With all these facts in mind it is easy to see that
resonance is a nonadiabatic effect, derived from the superposition of many-
electron states, which should always take place at conical intersection regions
(except for diatomic molecules). At this point, the attentive reader may note
that at a conical intersection, there is a breakdown in the Born-Oppenheimer
approximation and it is not possible to define “molecular structure”.
Consequently it is also not possible to define “chemical structure” in the
immediate vicinity of this point. However, around the conical intersection
there are regions where the interaction between the adiabatic states is
negligible, and the molecular and the “chemical structures” can be formally
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defined from these nuclear configurations, as will be exemplified in the
“applications” section.

In quantum chemistry literature resonance is sometimes considered to
be equivalent to “delocalization”. This happened mainly because of the
“successful” MO monoconfigurational description of the “pi” system of
benzene. However, the Hartree-Fock wave function for the benzene molecule
(and for all aromatic molecules) is unstable [32], providing a qualitatively
wrong description of its electronic structure. When dealing with pure states,
delocalization reflects the failure of a given level of approximation to provide
an N-representable wave function [9]. On the other hand, when there is
resonance (in the precise sense defined above), we are dealing with mixed
states, and the delocalization signals the intrinsic complex instability of
degenerate or quasi-degenerate states.

1.5. Symmetry Conditions for Resonance Hybrids

It remains to state the symmetry conditions to be obeyed by resonance
hybrids. For the total wave function to be able to split into different adiabatic
states, it should be decomposable into independent parts. If the nuclear
framework has some sort of spatial symmetry, it is easy to know the possible
structures of the resonance hybrids. However, we must distinguish between
two different situations: point group and accidental degeneracies [25,26].

When a given state belongs to a k~dimensional degenerate irreducible
representation, the degenerate eigenfunctions belong to the same tensor
subspace, and can always be made orthogonal. Point group degenerate states
are always subject to Jahn-Teller distortions. The nuclear framework follows
the symmetry descent coordinate until the complete removal of the
degeneracy [33]. Consequently, it is not possible to have one PES minimum,
or resonance, made by point group degenerate states. However, if these point
group degenerate states are quasi-degenerate with a different state, the
situation becomes much more complicated, and will not be considered in
detail here. In these cases, resonance between these states may be possible,
and the symmetries of the resonance hybrids will follow the symmetry descent
path of the full point group of the system. An example of this situation
recently described in the framework of MO theory is the NO; radical [34].

The real Hilbert space is always partitioned into a direct sum of
subspaces, each representing a different energy eigenvalue of the spectrum of
the hamiltonian operator:
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When two or more eigenvalues happen to be equal, or nearly equal, we say
that there is an “accidental degeneracy”. Since the states belong to different
subspaces, there is no symmetry descent path to follow. The direct product
decomposition is the mathematical tool to analyse the symmetry of the
allowed individual adiabatic states. It is related to the “ascent in symmetry”
method [35] and justified by the Littlewood-Richardson rules for
decomposition of tensor spaces in independent parts [36]. These rules define
the only permissible decompositions of a tensor space (in our case, point
group space), providing us with the possible symmetries of the resonance
hybrids, which reproduce the total symmetry of the system. A simplified
statement, suitable for our purposes, is that “the direct product between the
subsystem point group and the group that relates (maps) the subsystems
should recover the full symmetry of the system”. Notice that both the
subsystems’s point group and the group that maps the subsystems must be
invariant subgroups of the full point group. In Table 1 all point groups are
classified according to the possibility of being described by a direct product
decomposition [37].

Table 1

Point groups decomposable in direct product | Point groups not decomposable in direct
forms product forms

Co, Su(n=4k+2,k=1,2,..) Co, Sn(nz4k+2,k=1,2,..)

Dqg (n odd) Dnd (n even)

Chah, Dahs Thy On, In Ci, Cs, Cov, Dy, T, T4, O, 1

Table 2

Possible point group decompositions in direct products

Co=Can® C, (n=4k +2,k=1,2, ..)

Sn=Sw2® Ci(n=4k +2,k=1,2,..)

Dnd = Dn ® Ci (n Odd)

Cih=Ch®C;, C,®C;(neven), C, ® Cs (nodd)

Dih=Dy®Ci, D, ® C,, Cpy & Cs (neven); D, ® Cs, Cpy ® Cs (n 0dd)
th = Coov ® Ci B va ® Cs

Th =T® Ci

Oh =0® Ci

Ih =1® Ci
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Good examples are the core hole excited states of homonuclear molecules.
When one electron is removed from a core orbital, the original D, symmetry
is lowered to C.,,. The D.; group can be decomposed into two Cey
components related by a C; or C, operation, so it is fair to consider that the
core-hole excited states are described by resonance between the two
structures. The adiabatic subsystems have, by definition, zero overlap in the
real space. Their interaction is defined only in complex space through the
explicit overlap between the many-electron states.

An inspection on Table 2 shows that it is not possible to relate the
benzene (D¢, symmetry) to Kekulé (Dsy) or Dewar (Dy,) structures. The
ground state of benzene is not degenerate, and there is no theoretical or
experimental evidence of a conical intersection with a degenerate state near
the ground state geometry [38]. If there is no intersection of degenerate point
group state, one cannot follow the symmetry descent path in this case. The
only possibility would be that of an accidental degeneracy, but this is ruled
out by the impossibility of direct product decomposition. Thus, as already
stated before, the ground state of the benzene molecule is not described by a
resonant mixture of Kekulé and/or Dewar structures.

=

As the SCVB treatment had already shown [22], the “n” system of benzene is
correctly described by a one configuration (one “chemical structure”) of
singly occupied atomic-localized non-orthogonal orbitals, making a six-

electron bond, with no resonance.

Thus, the stabilization of the benzene molecule is due to the formation of the
six-electron bond. From the MO point of view, the stability would be
attributed to the “n” system delocalization. However, as previously
mentioned, the Hartree-Fock wave function for benzene (and for all aromatic
systems) is unstable [32], and the delocalization effect is exactly a
manifestation of this instability [9]. Therefore, MO theory does not really
explain the stability of these molecules.
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At first sight it may appear that this model is difficult to reconcile with
the traditional process of “molecular fragmentation” which is inherent to the
classical VB description of the formation of a two-electron bond. However,
Shaik and Hiberty presented in a series of papers a possible mechanism,
through a nonadiabatic process, which can account for the formation of these
multiply bonded systems retaining the classical concepts of molecular
fragmentation [15,39,40]. The same reasoning equally applies to the allyl
radical, whose “n” system is correctly described by one configuration
representing a three-electron bond [28].

In summary, we have enlarged the concepts of chemical structure and
resonance in such a way as to make then conform the more general theories of
molecular quantum mechanics. Classical VB concepts have been extremely
useful in rationalizing empirical facts but became inadequate in the light of
the new theoretical developments. The new concepts presented here are
consistent both with the mathematical models of quantum chemistry and with
empirical chemical facts, and their formulation recognize the latest research
advancements.

1.6. The Generalized Multistructural Wave Function (GMS)

The GMS wave function [1,2] combines the advantages of the MO and
VB models, preserving the classical chemical structures, but dealing with
self-consistently optimized orbitals. From a formal point of view, it is able to
reproduce all VB or MO based variational electronic wave functions in its
framework. Besides that, it can deal in a straightforward way with the non-
adiabatic effects of degenerate or quasi-degenerate states, calculating their
interaction and properties.

The GMS wave function can be defined as

Naner Ny

l{IGMS =2 ZC,I¢,I,

1= I=1

where (o,-' represents the ith spin eigenfunction (V) of the Ith structure (Nyyyc)
and the ¢/ its weight in the expansion. There are no restrictions whatsoever on
the form of the wave function (o,-l. Each of the go,-’ can be individually
optimized at the Hartree-Fock, or multiconfigurational (GVB, CASSCF)
level, followed or not by configuration interaction (CI) treatment.
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Each one of the ¢/ is represented in a basis of orthogonal orbitals {le }
optimized for the Ith structure. Although the orbitals of a given structure are
taken to be orthogonal to each other,

(@

D, )=0,

a.p

no such restriction exists for the orbitals belonging to different structures I
and II,

(@

n\ _ ol
D)) =S,
The coefficients ¢;' are obtained variationally by solving the equations,

<é\PGMS IH - EIIPGMS> =0
(H-SEYC=0

where H and S are the interaction supermatrices containing the diagonal
(same structure) and interstructural matrix elements. The matrix elements
involving orbitals belonging to different structures are computed using a
biorthogonalization procedure.

1.7. Equivalence between MO and VB based wave functions

The unitary group invariance of the hamiltonian assures that its exact
eigenvalue spectrum is invariant to a unitary transformation of the basis. It
means that a “full CI” calculation must provide the same eigenvalues (many-
electron energy states) as a “full VB” calculation. However, at intermediate
levels of approximation, this equivalence is not straightforward. In this
section we will sketch out the main points of contact between MO and VB
related wave functions.

The most simple and well known equivalence holds for the special case
of two electrons in two orbitals, described by GVB(pp) and CASSCF(2,2)
wave functions for covalent bonds [41]. When the bond has a mixed ionic-
covalent character, the CASSCF(2,2) description is able to account
approximately for this effect due to the presence of an extra ionic
configuration. This problem is exactly replicated in a larger scale when
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considering the equivalence between a CASSCF(N,N) and an unrestricted
GVB(N) or SCVB(N), where N is the number of active electrons. The
CASSCF natural orbitals can always be localized in approximately
(sometimes exactly) atomic basis, providing as in VB theory, one
configuration of non-orthogonal orbitals [42,43]. However, these orbitals are
not necessarily singly-occupied, as they always are in single configuration VB
theories. When they are singly occupied it is possible to extract VB wave
functions from MO calculations. Being specific, the CASSCF(N,N) is
qualitatively equivalent to a SCVB(N) or GVB(N) calculation when there is
no net charge transfer between the N atomic-localized non-orthogonal
orbitals, meaning that they are all strictly singly occupied [42].

In cases where this equivalence is not feasible, we are in the presence
of degenerate or near-degenerate states of the many-electron system, and one
configuration VB wave functions no longer represent the system correctly,
since it is not possible to define real-valued reduced density matrices. In this
situation we will have a mixing of many-electron states, and the non-
orthogonal orbitals will not be strictly singly occupied, preventing the
association of this density with a “chemical structure”. In this case,
multistructural or multistate theories are required. One should describe on the
same footing the interaction among different many-electron states. In MO
theory this can be accomplished approximately by MR-CI (multireference
configuration interaction) on a basis of state-averaged CASSCF orbitals for
the degenerate or near degenerate states [29]. Other MO based approaches are
the B-CC (Brueckner orbitals coupled cluster) and QRHF-CC (quasi-
restricted Hartree-Fock coupled cluster) [44], but since they are non-
variational it is doubtful that they could treat excited states in an unbiased
way. Moreover, in all MO based approaches, the idea of “chemical structure”
is completely lost, avoiding a deeper understanding of the physico-chemical
features of the coupled system. In VB theory one should consider a
superposition of resonance structures. Each resonance structure should be
associated with an adiabatic state, and with a “chemical structure”, providing
a clear picture of the physico-chemical features of the system. To meet
simultaneously these requirements, it is necessary to consider explicitly the
non-orthogonality effects between the structures. From a formal point of
view, any multistructural VB method can deal with this situation, but in
practice the existing methods generally are restricted to smaller domains, and
the choice of which one to use will depend on the specific case [3].

Formally, all these wave functions, VB or MO based, can be
reproduced at the GMS level. When using one structure, the GMS wave



135

function is equivalent to MO-CI, single or multireference, with complete
flexibility as to the choice of configurations. It must be noted that any
monoconfigurational VB (one “chemical structure™) calculation can be
reproduced exactly at the MO-CI level provided that the correct natural
orbitals and CSFs are chosen. When using more than one structure, in the
most general sense defined in this work, the resonance effects between
adiabatic states (or “chemical structures”) can be properly treated, since there
are no orthogonality restrictions among different structures in the GMS
methodology. Thus, the form of the GMS wave function allows a precise
physico-chemical assessment to the unbiased defined concepts of chemical
structure and resonance presented in this paper. It should be clear that the
GMS method is formally suitable to treat all nonadiabatic processes that may
occur in atoms or molecules, for bound and continuum states, as will be
explored in forthcoming papers.

2. APPLICATIONS

In this section we will review briefly some of the recent applications of
the GMS wave function. A previous review [45] covers most of the early
applications of the GMS wave function. Our main goal is to illustrate some of
the new ideas presented in the last section, using the most recent applications
and some earlier but not unpublished material.

2.1. Core-hole excited states

The proper theoretical study of core-hole excited states has been one of
the most challenging problems in molecular quantum mechanics. The
difficulty stems from the fact that these states lie above the continuum part of
the spectra, and their attainment as high-energy roots in an ordinary
configuration interaction calculation is impossible [46]. However, core-hole
excited states play an important role in the identification of chemical species
by X-ray based spectroscopic techniques. Additionally, there are many
interesting effects that are particular to this region of the spectra and their
study are the object of active research [47].

When a given symmetric molecule contains indistinguishable nuclei,
the associated core-hole spectra present extra complications. At the
monoconfigurational level, symmetry broken localized ROHF solutions have
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lower energy than the symmetry-constrained solution (about 10 eV in first
row atoms). These localized states related to indistinguishable nuclei are
“accidentally” degenerate and the correct approximation to their energies and
properties should consider the superposition of the states in an unbiased way.
The GMS wave function has been successfully applied to the accurate
determination of transition energies, and optical and generalized oscillator
strengths for core-hole states [48-52]. In this paper we will comment briefly
on the latest applications of the GMS wave function to the study of core-hole
states in molecules possessing identical nuclei.

The CO, molecule has two identical oxygen nuclei that can give rise to
accidental degeneracy effects in its core-hole spectra. The total symmetry is
D, but the core-hole localized states have C., symmetry. The superposition
of these two symmetry broken degenerate solutions recovers properly the total
symmetry of the molecule. The GMS wave function was used in conjunction
with spectroscopic measurements to help the assignment of the electronic
transitions of the inner-shell spectra of the CO, molecule [51]. Three
structures were used in the calculations: two ROHF degenerate solutions with
the hole localized in each one of the oxygen atoms, and one ROHF-CI
delocalized structure. Transition energies and intensities were calculated,
presenting excellent agreement with the experiments (Table 3).

Table 3
Transition energies for inner-shell excitation of the CO, molecule
Experimental (eV) Calculated (GMS) (eV) Assignment
5354 535.5 log — 2x,
535.7 loy, > 2my
535.7 log — 3s0,
536.9 loy = 3so,
538.8 538.0 log — 3po,
538.0 loy = 3poy
538.8 539.3 lo, —>3pm,
539.6 log — 3pm,
538.8 540.3 log — 4sc;
540.3 lo, = 4s0,

It must be noted that the experiments did not resolve the bands of the quasi-
degenerate states and the theoretical calculation is essential to get some
understanding of the processes involved. The sum of the calculated optical
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oscillator strengths for the lo, — 27, and lo, — 2m, states (which are
experimentally indistinguishable in an electron impact based experiment)
agrees well with the measured one (calculated: 0.12; experimental: 0.11 to
0.13). The GMS wave function was able to reproduce not only the transition
energies but also the optical oscillator strengths, which is a much more
sensitive test for a wave function. For an extensive discussion on the profiles
of the calculated and measured generalized oscillator strengths of the inner-
shell spectra of the CO, molecule, the reader is referred to the original paper
[51].

A similar theoretical study was undertaken for the core-hole states for
the ethylene molecule [52]. There are two identical carbon atoms and the
molecule has Dy, symmetry. The localized core-hole states have C,, symmetry
and the direct product C,, ® C; recovers properly the full symmetry of the
system. The results for transition energies and optical oscillator strengths
agree well with those available in the literature.

2.2. Molecular Structure and Valence Spectroscopy

As an illustration of the new ideas presented in this review, we can
consider the problem of determining a chemical structure of the ozone
molecule (O;). Traditionally, this molecule is regarded as a resonance hybrid
between two zwiterionic structures. In the early seventies, the GVB(pp)
method gave a very different picture, regarding the molecule as a singlet
biradical, with a long “n” bond between the terminal oxygen atoms [53]. As
already explained for the allyl radical, C,, molecules cannot have degenerate
resonance structures, since there is neither point group degenerate states nor
accidentally degenerate states, because C,, is not a direct product group.

0) O
O/ \Oe % GO/ \O

The GMS wave function for the ozone molecule supports the GVB(pp)
picture for the ozone molecule in a straightforward way [54]. The two
classical resonance structures were considered together with the biradical one
in a three structure GMS-CI calculation. The ground state of the O; molecule
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is solely described by the biradical structure, the contribution of the localized
ones being completely negligible.

o/ O\o

This is in perfect harmony with the theory presented in the first section. In
fact, a simple qualitative application would allow an a priori deduction of the
chemical structure of the O; molecule, since the biradical is the only non-
degenerate symmetric structure possible.

The (n > 7*)"* excited states of the pyrazine molecule are a well-
known case of wave function symmetry breaking [27,55]. An accidental
degeneracy arises when one considers the valence electronic excitations
within the equivalent nitrogen lone pairs. The pairs are in opposite and
equivalent positions and, when there are two singly occupied orbitals in
different symmetries, we will have a pair of accidentally degenerate states as
shown below:

FOP — FOOE

The total symmetry of the molecule is Dy, so we cannot have point group
degenerate states. The accidentally degenerate states represented above have
C,, symmetry. The direct product C,, ® C recovers properly the full
symmetry of the system. Depending on the particular excitation and final spin
state four states can be generated. In Table 4 we compare the results of
Hartree-Fock (HF), configuration interaction with singles and doubles
excitations (CI-SD) and the two structure GMS calculations, with the
available experimental data.



139

Table 4

Transition energies (¢V) for the (n — n*)'" excited states of the pyrazine molecule
State HF CI-SD GMS Exp.
"By 4.52 3.51 3.27 3.33[56,57]
'Bs. 5.27 4.20 3.89 3.85[56,58]
By 6.23 5.21 4.77 4.59 [56]
'Byg 7.11 5.91 5.48 5.19[56,59]

The results from the GMS calculation are always better than the HF and CI-
SD ones, with the additional advantages of compactness of the wave function,
and exact preservation of the full symmetry of the system.

3. FINAL REMARKS

In this chapter we presented the Generalized MultiStructural (GMS)
method as the most general variational approach to calculate electronic wave
functions. Emphasis was given to a proper understanding of the general
conceptual features of the MO and VB methods and the relationship between
them. Considering only valence electrons, we defined chemical structure as a
configuration of singly occupied atomic-localized non-orthogonal orbitals,
and stressed that it is valid only for an adiabatic state. The classical valence-
bond concept of resonance was recast in a physically meaningful way, being
exactly related to a nonadiabatic effect of point group or accidental
degeneracy. In the case of accidental degeneracy, a set of point group based
“selection rules” for the possible symmetries of resonant structures was
discussed and applied to representative cases. It was shown that in these cases
neither single configuration VB nor single state MO approaches could
approximate the correct electronic wave function. Multistructural
methodologies are then required, and the GMS method seems to be flexible
and generally applicable. Finally, we briefly presented some applications of
the GMS wave function.

At first sight, the concepts presented in this chapter may seem a little
odd if compared to classical VB theory. However, in adopting these new
concepts, we can bring physico-chemical significance to the resonance
concept, establishing a common line of reasoning with MO theory. This is
important because once one begins to increase the sophistication of the
calculations, the numerical differences between MO and VB theories tend to
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disappear. Secondly, VB theory has suffered for a long time the
(unjustifiable) fame of not being physically motivated. Since the difference
between chemistry and physics lies only in our heads, the ideas presented
above put the two lines of thought in a single framework, while keeping the
specific features of each one.
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A spin-free approach for valence bond (VB) theory, based on symmetric
group techniques, is introduced in this chapter. Bonded tableaux (BT) are adopted
to represent VB structures, and a paired-permanent-determinant algorithm is
developed to solve the so-called “N!” problem in the nonorthogonal VB method,
followed by the introduction of our ab initio VB program, Xiamen-99.
Furthermore, applications of ab initio VB method to the resonance effect,
chemical reactions, and excited states are carried out by the Xiamen package.

1. INTRODUCTION

The striking difference between the molecular orbital (MO) theory and the
valence bond (VB) theory[1] lies in the fact that all orbitals in the former are
delocalized and orthogonal, while orbitals in the latter are localized and
nonorthogonal. The nonorthogonality of orbitals leads to the notion that chemical
bonds originate from the overlap of the bonding orbitals, which is the heart of the
chemical theories. Thus, the MO and VB methods are complementary rather than
exclusive. However, the notorious N! problem due to the nonorthogonality of
orbitals in the VB method hindered the development of ab initio VB approaches,
although significant progress has been made by a few groups [2-7]. Particularly,
Goddard’s generalized VB (GVB) [4], which makes a compromise between the
MO and VB methods by introducing the strong orthogonality approximation and
thus notably reduces the computational costs, still enjoys great popularity. In the
past decade a significant resurrection of interests in the ab initio VB methods
[8-11] has been observed. This trend is partially promoted by the advancement of
computation technology, however, the growing demand for ab initio VB methods
to solve many tricky computational chemistry problems, for which MO methods
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are unable to give definite answers, nevertheless is the driving force.

In the MO theory, the most reliable approach for the study of reaction
pathways perhaps is CASSCF [12, 13], but multi-VBSCF is essentially at the
same level with CASSCF [14]. Since a VB wave function can be expanded into
the combination of numerous Slater determinants that are used to define
configurations in the MO theory, the VB theory provides a very compact, accurate
description for chemical reactions. While both MO and VB theories have their
own advantages as well as disadvantages, in our opinions, there are some areas
where the VB theory is particularly superior to the MO theory: 1) the refinement
of molecular mechanics force field; 2) the development of empirical or
semi-empirical VB approaches; 3) the impact of intermolecular charge transfer or
intramolecular electron delocalization on the structure and properties; 4) the
validation of classical chemical theories and concepts at the quantitative level; 5)
the elucidation of chemical reactions and excited states intuitively.

As one of the most remarkable progresses in chemistry, molecular simulations
of condensed states such as solution and biosystems are receiving more and more
attentions [15]. Generally molecular simulations are based on molecular
mechanics (MM) methods, where the force field is normally expressed as the
summation of bonded and non-bonded terms [16]. Unfortunately, very few leads
are available to guide the formulations and parameterization of these energy terms.
For example, whether and how the polarization effect is important in the
simulation of protein and DNA interactions is still an open question [17], although
there is much interest to develop polarizable force fields [18]. Since in the VB
theory, wave functions for diabatic states (or resonance structures), where each
bonding electron pair is localized in the bonding region, can be easily constructed,
it is possible to derive various energy terms such as polarization and charge
transfer energy and compare their contributions to the complexation energy
between monomers [19], and this type of information is indispensable for the
validation and refinement of MM force fields [20]. Notably, the importance of
electron transfer between protein and aqueous solution is especially difficult to
evaluate. Most recently, Thompson and Hynes tried to estimate the charge transfer
effect in simple hydrogen bonding systems at the MM-VB level [21].

Closely related to the above merit of VB methods, the unique definition of
diabatic states also allows us to derive the energy profiles for diabatic states. Since
for many reactions the whole process can be described with very few resonance
structures, the comparison between the diabatic and adiabatic state energy profiles
can yield insight into the nature governing the reactions [22-24]. In fact, even for
complicated enzymatic reactions, simple VB ideas have shown unparalleled value
[25, 26]. However, the further utilization of the VB ideas at the empirical and
semi-empirical levels should be carefully verified by benchmark ab initio VB
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computations.

While the concept of resonance has been broadly but qualitatively used in
chemistry, the exploration of the nature of some chemical reactions and the
understanding of structure-activity relationships call for the quantification of the
resonance effect. For example, conventionally, it is believed that m electron
delocalization is responsible for the greater acidity of carboxylic acids compared
to aliphatic alcohols. However, this explanation was challenged by Siggel and
Thomas {27], who attributed the difference in acidity to electrostatic interactions.
The controversies went on due to the lack of absolute data to support either side
[28], until ab intio VB calculations by Hiberty and Byrman [29] presented reliable
data to show the importance of electron delocalization in carboxylic anions.
Similarly, our studies on the delocalization in allyl cation, radical and anion also
solved the arguments about the magnitude of the resonance stabilization in these
systems and showed that in the cation and anion the resonance stabilization is
comparable, which leads to the conclusion that the averaging of charges inside a
system is the main driving force for electron delocalization at least in these allyl
ions [30].

Although at the present ab initio VB methods are still limited to small systems,
the impact of this development on the reformation of our chemical knowledge is
significant and diverse. In brief summary, the small benchmark calculations can
not only enhance the reliability and legitimization of simple VB models and
monitor the development of semi-empirical VB approaches, but also provide the
guidelines for the refinement of MM force fields, which have been widely applied
to the simulation of biosystems. The VB project in Xiamen University started in
1986, when a spin-free form of VB method was independently derived [31]. The
same form was also proposed by McWeeny [32]. In the earlier years we wrote a
simple VB code and applied it to some simple systems [33, 34]. The systematic
development of a complete and efficient VB code nevertheless started in 1992
[35], when an algorithm based on the left coset decomposition of the symmetric
group was proposed and programmed [36]. While this approach has been further
pursued by Li after his moving out of our group [37], later we developed a more
efficient algorithm called the paired-permanent-determinant approach [38, 39],
on which our present code, Xiamen-99, is based. A similar algorithm for S =0, 2
was also presented by Li and Pauncz [40].

The arrangement of this chapter will be as following. Firstly, we discuss the
construction of the bonded tableau basis and its properties. Secondly, the
paired-permanent-determinant method is derived, followed by the introduction of
our Xiamen-99 ab initio VB program. Then we show the applications of the ab
initio VB method to the resonance effect, chemical reactions, as well as to excited
states. Finally, we give a brief summary and an outlook for our future work.
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2. BONDED TABLEAU VALENCE BOND APPROACH

2.1 Bonded tableau basis

The most general many-electronic wavefunction in spin-free quantum
chemistry, which should be a spin eigenfunction and share anti-symmetry of
electron indices, is of the form,

¥, =A4Q,0,, ()
where 4 is an antisymmetrizer, ) is an orbital product

Qo =3 (1)@, (2)- oy (N) @
and O s a spin function. For VB approaches, spin functions are Rumer bases

O =2"[a(i)) BUj) - Bl)a(i)Ix 27 [odiy) BUiy) — Bl o )]+
=127 BU) - BN ek), )

(&) k

where (ij) runs over all bonds and & over all unpaired electrons. Given an orbital
product Q,, a complete set of VB functions is constructed by choosing the spin
functions ®g. Using the antisymmetry property of electron indices in VB
functions, one can rewrite the VB function, Eq. (1), as

Y, =AQ,0,, @)
where

0, =27 [a() (2) - Ba(2)]x 2V [a(3) f(4) - B(B)ex(4)]-- (5)
and

Q, =27"[¢, (D8, () +¢;, (g, (DIx277 [, (3)¢;, (4)+6,, 3, (4)]--.(6)

Eq. (4) shows that a complete set of VB functions can also be given by fixing
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a spin function and changing the orbital product Q. .
The antisymmetrizer can be decomposed into e/t and e?!, the operators

which operate on the orbital and spin spaces, respectively, as [41]

=S Aseeld 0

rs o

where A[,’” = (1) is a coupling coefficient, [A] is the conjugate representation of
[A], and the projector is defined through the irreducible representation matrix
elements, DIY(P), as

el = (ﬁ)vz ZDM](P)P (8)
rs N! rs *

P

Thus, one can have

Wy =Ny ZA[f]eE:']QKeg]QO s )]
where N is a normalization factor and [A] = [2V*, 1%). It can be easily proved
that

10 = 8,110 . (10)

Using Eq. (10) and the properties of the first Young tableau [31], one can reduce
Eq.(9) to

Wy =Ny ZA[rl]e%]QKe;}f]@o ) (11)
where (O is now simply an orbital product,

Qp =9, (D¢, (D¢, (39;,(4)--- . (12)

In spin-free quantum chemistry, matrix elements of a spin-independent
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Hamiltonian are determined only by the spin-free function

@, = Ngel'Qp, (13)

which is called a bonded tableau (BT) state [31, 42], and where Ny is a new
normalization factor. In Eq. (13) one omits » from ®y since the matrix elements
are independent of r in the spin-free treatment. A BT basis can be denoted as

a a
b b

c ¢

- |=Ngelt's, )0, ()8, 3)y (4)-, (14)

which clearly corresponds to a VB structure with bonds a-a’, b-b’, c-c’, ....

It is proved that BTs have the following symmetry properties, which exactly
echo the symmetries of VB structures:

a b b qa
= ’ (15)

a b |c d
d=l|la b’ (16)
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d=-. .2 (17)
a b
b a
a b b c la c
c a b
A=ad. =] (18)
a b b b
b - a
=< . (19)

For a given orbital configuration, various BTs can be constructed by taking
different orbital pairing schemes. Like VB structures, all possible BTs form an
overcomplete set and are not independent of each other. The construction of a
complete BT set from an overcomplete one is not unique. For the VB approach,
one can define the functions corresponding to canonical VB structures as the
canonical BTs (CBTs). By this definition, all doubly occupied orbitals are placed
in the upper part of the tableau. In the lower part, each two bonding orbitals
occupy the same row, while the unpairing orbitals are inserted in the
single-column part. Another simple way to construct CBTs is to follow the Weyl
rules [31], which is more suitable for CI procedures in molecular orbital theory.

2.2 Matrix elements of the Hamiltonian and overlap

In the spin-free VB theory, the many-electron wavefunction for a system is
expressed as a linear combination of spin-free VB functions

Y= Cy®y. (20
K
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Clearly @ may be a BT, defined by Eq. (13). The Hamiltonian and overlap matrix
elements are now written as

Hy =(@|H|®,)= Y DI(P)Q,|HPIQ,) @1)
PeSy
and
My =<¢K‘®L>= ZDH](PXQK’PIQL), (22)
PeSy

respectively. The coefficients Cy in Eq. (20) are easily determined by solving the
usual secular equation HC = EMC. The orbital products Qx and Q; in Egs. (21)
and (22) are given according to their corresponding VB structures. For the sake of
convenience, they are supposed to be

Qy =U=u,()u,(2)---uy(N), (23a)

Q, =V =v(Dv,(2)---vy(N), (23b)
and follow the notations
s =(lv;) fy=@lP,) gow =(uu,lglvvi)- (24)

It is evident that the matrix elements of the Hamiltonian and overlap are
independent of the index » of BT in Eq. (13) and only the first diagonal element of
the irreducible representation matrix, Dl[f](P) , is required, which has been well
discussed [31, 33, 42, 43], and is easily determined. It is worthwhile to emphasize
that Eqs. (21) and (22) are the unique formulas of the matrix elements in the
spin-free approach, even though one can take some other forms of VB functions.
For example, it is possible to construct VB functions by Young operator [2], but
the forms of the matrix elements are identical to Eqs. (21) and (22) [44].

Both of Egs. (21) and (22) involves N! terms due to N! permutations of the
symmetric group Sy, which is similar to a determinant expansion or a permanent,
except for different coefficients. If one-electron functions are orthogonal, only a
few terms are non-zero and make contributions to the matrix elements [42], and
consequently the matrix elements are conveniently obtained. However, the use of
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non-orthogonal orbitals is one of the most important characterstics of a VB
approach, and thus alt ! terms make contributions to the matrix elements. There
have been very efficient algorithms for the evaluation of a determinant, and it is
not too difficult to evaluate a permanent. Unfortunately, there is still no efficient
algorithm for the evaluation of Hamiltonian and overlap matrix elements. This is
the well-known “N!” difficulty in valence bond theory. In the next section, we will
define a new function, called paired-permanent-determinant (PPD) [39], to
discuss how to calculate Hamiltonian matrix elements as efficiently as possible,
which will enable one to implement a spin-free VB program.

3. PAIRED-PERMANENT-DETERMINANT ALGORITHM FOR
NONORTHOGONAL VALENCE BOND METHOD

In this section, a new function, called paired-permanent-determinant (PPD), is
introduced, which is an algebrant. An overlap matrix element in the spin-free VB
method may be obtained by evaluating a corresponding PPD, while the
Hamiltonian matrix element is expressed in terms of the products of electronic
integrals and sub-PPDs.

3.1 Paired-permanent determinant (PPD) function
Given an NxN square matrix 4 = {a;,i,j=12,--,N}, the PPD of 4 for the
irreducible representation [ 4 ] is the number

ppd(A, A= Y D (Pay, ay,, +ay,, , 25)
PeSy
where
1 2 .. N
P= (26)
P P Py

and the summation extends over all N! permutations of Sy. In a similar fashion to
a determinant, one can denote a PPD by
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ap a; An Qypst AN
a; ay e Dn Apsl e N
ppd(ﬂ', A) = an,l an,2 e an,n an,n+l o an,N ’ (27)
an+l,l an+l,n+1 an+l,n an+l,n+l o an+1,N
Ay, ay, e Ann AN+l e ay N

where n = N — 25. The right hand side of Eq. (27) may be divided into 4 zones.
Two diagonal zones of nxn and (N — n)X(N — n) are, respectively, the “paired
zone” [39], which describes bonding electron pairs in the VB method, and the
“unpaired” zone, which is for unpairing electrons. Two off-diagonal zones are for
the interactions between paring and unparing electrons. For simplicity, one may
also denote ppd(A, 4) as

ppd(2, 4) =[ai i), (28)

seeintl, N)

where the superscript (1, 2, ..., n; n+ 1, ..., N) of a is the order of the row in array
A, and the subscript ( 1, 2, ..., n; n +1, ..., N) is the order of the column. In a
similar fashion to a determinant or a permanent, the PPD is an algebrant that
depends not only on the matrix 4, but also on the irreducible representation [A].
For § = 0, only the “paired” zone exists, which is also called paired-permanent
[38], while for [A] = [1"], only the “unpaired” zone exits, which is exactly a
determinant.

According to the symmetry properties of DI*)(P), one can divide row and
column indices of a PPD into two sets: paired symmetry indices (PSI) i, i < N—28,
and anti-symmetry indices (ASI) 7, i > N-2S. Furthermore, 2k-1(2k) is refered to as
the partner of i = 2k (2k-1), denoted as i, if i is a PSI. Evidently, PPDs shares
symmetries similar to the BTs, as follows:

1. ppd(4, 4) is invariant under transposition, and one may write

ppd(4, 4) =ppd(4,4"), 29)

2. ppd(4,4) is invariant under exchange between row (column) i and row
(column) 7,
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(30)

(12 Lot L SN (1,2, 0 min L,
(12 x’ sl N T M2, 0 a4 L N |2

3. ppd(4, 4) is invariant under exchanges between row (column) i and row
(column) j and between row (column) 7 and row (column) j,

GD

(l 2,. Lmn+l,. (1 2,. I o+l N
(l 2,. Lmn+l. (1 2,.. Lo+l N2

4. ppd(4, 4) changes its sign under exchange between row (column) i and row
(column) j, if i, j€ API.
Various PPDs may be obtained by exchanging the row (column) indices for a
given matrix 4. The total number of the PPDs is

N!

NS (N 12-8)28) G2

due to the row (column) symmetries of the PPD. Like BTs, all PPDs obtained
from a given 4 form an overcomplete set. One can refer to the independent PPDs
as canonical PPDs. The definition of canonical PPD may be given by either the
standard Young tableaux or the Rumer rule.

Eq. (25) may be rewritten as

ppd(4,4) = 3 DIHI(P)PQ,, (33)
PeSy

where

Qy=ayay Ay 1y Ay s (34)

and permutation P operates on the second index of a;;. Exchanging the columns of
the matrix A4, one can have various PPDs,
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®(g)=ppd(4,4,)= D DIH(P)Pg™'Q,, (35)

PeSy

where g is the permutation permuting the column indices of the matrix 4 to get the
new matrix A,. It is clear that the canonical PPDs may be defined as

@, =d(c,)= . DI (P)P0,,Q,, (36)

PeSy

where o;; is the permutation permuting the index numbers of the first Young
tableau to those of Young tableau i. It can be shown that a PPD associated with
permutation g may be expressed as

®(g)=Y B;' D' (g)®,, 37)
ij
where the matrix B is defined as

B; =D(o ), (38)

which is in upper triangular form [44]. Thus, ®(g) may be expressed in terms of
the linear combination of canonical PPDs,

()= Ci(2)P;, (39)

where

Ci(g)=Y.B;'D'{(g). (40)
J
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3.2 Evaluation of PPDs

It is clear from the above discussion that the difference between a PPD and its
corresponding determinant solely lies in the coefficients of the permutation P.
Unfortunately, this makes PPDs unable to share many of the nice properties of
determinants. For instance, the basic multiplicative law valid for determinants

det(AB) = det(4) det(B) @l

is flagrantly false for PPDs. Also, the addition of a multiple of one row (column)
of 4 to another does not leave ppd(A, A) invariant. These facts greatly limit the
exploration of computational techniques for ppd(A4, 4). Fortunately, the Laplace
expansion for determinants has a simple counterpart for PPDs. A procedure for
evaluating ppd(4, A), which is similar to the Laplace expansion method, has been
presented. We now briefly describe the procedure and give an example.

It can be shown that a PPD of order N may be obtained by evaluating M(N-1)/2
PPDs of order N-2 as follows,

ppd(A, A) =Y dy A7 ppd(h, 45), (42)
k<l

where d,; =1, ifk, 1 € PSLand /=k; d,, =-1/2,ifk €PSL,but [ #k; d;, =0,
ifk, | € ASI, 4 is a PPD with order 2

[259 ak;
=aya; +agay, (43)
a; 4

and ppd(/ll,A((f))) is a sub-PPD of [4,]=[2"'>5",1%5] obtained by removing

rows k, / and column i,i of A, whose order is such that the column indices remain
unchanged, and the row indices remain unchanged if /=k , otherwise / is
replaced by & .

Example. APPD with N=6 and S = 1 is expanded as
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ppd([zzalz]’A) = mIZAIZ + m34A34 ZZ ley szley 4

i=l j=3 1—3 Jj=5

where m;; is a minor, defined as

and Ay is its corresponding complement ppd([2',1°], 47)).

Furthermore, a complementary minor can be evaluated as follows:

ayllass a 1llasz asallass a
142 (|2) Q33 A3fldss dsg 33 A34[|945 Gy
ppd([2°,17] 12) 3

Q43 Qu4(|365 Ao As3 ds4|Aes e

_Las3 assjiass asq) 1|as3 Asa|d3s 36 (44)
2lag; agl|ass ass| 2|43 asljass Ges

_ 1|3 Ga||Gss ass
2\as; agllass as

With Eq. (42), one expands a PPD by choosing a PPD of order 2 as a minor,
and the complementary minor is still a PPD. One can also take a minor from the
ASI part.

It can be shown {39] that a PPD can also be expanded as follows:

N
ppd(4, 4) = a, cppd(4,, 4f)), 1e ASI, (45)
k=1

and
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B

——— 3 (-1)? ppd(4,, 4)), ke PSI

2s +1,5
cppd(4,, 4F) =<4 —ppd(4,, A((,"))) ke ASLbutk =1, (46)
ppd(4;, A7), k=1

where cppd(4,, )) may be considered as the complementary minor of ay,
[4,]=[2""2% 125" ] ALY is an (N —1)x(N —1) array obtained by interchanging
the kth and the /th rows of 4 and then removing the kth row and the Nth column,
A, is an N X N array obtained by operating ¢ on the row indices of 4, and the Q
contains all transposition (kl), / € ASI, which is to act on the row indices of A((k )

Clearly, Eq. (45) reduces to the formula for the Laplace expansion of a
determinant, if [A]=[1"].

Example. APPD with N= 6 and S = 1 is also expanded as

PPA2, 171, )= =+ Yo ppd(127.1'), D) - ppd (2%, 1'], A e)
i=1

—ass ppd([22,1'], A((s))"'%e ppd([2°,1'], A((G)

Generally, Eq. (45) is much more troublesome than Eq. (42) and it is not
essential to the evaluation of a PPD. However, it is of great importance to the
application in the VB approach. Using Eq. (45) successively, one can expand a
PPD by taking a determinant with order 2 as a minor [39], which is also required
in the VB approach.

The discussion so far is applicable to any given spin number S. It is clear that
the expansion of a PPD, Eq. (42), will be greatly simplified if the spin number S =
0. In this case there are not ASI indices any more, and only two values, 1 or —1/2,
are taken for dj. Furthermore, it is possible to choose a PPD with any even order
m as a minor.

It can be shown that

ppd(A, A) = 3" d(,y DDA A5 Ay ) PPA Ay, Ay ) » (47)
(m)

where [4,] = [2™7], [4] = 2™, Ay 1s an mxm array by taking m rows and m
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columns 1, 2, ..., m from A4, the summation runs over all possibilities of choosing
m indices from N indices and all possibilities of the index arrangements of the m:
indices that partner each other in A still remain in pairs, while indices that are
unpaired in A4 should be paired with each other. ppd(4;,4n.m) is the
complementary minor of ppd(4;, 4(.,)), whose index order is such that indices that
partner each other in A still remain in pairs, indices should be paired if their
partners are paired in A, but not in 4. di is given by

_ "
dimy = D’ (48)

where m'is the number of pairs whose indices are unpaired in 4.

3.3 Formulas for Hamiltonian and overlap matrix elements in the PPD
algorithm

It is evident from the definition of the PPD, Eq. (25), that the spin-free form of
VB function, Eq. (13), is a PPD associated with matrix V' = {v(i)}, i.e.,

f 1/2
¢K=(7Vi!) ppd(4,7), (49)

where the normalization factor Ny is neglected, and the overlap is also a PPD,
given by

My, =ppd(4,5), (50)

where § is the matrix of orbital overlap, S = (sy).

Clearly, the overlap matrix elements can be simply obtained by the procedure
for evaluating a PPD discussed above.

The expression of the Hamiltonian matrix elements is a little complicated. For
simplicity, only the case of S = 0 is discussed here. The treatment for systems with
arbitrary spin number has been described elsewhere [39].

The Hamiltonian operator is



159

N N
H=Y f)+) gGJ). (51)
i=1 iJ

Using the definition of partner indices, Eq. (51) is rewritten as

N N
H=Y H@i)+).G(,)), (52)
i=1 ij
where
H@)=f()+ 1) +gG,i), (53)
GG, j)=gl, )N +gl.)+gl, ) +gl,)), (54)

and the summation runs over i, j =1,3,---,N ~1.
Using Eq. (42), the contribution from H(3) to the Hamiltonian matrix element
H KL is

Hy (i)=Y dyHj ppd(4,S), (55)
k<l

where

Hilzgl = faSu + JuSa + FaSa + SuSie + & + it » (56)

and S((i’lf—’)) is an (N-2)x(N-2) array obtained by removing rows & and / and columns
i and i of the overlap matrix S.

Using Eq. (42) successively, the contribution from G(i, j) to Hy is
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G (b )= Y. dymGrr" ppd(Ay, SET"). (57)

k<l,m<n
k<mlzm,n

In the above equation, [4,] = [27%7], S:,I,m" is an (N-4)x(N-4) array obtained by

removing rows k,/,m,and n and columns i,i, j,and j, The value of dy,, is given

as follows:

a. dy y =Lif I=k,n=m; (582)

b. dy =—-%,ifl¢l?,n=r7, orl=k,n#m, (58b)
1. —

C. dkl,mn:_E’lfk’_'m’l:n; (580)

d' dkl,mn =%’if l ;ﬁE’ﬁam ;‘:ﬁ, (Sgd)

and G,'{’,’,{,,, involves 32 terms as follows:

Gllclljr]nn = z(gn rsSirS, I's' +glt A7 Sist Str) (59)

t=i,i t'=j,j
r=k,l,s=m,n

With Egs. (55) and (57), the Hamiltonian matrix elements are finally written in
the form of PPDs as

Hy = deleilng ppd(ﬂ’l’silzg) + Zdu,mnszjljm" ppd(4,, S,I;I,m"

k<l i k<l,M<n i<
k,ml#tm,n / . (60)

4. XIAMEN-99 - AN AB INITIO SPIN-FREE VALENCE BOND
PROGRAM

Xiamen-99 is an ab initio spin-free valence bond package. It is based on the
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paired-permanent-determinant algorithm. The Hamiltonian and overlap matrix
elements are derived from the evaluation of PPDs. In this section, a description of
the package is briefly given, including the algorithm and its capabilities.

4.1 The implementation of the evaluation of a PPD

As shown in the last section, Hamiltonian and overlap matrix elements are
expressed in terms of PPDs. A practical VB package highly depends on an
efficient routine for the evaluation of a PPD. Although a PPD may be expressed in
terms of sub-PPDs of any given order and their complementary minors, in the
present version of Xiamen-99, an algorithm of 2x(N-2) expansion is used. This is
because the 1-¢ and 2-e electron integrals may be built as “effective” 2x2 PPDs.

A procedure for the evaluation involves two parts: one being the numerical
operations of matrix elements, the other being the index operations of the
sub-PPDs. It is obvious that the index operation is independent of the system that
is being studied. To save CPU time in VB applications, all index operations are
pre-computed and stored in the file that accompanies the source code of the
package. In addition, all sub-PPDs that are required in the evaluation are
computed first and are labeled. This will enable one to avoid repeated
computations of sub-PPDs and minimize the computational effort in the
calculation.

4.2 The evaluation of the energy and its gradient vector

From Eq. (50), an overlap matrix element is exactly a PPD and can easily be
evaluated from the routine for PPDs, while Hamiltonian matrix elements may be
obtained by a similar routine to that for PPDs, where 2x2 sub-PPDs are replaced
with “effective” sub-PPDs of one-electron and two-electron integrals.

As mentioned in Section 1, in a traditional VB treatment, a VB wavefunction
is expressed as the linear combination of 2™ Slater determinants, where m is the
number of covalent bonds in the system. For some applications in which only a
few bonds are involved in the reaction, it is too luxurious to adopt the PPD
algorithm, as the number of Slater determinants is still not too large to deal with. It
would be more efficient to use a traditional Slater determinant expansion
algorithm than the PPD algorithm. Therefore, as a complement, a Slater
determinant expansion algorithm is also implemented in the package.

It is well known that energy gradient vectors play an important role in orbital
optimization procedure. Because analytical energy gradient vectors in
nonorthogonal VB approach are much more complicated than those of canonical
molecular orbital method, and it is difficult to evaluate exact energy gradient
vectors, in Xiamen-99, an approximate energy gradient vector is derived by using
the generalized Brillouin theorem [45]. It is shown from our applications that this
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approximation works well and removes much computational effort.

4.3 Valence bond orbital optimization

The most important feature of modern VB theory is that orbitals are allowed
to optimize flexibly. The use of overlap-enhanced orbitals (OEOs) provides the
key to the construction of VB functions of considerable accuracy and
compactness. The disadvantage of OEOs is that they obscure the classical
interpretation of covalent and ionic structures. Hybrid atomic orbitals (HAO),
which are purely localized, provide a clear understanding of the nature of
chemical bonding and are widely applied to VB studies of chemical reactions. But
the VB function with HAOs is usually not as compact as that of OEOs, unless the
breathing orbital valence bond (BOVB) [46] approach is applied. Bond-distorted
orbital (BDO) sets are a balance between OEO and HAOs, where only bonding
orbitals are allowed to mix. A wavefunction for a covalent structure using BDOs
covers 3 localized VB structures: one being covalent, and the other two being
ionic. Therefore, it provides a very clear and compact VB wavefunction for
diabatic curve in a valence bond state correlation diagram (VBSCD) [47]. In the
Xiamen-99 package, VB orbitals may be defined and optimized flexibly. One can
take OEOs, HAOs, or BDOs as VB orbitals, or any other forms for some special
purposes in applications.

The orbital optimization method adopted in the package is based on the
Davidon-Fletcher-Powell (DFP) family of variable metric methods [48]. In these
methods, only the energy and its gradient vector are required, with information
from successive line minimizations being accumulated and used to build up an
approximate Hessian matrix. It is necessary but time consuming to perform the
line minimization needed in most multidimensional optimization methods. A
simple algorithm is implemented in the package, in which only one evaluation of
energy and gradient vector is required in each iteration (except on rare occasions —
which are tested for and corrected). In addition to the use of the generalized
Brillouin theorem to build approximate gradient vectors, a routine using a
numerical difference algorithm is also available in the package to evaluate
gradient vectors. Furthermore, Powell’s steepest descent algorithm is also
implemented, but our experience shows that it is inferior to other options.

4.4 Capabilities of Xiamen-99

Xiamen-99 is a “pure” ab initio valence bond program. One can use the
package to do any types of VB calculations with any forms of VB orbitals. This
means that VBSCF, BOVB, and VBCI calculations may be carried out with the
package, and it is also feasible to combine the valence bond method with some
advanced molecular orbital methods, like VB-DFT [49].
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Coefficients and weights of VB structures are given in the output file, and
optimized orbitals and charge population analysis are also available from the
output file.

5. APPLICATIONS
5.1 Resonance

5.1.1 Synopsis

Resonance was introduced when it was found that there are many molecules
whose properties cannot be accounted for by means of a single electronic
structure of the VB type, but rather by a combination of several structures [1].
Although there is an element of arbitrariness in the resonance theory, in the sense
of choosing VB structures, Wheland [50] systemized the basic principles to select
the important resonance structures as well as to estimate their relative
contribution to the ground state of a molecule. In fact, the qualitative resonance
theory enjoyed such a great success due to its convenience and usefulness that
resonance has become one of the most fundamental concepts in chemical theory.

With the advent of the computer era, it is now possible to reexamine and
rethink the resonance theory at the ab initio level. For example, throughout
Pauling and Wheland’s books, benzene is supposed to be a hybrid of two Kekulé
structures, by noting that Dewar and other ionic structures make little contribution
to the resonance in benzene. However, classical ab initio VB calculations with all
possible 175 resonance structures by Norbeck et al. [51] and Tantardini et al. [3],
where strictly atomic orbitals are used to construct VB functions, manifested that
the five covalent Kekulé and Dewar structures make even less contribution to the
ground state of benzene than the other 170 ionic structures. This prompts us to
reconsider the mathematical formulations for resonance structures [52].

From the viewpoint of classical VB, a bond between two atomic orbitals ¥
and y centered on atoms A and B, respectively, can be expressed as a
combination of a covalent structure and two ionic structures

¥, =C®(4:B)+C,D(4"B)+C,®(4™B"), (61)
where
D(4:B)=Ne (X, 25), (62)

Q(A"B7)=Nei (X5X5) (63)



164
®(4B")= Nleﬁ](ZAZA) . (64)

In the case of A= B, it was previously presumed that the two ionic structures
are unimportant, but ab initio calculations verified the necessity to include the two
ionic structures to describe accurately the A-B bond dissociation energy profile.

Bearing in the mind that a real bond should be described by three classical VB
structures, we return to the case of benzene. Across the whole history of
resonance theory, Kekulé structure has been treated as the hypothetical
1,3,5-cyclohexatiene whose double bonds are comparable to ethylene. However,
it is clear from the previous paragraph that the ® bond in ethylene should be
expressed as a sum of three classical VB structures. Furthemore, there are three ©
bonds in a Kekulé structure. Consequently, from the mathematical point of view,
the wave function for a Kekulé structure should be expanded by 3°=27 classical
VB structures as follows:

+ +
SRCRONORORGEY!
+ - + + + + -+ + - +

= = + - +

oY) © €] (6) 3) @ ()

where the number in parentheses indicates the equivalent structures. In other
words, there is no one-to-one correspondence between resonance structures and
classical VB structures. This clarification is important since otherwise we can
derive very different resonance energies with difference interpretations of the
resonance theory.

The only notable difference between classical ab initio VB and modern ab
initio VB lies in the one-electron orbitals. As we already mentioned, in the
classical ab initio VB method, all one-electron orbitals are strictly atomic orbitals.
In contrast, in modern ab initio VB methods, one-electron orbitals are not
restricted to atomic orbitals anymore and are allowed to extend over the whole
molecule in the form of OEOs

Xu=Xu+ 2 A (65)

VL

The significant advantage of this type of MO-like orbitals is that most of the
correlation energy can be recovered with only a small number of VB structures.
For example, for benzene, use of just the five covalent structures can recover 93%
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of the correlation energy [53]. However, due to the delocalized nature of OEQ’s,
they are not suitable for the construction of an individual resonance structure, e.g.,
when the resonance energies are to be evaluated. In that case, we proposed a type
of localized orbitals called bond-distorted orbitals (BDOs) as[54]

X=Xt X, (66)

where A,,=0 if there is no bond between %, and y,. By adopting BDO’s as
one-electron orbitals, we are able to achieve almost the same energy as a VB-CI
calculation with the 27 classical VB structure as shown above with only one VB
structure.

5.1.2 Benzene vs. cyclobutadiene

Benzene and cyclobutadiene are the well-known examples for aromaticity
and antiaromaticity, which have been the subject of extensive studies [55, 56].
While many criteria based on geometry, magnetism or energy have been proposed
to discern the aromaticity/antiaromaticity, all of the energetic criteria are based on
the design of model homodesmic and isodesmic reactions, where both the steric
effect and the hyperconjugation effect are inevitably involved and cannot be
distinctly screened from the reaction enthalpies. A more suitable refinement is to
determine the aromaticity or antiaromaticity by the difference of the resonance
energies, which are based on the Pauling-Wheland definition, between a cyclic
conjugated compound and its corresponding linear polyene. Here we show the
calculated results of resonance energies, which by definition are always positive,
in benzene and cyclobutadiene.

In the framework of ab initio classical VB method, totally there are 175 and
20 VB structures for benzene and cyclobutadiene, respectively. On the other hand,
for the hypothetically localized 1,3,5-cyclohexatriene and 1,3-cyclobutadiene, 27
and 9 classical VB structures are needed to run the VB-CI calculations. For all
calculations, a STO-6G basis set is employed.

At first we define two types of resonance energies, namely vertical resonance
energy (VRE) and theoretical resonance energy (TRE). The former is the energy
difference between the optimal delocalized molecule such as benzene and the
localized reference molecule such as 1,3,5-cyclohexatriene whose geometries are
kept the same. The latter is the energy difference between the delocalized
molecule and the optimal localized reference molecule, whose geometries are not
kept the same. Fig.1 shows the relationship between VRE and TRE. The
computed results are listed in Table 1.
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Table 1
Optimized bond lengths and (R..) resonance energies (RE) in benzene and cyclobutadiene
Ree (A) Number of RE
Short Long VB structures  (kcal/mol)
Benzene 1.404 1.404 175
Rigid 1,3,5-cyclohexatriene 1.404 1.404 27 -74.3
Stable 1,3,5-cyclohexatriene 1.343 1.521 27 -44.5
Cyclobutadiene 1.369 1.538 20
Rigid 1,3-cyclobutadiene 1.369 1.538 9 -3.7
Stable 1,3-cyclobutadiene 1.355 1.555 9 -3.2
benzene
lVRE TRE
compression N
— ||
energy

<

rigid 1,3,5-cyclohexatriene  stable 1,3,5-cyclohexatriene
Fig. 1 Definitions of vertical resonance energy (VRE) and theoretical resonance energy (TRE)

The optimal bond lengths in the delocalized forms of benzene and
cyclobutadiene are in good agreement with experimental or high-level
computational data. However, the optimal bond lengths in the localized forms are
nevertheless experimentally unavailable, and thus of particular interest. In
1,3,5-cyclohexatriene, the double bond length is 1.343 A, almost identical to that
of ethylene at the same full n-CI level. The single Csp*-Csp® bond length, 1.521
A, is somewhat shorter than the Csp*-Csp® bond length in ethane [54]. Compared
with  1,3,5-cyclohexatriene, both double and single bond lengths in
1,3-cyclobutadiene are longer, indicating the ring strain in the rectangular
cyclobutadiene.

Experimentally, the estimation of resonance energy is based on the heat of
hydrogenation or combustion, and the value for benzene is -36 kcal/mol, which is
comparable to the TRE of -44.5 kcal/mol. The small discrepancy between the
experimental resonance energy and TRE is due mainly to the hyperconjugation
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effect in the reference system, cyclohexene [57].

5.1.3 Resonance effect in formamide

An understanding of the internal rotation about the amide bond is important
because of its relevance to protein structure. Formamide is the simplest amide.
The coplanarity and the remarkable rotational barrier about the C-N bond in
formamide can be rationalized by resonance between the 7 electrons of the
carbonyl group and the lone pair of the nitrogen atom [1, 50]. According to VB
theory, the T electronic structure of formamide may be described by six resonance
structures.

N\ L/ \, ./ N\ ./
C—N C—N C=—=N
/ \ / \ / \
1 2 3
0. o o
\\:\‘\ / \ _ / \ -2+ /
C N C—N C—N
\ / \
4 5 6

Contribution from resonance structure 3, which contains a formal double
bond between carbon and nitrogen, is considered to be primarily responsible for
the coplanarity and the high rotational barrier about the amide bond [58]. The
introduction of resonance structure 3 also implies that there is significant
charge-delocalization from the nitrogen lone pair to the carbonyl oxygen.

However, the validity of the VB resonance model for formamide has been
challenged on the basis of various population analyses. Wiberg et al. [59] found
that the population on the carbonyl oxygen, which was calculated via integration
of charge density difference maps, was essentially unchanged as a function of the
torsional angle about the amide bond, and that the charge variation mainly occurs
on the amide nitrogen and the carbonyl carbon. The oxygen is essentially a
spectator during the rotation. It was further suggested that the VB resonance
theory was not valid for formamide [60]. In contrast, Fogarasi and Szalay [61]
analyzed geometric changes, charge shifts from Mulliken population analysis and
NMR data as a function of rotation, and suggested that there is compelling
evidence to support the simple amide resonance model, which was also confirmed
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by the natural atomic orbital population analysis [62]. Lauvergnat and Hiberty
[63] usefully probed the validity of the resonance model in formamide and
thioformamide using the ab initio VB method, which allows one to turn on or off
the electronic delocalization in these two molecules. The electronic
delocalization energies are measured by comparing the fully delocalized
(adiabatic) ground state and the localized, diabatic state, in which the nitrogen
lone pair is constrained to remain strictly localized.

Here we revisit the VB resonance model in formamide by taking all six
resonance structures into account. Such a study allows us to compare the
individual contributions from resonance structures 1-6 to the resonance effect in
formamide. For comparison, the isoelectronic systems vinylamine and
formamidine are also investigated to gain insights into the trends of resonance
stabilization. A 6-31G(d) basis set is employed in the calculations, and the
orbitals in the VB functions are self-consistently determined for each resonance
structure, but restricted to be atomic orbitals. The structural weights of the six
resonance structures are listed in Table 2.

To derive the VRE's in these three conjugated systems, calculations with the
three resonance structures 1, 2 and § are also performed and the results are
presented in Table 2.

It is clear that the covalent structure 1 makes the largest contribution to the
ground state of the planar HCXNH, (X=0, CH, and NH) and its structural weight
increases with the decreasing electronegativity of X or the polarization of the
C=X bond. On the contrary, as the second most important resonance structure,
the structural weight of 2 decreases in the order of X=0 > NH > CH,. The
resonance structure 3, which is essential to highlight the partial double bond
between C and N, contributes only 13.1%, 9.8% and 7.0% to the ground states of
formamide, formamidine and vinylamine, respectively. However, energetically
the importance of the structure 3 cannot be overlooked. In fact, both resonance
structures 3 and 4 are responsible for © electronic delocalization and the hindered
rotational barrier in formamide. Our calculations are slightly different from the
VB study on formamide by Felgg and Harcourt [64] using the minimal basis set,
where the structural weights of 2 and 3 are underestimated (about 0.180 and 0.051,
respectively) and the latter is even lower than that of structure 4 (0.074). However,
the overall conclusions derived from the present VBSCF calculations are similar
to those of Felgg and Harcourt, namely structures 1-4 should all be used to
describe formamide. It is interesting to point out that numerous studies reported
in the literature included only structures 1 and 3 to describe the resonance in
formamide. Pauling[1] estimated that these two resonance structures contribute
60% and 40%, respectively, to the ground state of formamide, whereas
Glendening et al. [62] found that the structural weights of 1 and 3 are 65.4% and
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Table 2
Individual structural weights, total energies and VRE's from the VBSCF calculations with the
6-31G(d) basis set

Resonance X=0 X=NH =CH,
structure 6VBSCF 3VBSCF 6VBSCF 3VBSCF 6VBSCF 3VBSCF
X

N\ ./

/C—N\ 1 0.4608  0.6007  0.5448  0.6775  0.6106  0.7250
b'g

\+ ./

/C—-N\ 2 03180 03663  0.2463 02677  0.1902  0.1962
X

\ 4/

C=N 3 0.1313 0.0976 0.0696

/ \

Xt\\

\_\~ /

C—N 4  0.0649 0.0698 0.0689

/ \

x+

\_ ./

; —N\ 5 00234 0.0330 00406  0.0548  0.0607  0.0788
X

\__2&/ 6 00016 0.0009 0.0000

/ \ i ) )

Total energy (a.u.)-168.95863 -168.91937 -149.10165 -149.06855 -133.08376 -133.05673
VRE (kcal/mol)  -24.6 20.8 17.0

28.5%, respectively. The difference between the latter results and our present ab
initio VB calculations is due to the definition of the one-electron orbitals used to
construct the VB wave function. If the one-electron orbitals are not strictly
atomic orbitals, the basis set polarization contribution can lead to the mixing of
various classical VB structures. Thus, the “localized” structures of the forms 1
and 3 in modern VB can actually be expanded into the classical VB structures 1, 2,
5 and 3, 2, 6, respectively.

Energetically, the resonance effect in the three systems decreases in the order
of formamide > formamidine > vinylamine, which is consistent with the rule of
atomic electronegativity. It is worthwhile to note that Wheland [50] estimated the
resonance energy of formamide based on the heats of combustion and gave a
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value of 22 kcal/mol, which is very close to our data. The significant resonance
stabilization energy in formamide validates the applicability of the resonance
model to formamide.

5.2 SN2 reactions

The Sy2 reactions are good examples to highlight the different merits of VB
and MO theories in quantum chemistry [65]. In the VB method, the atomic
features are preserved and the focus is the two-electron-two-center bonds, and
each molecule is formed with bonds (plus the lone and core pairs). Whereas one
resonance structure is not enough to describe a molecule, multi-resonance
structures are adopted. In fact, the resonance theory can also be applied to
illustrate the reactions in an intuitive way. For example, for the
chloride-exchange reaction

CI' + CH,;C1 - CICH;3 + CI

normally three resonance structures are used to describe the whole reaction
potential energy profile,

ClI' CH,—Cl CI-CH; CI' CI' CH;* CI
a b c

where a is the reactant structure and there is no chemical interaction between the
left hand chloride anion and the carbon atom, and 4 is the product structure where
no bond exists between the hand right chloride anion and the carbon atom. The
last resonance structure ¢, whose energy is the highest in the gas phase, may play
an important role in solutions due to its high ionicity. A useful qualitative
description of the Sn2 reactions has been presented by Shaik and Pross using their
empirical VB configuration-mixing model [66], which shows qualitatively how
various substituents in different solvents may affect the reaction barrier [22].
Warshel and his coworkers [25] proposed an empirical VB (EVB) approach,
which uses experimental information to evaluate the energies of the VB
resonance structures and then calculate the environment-dependent stabilization
of the ionic structures in the enzyme and in solutions.

Here we employed modern ab initio VB method to study several typical Sy2
reactions including chloride, fluoride and hydrid exchanges with the three
resonance structures a, b and ¢, whose VB wave functions are expressed as

@, =Nl (XenXenXcXen), (67)
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@, = N,ell "KenXecX'c Xen), (68)
D, =Nl " YenZcXcnXan), (69)

where we omit the remaining electrons and orbitals which do not take part in the
reaction explicitly. However, in our present code all orbitals are optimized
simultaneously. The whole reaction path is explored along the reaction
coordinate (x¥) that is the difference between the CX1 and CX2 bond lengths. To
get the accurate adiabatic energy profile, we performed VBSCF with two
resonance structures a and b with the breathing orbitals (BOs) (2BOVB in short).
The reason not to include the resonance structure c is due to the delocalized nature
of BOs, since BOs are expanded in the whole system. Consequently, the
resonance structure ¢ has already implicitly been taken into account. For a
diabatic state, nevertheless, only 1VBSCF is performed and the orbitals are
strictly localized. At each point, the geometry of the whole supermolecular
system is optimized at the HF level. Then a BOVB calculation is performed to get
the reaction energy profile, and 1VBSCF calculations are run to derive individual
energy curves of ®,, @, and @, respectively. In all calculations, the 6-31G(d)
basis set is adopted.

Fig.2 shows the state correlation digrams for the three identity Sy2 reactions,
and the major numerical results derived from Fig.2 are reported in Table 3. In
both Fig.2 and Table 3, AE” denotes the reaction barrier, B represents the coupling
between two covalent resonance structures a and b, and 7 measures the magnitude
of the participation of the ionic resonance structure c.

It is of interest to note that the chloride exchange reaction has the lowest
coupling term B, although it has a similar reaction barrier from the stable ion
complex to the transition state as the fluoride exchange reaction. While for both
chloride and hydride reactions, their ionic structure ¢ has a minimum energy at the
transition state, the ionic structure for the fluoride exchange reaction has two
minimum at x" = +0.86A, due to the strong electrostatic interaction resulting from
the small ionic radii of fluoride anion.

Table 3

VBSCF computation results for the X+ CH3;X->XCH;+X reactions (kcal/mol)
X AF* B T
Cl 17.8 21.0 29.6
F 19.3 332 45.7

H 52.6 33.2 72.5
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Fig. 2. State correlation diagrams for the X"+ CH3X = XCH; + X' Sn2 reactions based on ab
initio VBSCF computations: (1) X=Cl;( 2)X=F; 3)X=H

5.3 The visual VB rule for chemical reactions

A chemical reaction always involves bond-breaking/making processes or
valence electron rearrangements, which can be characterized by the variation of
VB structures. According to the resonance theory [1, 50], the evolution of a
system in the elementary reaction process can be interpreted through the
resonance among the correlated VB structures corresponding to reactant, product
and some intermediate states. Because only symmetry-adapted VB structures can
effectively resonate, all VB structures involved in the description of a reaction
will thus retain the symmetry shared by both reactant and product states in the
elementary process. Therefore, we postulate that the VB structures of the reactant
and the product states for concerted reactions should preserve
symmetry-adaptation, called the VB structure symmetry-adaptation (VBSSA)
rule.

In fact, chemical reactions are generally very localized, and most parts of the
reactants and products are therefore conserved. This feature lingers in VB
structures, e.g., only partial VB structural segments are directly involved in the
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reaction. The valence electrons forming these segments, as the electrons in the
frontier orbitals of Fukui [67], would be the most important and essentially
dominate the reaction pathway. As a consequence, the VB structure
symmetry-adaptation analysis should be concentrated on these VB structural
segments. Considering the possibility of energy partitioning and the geometrical
conformation constraint, we can divide a resonance structure into certain sub-VB
structures. For different sub-VB structures, the symmetry analysis of the VB
structures can be independently carried out, i.e. interactions among different
sub-VB structures could be ignored. For example, we could presume no
resonance interaction between the ¢ electrons and 7 electrons in a C=C double
bond in the fixed nucleus approximation, and these four bonding electrons can be
divided into two sub-VB structures corresponding to one ¢ bond and one 1t bond,
respectively.

5.3.1 Symmetrization of the VB wavefunction

In VB theory, all electrons are assigned to localized two-centered bonds, lone
pairs and unpaired components. Each collective pattern of such components
constitutes a VB structure. The corresponding VB structure function can be
expressed as @k, namely, a bonded tableau (BT) state as mentioned before. The
wavefunction for the whole system is defined as the superposition of all possible
VB structure functions

Yy =D Ci®@p . (70)
K

Usually, an individual VB structure assembled from the localized bonding
components does not share the point group symmetry of the molecule anymore.
However, the overall VB wavefunction, Wyg, should retain the same symmetry
properties as the MO wavefunction (in the sense of full CI, they are in fact
identical). Therefore, Wy can be classified by an irreducible representation
associated with a given point group. In order to sort {¥;5} by symmetry, a project
operator can be introduced as follows:

P =2 LBk, (1)

where R is the symmetry operation, y(R) is the character of the point group, g is
the order of the point group, #; is the dimension of the irreducible representation



175

I'; . Combining the symmetry properties of the bonded tableau [68] and applying
the projection operation P; to a bonded tableau (or a VB basis function)
corresponding to a VB structure, we can construct the symmetry-adapted BT
function (SABTF) and the symmetrized VB-type wavefunction.

5.3.2 Application of the VBSSA rule
We now consider the isomerization of Dewar benzene into benzene:

1 1 x
6 2 6 2
—_—
5 4 3 5 3 y Cy
4

In the above reaction, the product benzene is of Dg, symmetry, but only Cyy
symmetry elements are common for both Dewar benzene and benzene. We can
perform therefore the symmetry analysis of the VB structures within the C,y point
group framework. There are 6 essential valence electrons involved in the reaction,
numbered from 1 to 6. These six valence electrons form three localized bonds
(two t bonds and one ¢ bonds) in Dewar benzene, and a IT{ delocalized bond in
benzene, which can be described by five independent BTs within the OEO
formalism (see Eq.(65)). Their corresponding BTs are

Dewar benzene |14, |23, |56]

Benzene
1
O 0 og
5 3 N
4

6
2
3

[N VS I
N N
W h =
N BN
W L -~
NN B
S =
wn N
How DN

Applying the projection operators associated with C,y point group on these BTs
results in Dewar benzene

Ap: |14, 23]+]56] By [23]— |5 6|
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Benzene
2 1 6 (1 4 1 6 1 2
A 4 + 4, |5 6, |5 20 +16 3
6 320 3 21 4 3 5 4
1 2 6
B, 13 — |5 4
5 6 3 2
1
A |5 22— 16
3 5

Obviously, the conversion from Dewar benzene to benzene is forbidden by the
VBSSA rule because no A; symmetrized VB structure segment in the reactant
Dewar benzene can match the A, symmetrized VB structure segment of benzene.
More examples, including generally allowed and forbidden chemical process, can
be found in our previous study[69].

The VBSSA rule can be used to select relevant VB structures and construct the
semiquantitative and quantitative curve-crossing VB diagram. Combining the
MO method and VB calculations, we investigated atom exchange reactions; H +
HLi — H, + Li and H + LiH—»HLi + H, and discussed the effect of energy
differences between the VB structures on the activation energy and properties of
the transition state [70].

5.4 Excited states

In the MO formalism it is quite straightforward to deal with the excited states
of a molecule. An adequate wavefunction of an excited state can be constructed
according to the resultant configuration and its symmetry arising from electron
promotion among MO series. Compared with numerous MO-based methods, VB
approaches are far less employed to study excited states due to the difficulty in
VB computations. Recently, by observing the correlation between MO theory and
resonance theory, as well as the symmetry-adapted VB wavefunction described in
the last section, we performed VB calculations on low-lying states of some
molecules [71, 72].
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5.4.1 VB-type wavefunctions of excited states

For simplicity, the o-7 separation is imposed in the VB calculations for the
ground and excited states since low-lying excitations only involve the 7 electrons
in selected species Oy, C;” and C;Hs. After the 6-%t separation, the symmetry of
both the ground electronic state and the ® excited states only depends on =
valence electronic structures because a doubly occupied ¢ core within the MO
formalism is always total symmetric, and does not affect the symmetry of
electronic states. If the three p orbitals forming  bonds in O5” are numbered as

1
0 y
2 3
Z

the three possible VB structures and corresponding BTs for Q3" would be

NN A

11 11 2
2 29 3 3¢, 3 3 ¢
3 2 1

Applying projection operators P, , P, , P, and P, to the above BTs ¢, ¢, and

@, respectively, we obtain

1 1] |-1 =1/ |1 1] |-1 -1
PAI=12;(AI(R)R¢,=1(12 2+1-3 =3[+13 3j+1-2 -2)
4 s -2 2 -3
I T O A I TR DA
=%(2 2/-13 3|+3 3-2 2)=0
3 2 2 3

(72)
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PA; 9, =PA,¢3 =PA2¢3 =P32¢1 =P32¢2 =P32¢3 =0,
1

PB,¢1 :PB,¢2 =5(¢1 +9,),
1

PA2¢1 =PA2¢2 =5(¢1 —-9,),

Py 9y = 9.

Similarly, the SABTFs for O; and O;" are

O3
oo Al 1(1 1+13)_B,1(11 1 3
o3t 22 3k 20 P22 3 2 2
2.2 BB 3 122 33 |11
S=1 A %(1 #1000, B (1 |-t D, P2
3 2 3 2 3

N
1h 2 3 123 2
S=112 Ay = - B;: — + or

)

3|

(73)

(74)

(75)

(76)

(77

(78)

(79)

For the case of linear C;’, the symmetries of the ground and 7 excited states
are determined by five t valence electrons in the six p orbitals numbered from 1 to

6 as

2 1 3 A
P |
5 4 6 /
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Here the p orbitals are OEQs, and they have the same symmetry as the localized
one-center p orbitals. Thus, the chemical bond generated by p orbitals 1 and 2 can
be described by one covalent structure |12]; the ionic structures |11] and |22| can be
ignored. The five &t valence electrons and six p orbitals can form 4 BTs as follows

1 2 1 2 13 13
4 6/¢; 14 6, |4 5 |4 5 s
3 5 2 6

For the D.,, point group, we can use the projection operators from the
subgroup Dy Applying the project operators Pg, and Pg, to the above 4 primary
BTs, we obtain

2 1
PEg¢l =IEZZE3 (R)R¢, =5(¢1 -¢) (80)
R
Pebr=3 =00, Pehi=s(8+0), Prd =26 +4). Q)

Other projection operators on the primary BTs from ¢, to ¢4 result in a null
outcome, suggesting that these BTs have no contribution to other irreducible
representations in the subgroup Day. In fact, the SABTFs £ (¢ - ¢;) and 1 (- ¢s)
are equivalent, so are 1 (¢; + ¢5) and 1 (¢ + ¢s), and they account for the states 2Eg
and ’E,, respectively, i.e. 2IIg and 1, corresponding to the D..;, point group.

5.4.2 n—electron excitation energies

The excitation energies of the transitions B, — %A, for Oy, A, — B, for
C;Hs and 2I'Ig — I, for Cy” were calculated by different methods. A comparison
of calculated results with available experimental data is presented in Table 4. In
these calculations, optimized geometries of the ground and n electronically
excited states are located by the restricted open-shell Hartree-Fock (ROHF)
energy-gradient method in GAMESS [73]. In subsequent VB calculations only
the & electrons are involved, and the ¢ electron contribution to the total energy
was considered within the ROHF formalism.
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Table 4

T electron excitation energies
species/method transition L (eV) basis set
05 X'B; -1%A,
ROHF 271 6-311+G
VB(@3, 2)° 2.71 6-311+G
VB(15,10) 2.15 6-311+G
CASSCF® 2.13 11s7p2d/7s4p2d
Expt.° 2.03
Cy X1, — 1710,
ROHF 5.16 6-31G
VB(2, 2) 3.69 6-31G
MCSCF ¢ 4.18 6-31G

C3H; X’A; 1B,

ROHF 4.86 6-31G
VB(2, 2) 3.28 6-31G
Cr° 3.13 DZ+P
Exp’(.f 3.07

a Numbers in parentheses are the numbers of bonded tableaus used in the VB calculations for
the ground and excited states, respectively.

b reference [75]

¢ reference [76]

d The MCSCF wavefunction is generated by the CISD method, and the active space is

composed of 17 lower MOs in energy exclusive of three core orbitals.

e reference [77]

f reference [78]

For Oy, there are five = electrons in three p orbitals, and there is no typical
2-electron 2-center bond. Primary VB and ROHF calculations predict the same
transition energy of 2.71 eV, which is larger than the experimental value of 2.03eV.
When the VB wavefunction is expanded with additional bonded tableaus formed
by the split valence orbitals along with the inclusion of single excitations of &
electrons from 2p to diffuse p basis functions, a reasonable excitation energy of
2.15 eV is obtained. For C;Hs, VB calculation gives a better excitation energy of
3.28 eV compared with 4.86 eV from ROHF calculations. VB calculations of &
electrons in C;can recover partial correlation energies, and obtain lower total
energies, especially for the excited state 1°IT, in comparison with the ROHF
calculation.

Alternatively, the correspondence between MO theory and resonance theory
in the description of electronic structures can be used to construct VB
wavefunctions for the low-lying states of diatomic molecules. Test calculations
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on transition energies of excited states in B, [74] and in LiB [72] molecules have
been performed, and comparisons of VB calculations with other post-SCF
calculations and available experiments show that these approaches are promising
for the VB study of excited states.

5.4.3 Bonding features of the ground and = excited states of S;

S5 is the simplest poly-sulfur cluster, whose valence electronic structure is
similar to O3 and SO,, and four 3p valence electrons contribute to ©t bonding. The
visual picture of bonding for S; can help us understand the chemistry of
polysulfides. In order to ensure an unambiguous definition of a covalent or an
ionic description of the bonding, the active orbitals forming ©t bonds are restricted
to an expansion in a set of symmetry-adapted primitive functions from one atom.
The o-n separation was used to reduce computational cost, and six fully occupied
2p orbitals after the 6-m separation were frozen in the VB calculation. Possible
singlet and triplet VB structures and corresponding BTs for S; in singlet and
triplet states are as follows (with the same orbital numberings as for O;” shown
before):

S$=0
. + +
S,
.S/S\s. S/S\s;_ —ZS/ \\\S
I )i I
11 1 2 1 3
|2 3l¢1 ’3 3]¢2 lz 2l¢’
. .o ++
_:/S\S+ +S/S\S;_ -:S/S\:—
v v VI
11 11 2 2
L e L e S e

§=1
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by §\5+

Table S lists the computed results for the ground and first 7 singlet and triplet
excited states with the 6-31G basis set. The weights in Table 5 demonstrate the
significant differences in chemical bonding amongst the ground and & excited
states. E.g., in the ground state, the VB structure I (biradical in singlet) has a large
weight of 54.30%, and the dipolar structures II and III have also a significant
contribution of 41.16%. This bonding feature implies that S; in the ground state is
active for radical, nucleophilic and electrophilic processes. The dipolar structures
11 and III are predominant for the excited state 1'B,. The structure I'(biradical in

triplet) has a weight of 90%, and dominates the excited state 1°B.

Table 5
Optimized geometries and bonding features of S;
State VB structure coefficient weight geometry *
X'A (] 0.6673 0.5430
& -0.3724 0.2058 r=2.052
[ -0.3724 0.2058 0=115.1
(1 -0.0526 0.0089
& -0.0528 0.0089
& -0.0865 0.0275
1'B; * 0.6951 0.4874
& -0.6951 0.4874 r=2267
& 0.0647 0.0126 0=979
& -0.0647 0.0126
1’B; & 0.9240 0.9000 r=2.186
& -0.1625 0.0500 0=106.0
&’ 0.1625 0.0500

a Bond lengths in Angstrom, angles in degree.
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6. SUMMARY

With the persistent efforts for one and half decades, we have developed a
state-of-the-art ab initio VB code, Xiamen-99, which is based on our proposed
paired-permanent algorithm. This algorithm makes use of the symmetries in the
spin-free VB wavefucntions in an attempt to ease the N! problem which has
hampered the development of ab initio methods for a long time. The applications
of the ab initio VB method by our group and other groups have already generated
numerous interesting and fruitful findings, and more studies by the means of ab
initio VB calculations are highly expected. Computational results have
demonstrated the different merits of the VB method and MO method, and confirm
the necessity to pursue ab initio VB approaches, separately from MO-based
approaches. While continuous efforts to expand the applicability of ab initio VB
methods are guaranteed, we also anticipate the combination of the VB method
with high level MO methods, in an attempt to derive accurate results with
reasonable computational resources.
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The BOVB method is aimed at combining the qualities of interpretability and
compactness of valence bond wave functions with a quantitative accuracy of the
energetics. The fundamental feature of the method 1is the freedom of the orbitals
to be different for each VB structure during the optimization process. In this
manner, the orbitals respond to the instantaneous field of the individual VB
structure rather than to an average field of all the structures. As such, the BOVB
method accounts for the differential dynamic correlation that is associated with
elementary processes like bond forming/breaking, while leaving the wave function
compact. The use of strictly localized orbitals ensures a maximum corres-
pondence between the wave function and the concept of Lewis structure, and
makes the method suitable for calculation of diabatic states.

1. INTRODUCTION

Despite the quantitative victory of molecular orbital (MO) theory, much of
our qualitative understanding of electronic structure is still couched in terms of
local bonds and lone pairs, that are key conceptual elements of the valence bond
(VB) picture. VB theory is essentially the quantum chemical formulation of the
Lewis concept of the chemical bond [1,2]. Thus, a chemical bond involves
spin-pairing of electrons which occupy valence atomic orbitals or hybrids of
adjacent atoms that are bonded in the Lewis structure. In this manner, each
term of a VB wave function corresponds to a specific chemical structure, and
the isomorphism of the theoretical elements with the chemical elements creates
an intimate relationship between the abstract theory and the nature of the
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chemical structure and its transformation. As such, VB theory and its simplest
variant, resonance theory [3], have given rise to fundamental concepts such as
hybridization, covalency, ionicity, hybrid nature of resonance structures,
resonance stabilization, and so on. These concepts served chemists extremely
well and enabled them to rationalize and predict reaction mechanisms or
molecular properties by simply writing down VB structures on a back of an
envelope.

Alongside this conceptual aspect, VB theory offers the quantitative facility
that enables us to study a variety of problems and thereby extract unique
chemical insight that is not available by standard ab initio MO based
computations. Such a wide ranging use of VB theory is the generation of
diabatic states, which represent electronic structures that must remain as
invariant as possible throughout a reaction coordinate. The so generated
diabatic states apply to numerous problems, such as : (i) Chemical dynamics, in
cases where the Born-Oppenheimer approximation breaks down; (ii) chemical
reactivity, with the Shaik-Pross diagrams, in which a reaction barrier originates
in the avoided crossing of two diabatic state curves, one representing the
bonding scheme of the reactants and the other that of the products [4]; (iii)
photochemistry, with the harpooning and charge transfer mechanisms [5]; (iv)
fundamental principles of organic chemistry, e.g. the role of electronic
delocalization as a stabilizing factor [6,7,8,9]; (v) solvation, with theoretical
models treating the solvation effects separately on covalent and ionic
components of a bond [10]. For such applications, it is not only important to be
able to interpret the wave function in terms of chemical structural formulas
(Lewis structures), but also to be able to estimate the energy of each of these
individual Lewis structures and their variations along a reaction coordinate
prior to their interaction to form the adiabatic states. Clearly, the usefulness of
a quantitative VB method derives from the combination of quantitative rigor
and conceptual lucidity. These desirable qualities typify the breathing orbital
VB (BOVB) method that has been proposed recently [11-13], and is being
reviewed here.

2. ELECTRON CORRELATION IN VB THEORY

The term "electron correlation energy" is usually defined as the difference
between the exact nonrelativistic energy and the energy provided by the
simplest MO wave function, the mono-determinantal Hartree-Fock wave
function. This latter model is based on the "independent particle”
approximation, according to which each electron moves in an average potential
provided by the other electrons [14]. Within this definition, it is customary to
distinguish between non dynamical and dynamical electron correlation.
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2.1 Non dynamical electron correlation

Non dynamical electron correlation is the part of the total correlation that is
taken into account in a CASSCF calculation that correlates the valence electrons
in valence orbitals. Physically, the non dynamical electron correlation is a
Coulomb correlation that permits the electrons to avoid one another and reduce
their mutual repulsion as much as possible with respect to a given zero order
electronic structure defined by the Hartree-Fock wave function. In VB terms,
the non dynamical correlation ensures a correct balance between the ionic and
covalent components of the wave function for a given electronic system. The
dynamical correlation is just what is still missing to get the exact nonrelativistic
wave function.

The essential part of non dynamical correlation energy for polyatomic
molecules is the “ left-right electron correlation ”, which is concerned with the
ionic-covalent balance within a given two-electron bond. Let us therefore
discuss this type of correlation.

2.1.1. Left-right electron correlation in the MO and VB theories

Historically, the first calculation of the electronic structure of a neutral
molecule was carried out by Heitler and London [15], who treated Hy using the
valence bond (VB) method. In this early paper, the molecular wave function
for Hy was considered to be purely covalent, and constructed from the atomic
orbitals (AO’s) %, and yp of the separate atoms. Dropping the normalization
constant hereafter, the wave function is given in equation 1.

WHL = Xa(1)x6(2) - xb(1)xa(2) (1)

This simple wave function, so called the Heitler-London (HL) wave
function, was able to account for about 66% of the bonding energy of Hy, and
performed a little better than the rival MO method that appeared almost at the
same time.

In the MO framework, The Hartree-Fock wave function Wyr takes the form
of an antisymmetrized orbital product, which in the case of Hj is the Slater
determinant involving the spin-up and spin-down counterparts of the bonding
orbital Gg, as in eq 2:

Yy = lO.go-g'; Og = Xat2Xb (2)

The physical constitution of the Hartree-Fock wave function appears most
clearly by expanding the MO determinant of eq 2 as a linear combination of
determinants constructed from pure AO’s, eq 3:
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Io-gaul:|Za)_(bl+IXbZaH'lXa?aH'IXbeI (3)

Here the first two determinants are the determinantal form of the Heitler-
London function (eq 1), and represent a purely covalent interaction between the
atoms. The remaining determinants represent zwitterionic structures, H H*
and H*H™, and contribute 50% to the wave function. The same constitution
holds for any interatomic distance. This weight of the ionic structures is clearly
too much at equilibrium distance, and becomes absurd at infinite separation
where the ionic component is expected to drop to zero. Qualitatively, this can
be corrected by including a second configuration where both electrons occupy
the antibonding orbital, o, i.e. the doubly excited configuration. The more
elaborate wave function W¢y is shown in eq. 4, where Cy and C, are
coefficients of the two MO configurations:

\PCIz C1|Gg6g|+C2|O-u6u| 4
Og = XaTXb:>0u= Xa—Xb

This is the essence of the configuration interaction (CI) method. When both the
coefficients of the configurations and their orbitals are optimized
simultaneously in flexible basis sets, the method is called multi-configuration
SCF (MCSCF). The doubly excited configuration in eq. 4 also involves too a
50:50 mixture of covalent and ionic components but with a negative sign
between them. Consequently the combination of the two configurations deletes
the excess ionic character of WyF, thereby leading to the wave function in eq 5.
The corrected wave function displays a qualitatively correct behavior, with an
optimal covalent/ionic ratio of typically 80:20 at equilibrium distance [16] all
the way to 100:0 at infinite separation.

The early VB point of view was based solely on the purely covalent HL
wave function. In this wave function the electrons are never allowed to
approach each other and therefore their electron repulsion is minimized and
their Coulomb correlation is at maximum. Thus, while the Hartree-Fock model
has no electron correlation, giving equal weight to covalent and ionic
structures, the early VB models overestimated the correlation. The true
situation is about half-way in-between. In the same way as the Hartree-Fock
wave function is improved by CI, the purely covalent VB function can be
improved by admixture of ionic structures as in eq 5, in which the coefficients
A and u would be directly optimized in the VB framework. Both improved
models thus lead to wave functions that are strictly equivalent and physically
correct, even though their initial expressions appear entirely different. This
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statement can be generalized: Since both ab initio VB and ab initio MO
theories exploit a subspace of the same configuration space, the VB and MO
wave functions of a given electronic structure are mutually interconvertible and
become equivalent when both theories are driven to their higher level of
refinement.

A severe inconvenience of describing each bond of a polyatomic molecule
by one covalent and two ionic components is that the number of VB structures
grows exponentially with the size of the molecule. Coulson and Fischer [17]
proposed a very elegant way to incorporate left-right correlation into a single
and formally covalent VB structure of the HL type. To this end they used
deformed or rather slightly delocalized orbitals as exemplified in eq 6 for Hj.

\PCF = I(Dl (ﬁr’—"l(pr 51] (6)
Or=Xa T &b ©r= Xp TEXa

Here each orbital, ¢;or ¢,, is mainly localized on a single center but involves a
small tail on the other center, so that the expansion of the Coulson-Fischer
wave function Wcr (eq 7) in AO determinants is in fact equivalent to ¢y in eq
5, provided the coefficient € is properly optimized.

Wep = (1487 xa Zol+ 126 ZaD +26(x0 Zal Hxb XD (7)

The Coulson-Fischer proposal gave rise to the "separated electron pair
theory" which was initiated by Hurley, Lennard-Jones and Pople [18]. Its
further development by Goddard [19], resulted in the "Generalized Valence
Bond" (GVB) method. In the latter method, each bond in a polyatomic
molecule is considered as a pair of non-orthogonal and spin-coupled orbitals, as
in the HL wave function. The different GVB pairs can in turn be constrained to
be mutually orthogonal, without much loss in numerical accuracy. Much as the
Coulson-Fischer orbitals, each GVB orbital is centered on one atom with
delocalization tails on the neighboring atoms. The resulting GVB wave function
that formally displays purely covalent bonds implicitly contains ionic
structures, necessary for a reasonable description of the bonds. The most
popular version of GVB theory is the so-called "perfect pairing”
approximation, which considers a single spin-coupling scheme in which spin
pairing is restricted to the electrons and orbitals of the bonded atoms in the
Lewis structure. For example, in methane, the perfectly paired GVB wave
function couples the electrons of each sp3 hybrid of carbon to the hydrogen that
faces it. In fact, for this case of 8 electrons in 8 orbitals there are 14 possible
spin coupling schemes in all rigor. As such, the perfectly paired GVB
approximation constitutes a tremendous simplification of the wave function,
often with no serious loss of accuracy. The closely related method is the Spin-
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Coupled (SC) theory of Gerratt, Raimondi and Cooper [20]. This method
removes any orthogonality restrictions and consider all possible spin-coupling
schemes between the singly occupied orbitals. Note that the shape of the
orbitals (e.g. sp3-like in the carbon atom of methane) and their degrees of
delocalization are not a priori imposed, but naturally arise from the
optimization of the orbitals for self-consistency. The lone pairs can be treated
either as doubly occupied localized orbitals, or as pairs of strongly overlapping
singly occupied orbitals.

2.1.2 Remaining part of non dynamical electron correlation

The GVB and SC methods take care of the left-right correlation for each
bond of a polyatomic molecule. However, these methods do not include the
totality of the "non-dynamical” correlation since the various local ionic
situations are not interconnected with these methods. For example, the two
ionic situations 1 and 2 below are expected to have different weights, 2 being
more important than 1,

H H
He. ~F H- 4+
T c
H/C H H/ H+
1 2

but this feature is not taken into account in the wave functions of Coulson-
Fisher type. To include all non dynamical electron correlation, one should
abandon the Coulson-Fisher idea and go back to VB structures constructed with
strictly atomic orbitals, without any delocalization tails, and generate all
possible VB structures, allowing their coefficients and orbitals to be optimized
simultaneously.

Technically, the simultaneous optimization of orbitals and coefficients for a
multistructure VB wave function can be done with the VBSCF method due to
Balint-Kurti and van Lenthe [21,22]. The VBSCF method has the same format
as the classical VB method with an important difference. While the classical VB
method uses orbitals that are optimized for the separate atoms, the VBSCF
method uses a variational optimization of the atomic orbitals in the molecular
wave function. In this manner the atomic orbitals adapt themselves to the
molecular environment with a resulting significant improvement in the total
energy and other computed properties.

2.2 Dynamical electron correlation
The importance of left-right correlation for the description of the bond is
best appreciated in the case of the F» molecule. Here the experimental bonding

energy is 38 kcal/mol, while the Hartree-Fock bond energy is negative, -36
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kcal/mol [23], i.e., the energy of the molecule is found Aigher than that of the
separated fluorine atoms. The situation improves considerably at the GVB or
CASSCEF levels (see Tables 1 and 2 below) which are nearly equivalent for this
molecule. Despite the improvement, the calculated bonding energy is still
disappointingly small, reaching only half of the full CI estimation with the
same basis set. Thus, while GVB (and CASSCF) calculations take care of the
Coulomb correlation, they do not treat the dynamic correlation which is
accounted for in the extensive CI calculation. The qualitative defect of the GVB
or CASSCF wave function of F, appears instantly once the wave function is
expanded in terms of covalent and ionic VB structures with strictly localized
AOs, in a manner similar to eq 7, and as pictorially represented in eq 8:

Y VY, 0

Fove = COFOOKD) < (OIQOKE) ~— (CFOOKD)  (8)

e 60 O 06

In the GVB wave function the orbitals and coefficients of the covalent and
ionic structures are optimized. However, the atomic orbitals are nearly identical
for the covalent and ionic structures, i.e. the orbitals are adapted to the mean-
field of the three structures. In fact, all the orbitals are optimized for an average
neutral situation, which is about correct for the covalent structure but disfavors
the ionic ones. However, common sense suggests that the molecular energy
would be further lowered if the AO’s were allowed to assume different sizes
and shapes, depending on whether they belong to the neutral atoms in the
covalent structure or to the ionic atoms in the ionic structures. This is dictated
not only by common sense but also from the wave-like property of the electron.
Thus, as a wave the electron wave function should exhibit an instantaneous
response to the local fields of the VB structures rather than to their mean-field.
One can therefore anticipate that the mean-field constraint of GVB
underestimates the weight of the ionic structures, leading to a poor description
of the bond. Relaxing this constraint during the orbital optimization should
allow each VB structure to have its own specific set of orbitals, different from
one structure to the other, and would improve the description of the bond
without increasing the number of VB structures. In such a wave function, the
orbitals can be viewed as instantaneously following the charge fluctuation by
rearranging in size and shape. Such orbitals were dubbed “breathing orbitals”
and the method itself was named the “breathing-orbital valence bond” (BOVB)
method. Our working hypothesis is that the qualitative improvement brought by
this breathing-orbital effect closely corresponds to the contribution of
dynamical correlation to the formation of the bond.
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3. THE BREATHING ORBITAL VALENCE BOND METHOD

The idea of using different orbitals for different VB structures is not new,
and has been successfully applied to molecules qualitatively represented as a
pair of resonating degenerate Lewis structures, e.g., formyloxyl radical,
carboxylate anions, etc. [24-26]. In this context, the non orthogonal CI of
Jackels and Davidson for the formyloxyl radical [24], the RGVB method of
Voter and Goddard [25], and the generalized multistructural wave function of
Nascimento [26] should be mentioned. What we advocate here is just the
systematic application of this principle to the description of the chemical bonds
in reacting systems, with the aim of defining a VB method that possesses the
following features: (i) Unambiguous interpretability of the wave function in
terms of Lewis structures. (ii)) Compactness of the wave function. (iii) Ability
to calculate diabatic as well as adiabatic states. (iv) Reasonable accuracy (say a
few kcal/mol) of the calculated energetics. (v) Consistency of the accuracy at
all points of the calculated surfaces. The latter two points require that the
method is able to describe the elementary events of a reaction, i.e. bond-
breaking or bond-forming, in a faithful manner. Thus, a crucial test for the
method will be its ability to reproduce dissociation curves, for two-electron as
well as odd-electron bonds.

3.1 General principles

The general philosophy is that the representation of an electronic state in
terms of Lewis structures is not just a model but rather an intimate picture of
the true nature of the chemical interactions. The picture needs only a rigorous
quantum mechanical formulation to become a quantitative computational
method. The procedure that derives from this philosophy and underlies the
BOVB method is straightforward. It consists of generating al/ the Lewis
structures that are necessary to describe a reacting system in VB terms, and
providing the corresponding VB structures with the best possible orbitals to
minimize the energy of the final multi-structure state. This kind of "absolute"
optimization of the orbitals is attained by getting rid of the above discussed
mean-field constraint (e.g., of GVB, VBSCF, etc.), and allowing different
orbitals for different VB structures. The method is thus grounded on the basic
postulate that if all relevant Lewis structures of an electronic state are generated
and if these are described in a balanced way by a wave function, then this wave
Sfunction should accurately reproduce the energetics of this electronic state
throughout a reaction coordinate.

The requirement that all Lewis structures be generated requires in turn that
both covalent and ionic components of the chemical bonds have to be
considered. As the number of VB structures grows exponentially with the
number of electrons, it is already apparent that the BOVB method will not be
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applied to large systems of electrons, but rather to that small part of a
molecular system that effectively "takes part" in a reaction, so called the "active
subsystem". The rest of the electrons are considered as spectators and treated at
the MO level. These MO’s do undergo however optimization during the
BOVB procedure.

3.1.1. Choice of an active subsystem
Consider a typical SN2 reaction as an example (eq 9). The reaction consists

of the breaking of a C-F bond followed by the formation of a new C-CI bond.
CI~ + CH3-F —» [Cl...CH3...F]” —» CI-CH3 + F~ 9

The four electrons and three orbitals involved in the C-F bond and in the
attacking lone pair of CI~ will constitute the heart of the reaction, and will form
the "active" system. Three lone pairs of fluorine, three other lone pairs of
chlorine and three C-H bonds of carbon will keep their status unchanged during
the reaction and will form the "spectator” or "inactive" system. More generally,
the active system will be composed of those orbitals and electrons that undergo
bond-breaking or bond-forming in a reaction. While the inactive system will be
treated at the simple MO level, i.e. the corresponding lone pairs or bonds will
be described as localized doubly occupied MOs, the active system will on the
contrary be subject to a detailed VB treatment involving the complete set of
chemically relevant Lewis structures.

In the above example, this would mean consideration of the full set of the
six VB structures (3-8) that one can possibly construct for a system of four
electrons in three orbitals.

| I | I | [
Cl- Co+F Cl«CF~ CIF C*F CI"C F C"C F ClC F
/\ /\ /\ /\ /\ /\

3 4 5 6 7 8

The active electrons are thus explicitly correlated, while the inactive electrons
are not. One expects that the lack of correlation in the inactive subsystem will
result in a constant error throughout the potential surface and therefore just
uniformly shift the calculated energies relative to fully correlated surfaces.
Note that in this model the inactive electrons are still affected by the progress
of the reaction, since their orbitals rearrange and optimize at all points of the
reaction coordinate. It is simply their mutual correlation that is considered as
constant.

The above definitions of active/inactive subsystems is of course not
restricted to the study of reactions but can be generalized to all static systems
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whose qualitative description can be made in terms of resonating Lewis
structures, like conjugated molecules, mixed valence compounds, etc.

3.1.2. VB formulation of the Lewis structures

After the choice of the relevant Lewis structures has been made, the
following step involves their quantum mechanical formulation. Each Lewis
structure corresponds to a set of atomic orbitals which are singly or doubly
occupied, as illustrated in 9-11 for the F, molecule.

G>®©(> @%@ ogc) ®©O ®6@

10 11

Each such Lewis structure is represented by a single VB spin-eigenfunction
(Wo-Y¥11), hereafter called a "VB structure". These VB structures are linear
combinations of Slater determinants involving the same occupied AOs as the
corresponding Lewis structures, as in eqs 10-12.

\Pg :|(10an§11| +|(lenEn (10)
\PIO :I"'(pi' Lata (11)
¥y =|.9;' - R4R,]| (12)

Here @, ¢' and @" represent the set of inactive orbitals for each VB structure, L
and R are the active orbitals of the left and right fragments, respectively, and
the subscripts # and a stand for neutral and anionic fragments, respectively
(recall that the cationic fragments have only inactive orbitals and no active
ones). Note that the inactive orbitals @;, ;' and @;" of Wo-¥ |, are all different
from each other, as are the active orbitals L, La, or Ry, Ra. These differences
are pictorially represented in 9-11 by drawing orbitals with different sizes
depending on the identity of the species as neutral, cationic or anionic.

An important feature of the BOVB method is that the active orbitals are
chosen to be strictly localized on a single atom or fragment, without any
delocalization tails. If this were not the case, a so-called "covalent” structure,
defined with more or less delocalized orbitals like, e.g., Coulson-Fischer
orbitals, would implicitly contain some ionic contributions, which would make
the interpretation of the wave function questionable [27]. The use of pure AOs
is therefore a way to ensure an unambiguous correspondence between the
concept of Lewis structural scheme and its mathematical formulation. Another
reason for the choice of local orbitals is that the breathing orbital effect is
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effective only when the charge fluctuation is truly reflected in the VB
structures. This means that the ionic structures are really ionic and the covalent
ones really covalent. When the orbitals are not local, a formally ionic structure
is in fact contaminated by covalent ones and can at best reflect some damped
charge fluctuation. Moreover, since one uses the full set of the VB structures,
allowing the orbitals to delocalize would lead to artificial redundancy of the VB
structures. It follows therefore that, the choice of purely localized active
orbitals is in fact not a restriction on the orbital optimization, but rather a way
to ensure a correct procedure.

On the other hand, there is no conceptual problem in letting the inactive
orbitals be delocalized. For example, either the local px lone pairs of Fy (in 9-
11) or their doubly occupied bonding and antibonding combinations represent
two lone pairs facing each other. Thus, qualitatively both representations keep
the same physical picture of this four-electron interaction. However, in flexible
basis sets, the delocalized representation has more degrees of freedom over the
localized one, since the building block AOs of the bonding and antibonding
combinations can be different, thereby leading to a slightly better description of
the four electron interactions. Therefore, the delocalization of inactive orbitals
will be used as one of the possible options in the BOVB method.

3.1.3. BOVB levels

Several theoretical levels are conceivable within the BOVB framework. At
first, the inactive orbitals may or may not be allowed to delocalize over the
whole molecule (vide supra). To distinguish the two options, a calculation with
localized inactive orbitals will be labeled "L.", as opposed to the label "D" that
will characterize delocalized inactive orbitals. The usefulness and physical
meaning of this option will be discussed below using particular cases.

Another optional improvement concerns the description of the ionic VB
structures. At the simplest level, the active ionic orbital is just a unique doubly
occupied orbital as in 10 or 11. However this description can be improved by
taking care of the radial correlation (also called "in-out" correlation) of the two
active electrons, and this can be achieved most simply by splitting the active
orbital into a pair of singly occupied orbitals accommodating a spin-pair, much
as in GVB theory. This is pictorially represented in 12 and 13 which represent
improved descriptions of 10 and 11.

g ogc) o

O 0

12 13
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This improved level will be referred to as "S" (for "split") while the
simpler level will carry no special label. Combining the two optional
improvements, the BOVB calculations can be performed at the L, SL, D or SD

levels.T
These levels are tested below on bond energies and/or dissociation curves of
classical test cases, representative of two-electron and odd-electron bonds.

3.2. Dissociation of 2-e bonds

3.2.1. The difluorine molecule

The dissociation of difluorine is a demanding test case used traditionally to
benchmark new computational methods. In this regard, the complete failure of
the Hartree-Fock method to account for the F; bond has already been
mentioned. Table 1 displays the calculated energies of F, at a fixed distance of
1.43 A, relative to the separated atoms. Note that at infinite distance, the ionic
structures disappear, so that one is left with a pair of singlet-coupled neutral
atoms which just corresponds to the Hartree-Fock description of the separated
atoms.

Since extensive basis sets are required to reproduce properties of this
molecule, and we are using only 6-31G*, we cannot hope to reproduce the
experimental bond energy. Therefore the best bonding energy is taken as the
full CI value, in the region of 30 kcal/mol. The classical VB level, referred to
in the Table as iteration 0, is a simple non-orthogonal CI between one covalent
and two ionic structures, the orbitals being the pure atomic orbitals of fluorine
as optimized in the free atoms. As can be seen, the bonding energy at this latter
level is extremely poor (though better than Hartree-Fock) and does not even
have the right sign. The GVB level, which nearly corresponds to the same VB
calculations but with optimized orbitals (all VB structures sharing the same set
of orbitals), is much better but still far from quantitative. However, as soon as
the orbitals are allowed to adapt themselves to the individual VB structures
(entries 1-5), the bonding energy increases and converges rapidly to a value
close to the full CI estimation. Thus, the breathing orbital effect just
corresponds to that part of the dynamical electron correlation that vanishes as
the bond is broken. This provides a clear picture for the physical meaning of
the dynamical correlation associated to the single bond, which is nothing but
the wave-like quality of the electron manifested as the instantaneous adaptation
of the orbitals to the charge fluctuation experienced by the two bonding
electrons. Table 1 displays also the weights of the covalent and ionic
structures, as calculated by means of the popular Chirgwin-Coulson formula,?

T The L, SL and SD levels were referred to as levels I, II and III in ref. 12.
* The weight ¥, of a VB structure V), is calculated as: W, =Y C,C,S,,,,. where ) and C,, are
m

n>a~nm>



Table 1

L-BOVB calculation on the F, molecule at a fixed interatomic distance of 1.43 A. The

6-31G* basis set has been used. See Ref. 11 for more details.

Iteration Energy (au) D (kcal/mol) Coefficients (Weights)
Covalent 9 Ionic 10 or 11
0 -198.71314 -4.6 0.840 (0.813) 0.194 (0.094)
1 -198.75952 24.6 0.772 (0.731) 0.249 (0.134)
2 -198.76494 27.9 0.754 (0.712) 0.258 (0.144)
3 -198.76572 28.4 0.751 (0.709) 0.260 (0.246)
4 -198.76600 28.5 0.752 (0.710) 0.259 (0.145)
5 -198.76608 28.6 0.750 (0.707) 0.261 (0.146)
Projected GVB? -198.74554 15.7 (0.768) (0.116)
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? The VB weights are calculated after projecting the GVB wave function onto a basis of
pure VB functions defined with strictly localized AOs.

thus emphasizing the imbalanced ionic/covalent ratio that characterizes low
levels of calculation. The classical VB calculation, with its orbitals taken from
the free atoms, severely disfavors the ionic structures with a weight that is
much too small when compared with the best calculation, entry 5. The GVB
wave function (projected on a basis of VB functions defined with pure atomic
orbitals), with its orbitals optimized for the bonded molecule, is a little better,
but it still suffers from the mean-field constraint. Now, when full freedom is
given to the ionic structures to have their orbitals different from the covalent
ones, the ionic weights gradually increase after each iteration. This clearly
supports the above stated intuitive proposal that the lack of dynamical
correlation, that characterizes the classical VB, GVB, SC or valence-CASSCF
levels, results in an imbalance in the treatment of covalent vs ionic situations,
and disfavors the latter structures.

The above best calculation [11] corresponds to the simplest level of the
BOVB method, referred to as L-BOVB. All orbitals, active and inactive, are
strictly local, and the ionic structures are of closed-shell type, as represented in
10 and 11. However the theory can be further improved, and the corresponding
levels are displayed in Table 2. It appears that the L-BOVB/6-31+G* level,
yields a fair bonding energy, but an equilibrium distance that is rather too long
compared to sophisticated estimations. This is the sign of an incomplete
description of the bond. Indeed this simpler level does not fully account for the

the coefficients of V', and V), in the wave function and S, is their overlap.
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Table 2

Dissociation energies and optimized equilibrium bond lengths for the F; molecule.

Method Req (A) De (kcal/mol) Ref.

6-31+G* Basis Set

GVB 1.506 14.0 [12]
CASSCF 1.495 16.4 [12]
L-BOVB 1.485 27.9 [12]
SL-BOVB 1.473 314 [12]
SD-BOVB 1.449 33.9 [12]
Estimated full CI <33 [23]

Dunning-Huzinaga Basis Set 2

SD-BOVB 1.443 31.6 [12]
Estimated full CI 1.44 £ 0.005 28 - 31 [28,29]
Experimental 1.412 38.3 [30]

a A modified Dunning-Huzinaga basis set used by Laidig, Saxe and Bartlett {28]. The
normal (4,1) p contraction is extended to (3,1,1) and a set of six d functions of
exponent 1.58 is added.

correlation of the active electrons, which are located in doubly occupied
orbitals in the closed-shell ionic structures 10 and 11. Splitting the active
orbitals of the ionic structures as in 12 and 13, i.e., the SL-BOVB level,
remedies the deficiency. The corresponding SL-BOVB level displays an
increased bonding energy and a shortened bond length as compared to L-BOVB
in Table 2.

The optimized equilibrium distance is still too large, however, and now the
interactions between inactive electrons have to be considered. In the F; case,
the inactive electrons involve the three lone pairs of each atom, facing each
other. While their local AO or delocalized MO descriptions would be strictly
equivalent in a minimal basis set, this is not the situation in more flexible basis
sets. In a flexible basis set the delocalized MO description implicitly allows
some charge transfers from one lone pair of an atom to some outer-valence
orbitals of the other atom [31]. Most of this charge transfer corresponds to
some back-donation in the ionic structures, i.e. the fragment F- that has an
electron excess in its sigma orbitals donates back some charge to the F*
fragment through its © orbitals. Indeed, allowing the 1 lone pairs to delocalize
(SD-BOVB entries in Table 2) results in a significantly shortened calculated
bond length which is now in the expected range.
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For the sake of comparison, Table 2 displays also some full CI estimations
by Laidig, Saxe and Bartlett [28] (LSB), along with SD-BOVB calculations
using the same basis set. The BOVB bonding distance appears perfectly correct,
while the bonding energy seems slightly too large, but still within an acceptable
error margin.

3.2.2. The hydrogen fluoride molecule

Hydrogen fluoride is another classical test case, representing a typical polar
bond between two atoms of very different electronegativities. As such, the
molecule is expected to possess one ionic structure, F"H* (14) that is nearly as
important as the covalent one (15). Thus, any deficiency in the description of
ionic structures should result in significant error in the bonding energy and
dissociation curve. Another distinctive feature of the F-H bond is its very high
experimental bonding energy of 141 kcal/mol. With such strength of the
bonding, one may wonder if the inactive electrons may still keep their identity,
as assumed by the basic hypothesis of the BOVB method. For these two
reasons, hydrogen fluorine is a challenging case, especially when the BOVB
method can be assessed vis a vis benchmark full CI calculations that are
available for the bond energy and the full dissociation curve.

As usual, the single bond is described by three VB structures, 14-16.

0 9 0

D@Q@H - D@@OH - @60 (Owu

14 15 16

The F*H™ (16) structure is expected to be very minor but is nevertheless
added for completeness. Table 3 displays the optimal bond lengths and bonding
energies calculated at various theoretical levels, in the 6-31+G** basis set and
in an additional basis set comparable in quality to the one used by Bauschlicher
and Taylor {32].

Dynamic electron correlation effects appear once again to be an important
component of the bonding energy, since the GVB/6-31+G** calculation yields
a value of only 113 kcal/mol, quite far from the experimental value. However
the simple L-BOVB level also proves to be quite insufficient, with a bonding
energy that is still much too small. This is expected (vide supra), owing to the
importance of the F"H* ionic structure 15 that is rather poorly described
without splitting the doubly occupied orbitals. Splitting the active orbital of this
structure, as in 17, leads to a spectacular improvement of the bonding energy,
by ca 12 kcal/mol, (SL-BOVB/6-31+G** entry in Table 3). As in the F) case,
further improvement is gained by delocalizing the = inactive orbitals to reach
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Table 3

Dissociation energies and optimized equilibrium bond lengths for the FH molecule

Method Req (A) D, (kcal/mol) Ref.

6-31+G** Basis Set

GVB(1/2) 0.920 113.4 [12]
L-BOVB 0.918 121.4 [12]
SL-BOVB 0.911 133.5 [12]
SD-BOVB 0.906 136.3 [12]
Extended SD-BOVB 0916 137.4 [12]

BT Basis Set 2

SD-BOVB 0.906 136.5 {12]
Extended SD-BOVB 0.912 138.2 [12]
Full CI b 0.921 136.3 [32]
Experimental 0.917 141.1 [30]

2 A double-zeta + polarization + diffuse basis set used by Bauschlicher and Taylor [32].
b The 2s orbitals are not included in the CI.

0
Do
8

17

the SD level that yields a bonding energy of 136.3 kcal/mol, in very reasonable
agreement with the experimental value.

Due to its polar nature, hydrogen fluoride is a stringent test for the key
assumption that the correlation of the inactive electrons remains nearly constant
throughout the dissociation process. Since the inactive electrons of F~ in the
F™H* structure feel a different electric field than those of the neutral F
fragment at infinite separation, one might have expected the intra-pair
correlation energy of the active electrons to vary with the interatomic distance,
owing to the importance of the ionic structure at the equilibrium geometry. To
probe whether the assumption breaks down, we pushed the BOVB calculation
to a higher level. Here, all doubly occupied orbitals, in the two main VB
structures, are splitt, leading to 18 and 19.
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This test calculation, referred to as "Extended SD-BOVB" in Table 3,
results in an improvement of only 1.1 kcal/mol of the bonding energy relative
to the standard SD level, thus confirming the assumption of near-constancy of
the correlation within inactive electrons. It follows therefore that going beyond
the SD-BOVB level is not necessary.

0 0

(r O (SrQ)ou

& ©

18 19

Table 3 displays also a comparison of a full CI calculation by Bauschlicher
and Taylor [32] with the best BOVB levels using a common basis set. Once
again the SD-BOVB level is entirely sufficient, while its extended version leads
to a meager improvement. In any case, both levels are in excellent agreement
with the full CI results.

By nature, the BOVB method describes properly the dissociation process.
As a test case, the dissociation curve of the FH molecule was calculated at the
highest BOVB level (extended SD-BOVB), and compared with a reference full
CI dissociation curve calculated by Bauschlicher et al. [33] with the same basis
set. The two curves, that were compared in Ref. 12, were found to be
practically indistinguishable within an error margin of 0.8 kcal/mol, showing
the ability of the BOVB method to describe the bonding interaction equally
well at any interatomic distance from equilibrium all the way to infinite
separation [12].

3.2.3. First row transition metals hydride cations

Bonds that involve transition metals are difficult to handle computationally,
owing to two factors: (i) The reshuffle of electronic configurations that
accompanies the dissociation, and (ii) the presence of a large number of
inactive electrons that exert a great influence on the bonding electrons. In this
context, previous theoretical studies of transition metal hydride cations (TMH™)
showed that accurate predictions of bond dissociation energies require extended
wave functions, which account for both static and dynamic electron correlation
effects [34,35]. Goddard et al. [34] showed that the GVB function by itself is
unable to provide quantitative accuracy, but it predicts correct trends and
elucidates the bonding patterns in first-row TMH'. The factors which
determine the bonding patterns [35] are the promotion energy of the metal
cation from the 3dn*! state to the bond-forming 4s!3dn state, the loss of
exchange in the 4s13dn state following bond-formation, and the ground state
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symmetry determined by the electrostatic repulsion between the d electrons. It
is apparent therefore that VB theory is capable of providing very useful insight
into bonding because it involves a compact, easily interpretable wave function.
Further insight can be gained by employing the BOVB method that uses
explicit covalent and ionic structures and can provide bonding patterns in terms
of covalency, covalent-ionic resonance energy and orbital relaxation of the 3d
and 3s23pb shell electrons. Can the BOVB wave function, despite its extreme
simplicity, still provide reasonable bonding energies in such difficult cases?

To answer this question, Galbraith et al. [36] used BOVB to study the bond
energies of TMH* species (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn).
The basis set involved a relativistic effective core potential for the 1s22s22p6
core and a triple-{ (8s,7p,6d//6s,5p,3d) basis for the 3s, 3p, 3d and 4s shells of
the metal, augmented with an f-type polarization function. For hydrogen, the
triple-{ (5s//3s) basis of Dunning was augmented with a p-type polarization
function. At the dissociation limit the BOVB wave function correlates with the
restricted open-shell Hartree-Fock (ROHF) states of TM* and H. This level
treats poorly the atomic states and especially the 3dn*lstate. To correct for this
non-VB-related deficiency, Galbraith et al. [36] used the technique
recommended by Goddard [34,35] and Bauschlicher [37], of shifting the
energies of the TM* fragment using experimental data. Thus, the TMH™ species
are first dissociated into the atomic state most closely resembling their situation
in the molecule (i.e. the 4s13dn state for TM™*), and whenever necessary, the
experimental atomic state splitting is used to correct the energy of the TM*
fragment to the corresponding atomic ground state.

The bond dissociation energies, calculated at the various computational
levels, are displayed in Table 4 and compared with experimental values. The
VBSCEF results are seen to be slightly better than the GVB results. Both results
qualitatively reproduce the characteristic zigzag pattern of the experimental
trends across the first TM row. However these two sets of bond energies are
systematically too weak, by 10-20 and sometimes by more than 30 kcal/mol,
thus projecting the importance of dynamic correlation. Accordingly, a
significant improvement is found upon moving from GVB or VBSCF to L-
BOVB. The added flexibility of the BOVB method is seen to bring the
predicted bond dissociation energies closer to the benchmark CCSD(T) values
and to experimental results. Thus, while VBSCF (as well as GVB or SC
methods) captures the essential non dynamic correlation effects due to the
bonding event, the BOVB retains this qualitative picture, but adds the dynamic
relaxation of all the electrons in response to bond pairing.

Still, the BOVB bonding energy for CuH" remains too small, by ca 10
kcal/mol, a rather unusually large error for this method. However, CuH" is a
particularly difficult case as can be judged by the VBSCF and GVB values
which are in error by 38 and 44 kcal/mol, respectively. Another source of
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Table 4
Bond dissociation energies (kcal/mol) of TMH™ species, at the GVB, VBSCF, L-BOVB
and CCSD(T) levels. The M-H bond lengths are optimized at the VBSCF level.

GVB VBSCF L-BOVB CCSD(T)  experimental

ScHt 474 46.4 57.5 55.2 5742
TiH* 43.4 442 54.3 54.6 54 +3
VHT 33.8 41.6 53.1 48.0 48 +2
CrH* 8.9 9.5 26.1 37.3 32+2
MnH™* 25.9 30.6 44.0 442 48 +3
FeHt 312 36.0 53.9 519 50 +2
CoHT 21.3 27.2 48.8 39.5 47 £2
Nigt 9.7 16.1 40.3 39.3 40+£2
CuH™* 222 -16.3 114 24.4 22+3
ZnH™T 46.5 46.2 55.7 56.0 55+3

inaccuracy comes from the use of VBSCF-optimized bond lengths, which were
found generally too long by an average of 0.09 A at this crude level [36].
Moreover, the BOVB calculation was limited to the simplest L-BOVB. It
would be interesting to test the SD-BOVB level on these systems, with proper
geometry optimization, to make a more critical evaluation of this unusual case.

3.2.4. General procedure for low-symmetry cases

Up to now we have dealt with molecules which makes the distinction
between active and inactive orbitals an obvious task based on simple symmetry
considerations. Such symmetry is not always present in the general case, and
this poses a danger that there could be flipping between the sets of active and
inactive orbitals during the BOVB orbital optimization,

The simplest level, L-BOVB, presents no particular practical problem. Fast
convergence is generally obtained by using well adapted guess orbitals, that can
be chosen as the Hartree-Fock orbitals of the isolated fragments with the
appropriate electronic charge. Thus, the guess orbitals for the covalent structure
are those of the isolated radicals, while the orbitals of the isolated anions and
cations can be taken for the ionic structures.

Moving to the more accurate SL-BOVB level, merely requires checking
that the orbital that is being split (in an ionic structure) is indeed an active
orbital, and that the pair of singly occupied orbitals does not end up belonging
to the inactive space after the optimization process. While this condition is
generally met by choosing an appropriate guess function in high symmetry
cases (F2 or HF above), in the general case nothing guarantees a priori that this
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exchange between the active and inactive spaces will not take place, leading for
example to 20 instead of the correct structure 21 in the case of HyN-NHj.

Q_p Q__ P
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20 21
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To circumvent this difficulty, a general procedure was developed. After the

L-BOVB step, the orbitals are initially subject to localizationT using any
standard method, then the active orbital are split while the inactive ones are
kept frozen during the optimization process.

Delocalization of the inactive orbitals (D-BOVB or SD-BOVB) is important
for getting accurate energetics, especially in cases where the inactive orbitals
are not lone pairs but are instead bonding orbitals (e.g. C-H bond in H3C-F).
This is because this degree of freedom allows for charge transfer to take place
between inactive orbitals of the two fragments. The antibonding orbitals of a
bond like C-H are better suited than high-lying outer-valence lone pair orbitals
to accept an extra electron from the neighboring fragment e.g., F in H3C-F.
Once again, it is important to make sure that the orbitals that are delocalized are
the inactive ones, while the active set remains purely localized which is the
basic tenet of the method. Otherwise, any artefactual solution might be found.
To avoid any spurious exchange between the active and inactive spaces during
the orbital optimization process, it is possible to start from an L-BOVB or D-
BOVB wave function, then allowing delocalization of the inactive orbitals
while freezing, this time, the active orbitals during the subsequent optimization
process that leads to the D-BOVB or SD-BOVB levels, respectively.

3.3. Dissociation of Odd-e Bonds

Alongside electron-pair bonds, odd-electron bonds play an important role in
chemistry, and constitute therefore a compulsory test case for any
computational method. Odd-electron bonds can be represented as two
resonating Lewis structures that are mutually related by charge transfer, as
shown in (13) for two-center, one-electron (2¢,le) bonds and in (14) and (15)
for typical two-center, three-electron (2¢,3¢) bonds.

A*B* & AT B (13)
A*":B « A:+Bf (14)
A*:B” & A: B (15)

¥ This requires prior orthogonalization of the orbitals within each fragment.
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According to qualitative VB theory, such bonds owe their strength to the
resonance energy associated with the mixing of the two limiting structures. A
significant resonance energy requires degeneracy of the two resonating
structures, or nearly so. As a result most of the observed odd-electron bonds are
homonuclear (A=B).

In MO theory the stability of these bonds is readily understood by
inspection of orbital interaction diagrams 22 and 23, where ¢ and ¢* are
bonding and antibonding combinations of active orbitals, respectively. Both

22 23

diagrams display one net bonding electron. These diagrams can be further
considered to question the role of left-right electron correlation. In 22, the
active space reduces to a single electron, and this eliminates the need for
electron correlation within this space. On the other hand, the active space of 23
involves three electrons; however, the only configuration one might have added
to improve the simple Hartree-Fock wave function is the singly excited clg*2
one, which by virtue of Brillouin’s theorem does not mix with c2c*l. It
follows that the concept of left-right correlation is meaningless in such systems,
and that the description of both one-electron and three-electron bonds is already
qualitatively correct at the Hartree-Fock level, contrary to two-electron bonds.

In view of the preceding analysis, the complete failure of Hartree-Fock ab
initio calculations to reproduce three-electron bonding energies might seem to
be a paradox. Clark [38] and Radom [39] carried out systematic calculations on
series of cation radicals involving three-electron bonds between atoms of the
second and third rows of the periodic table, and showed that the Hartree-Fock
error is always large, sometimes of the same order of magnitude as the bonding
energy itself. Thus, F,™ that is experimentally bound by 30 kcal/mol is found to
be unbound at the ROHF level [23]. The error is much smaller in the case of
one-electron bonds [38], yet it may be as large as 13 kcal/mol in the H3C+CH3*
cation. Interestingly, the Hartree-Fock error is not constant, but gradually
increases as the bonded atoms are taken from left to right or from bottom to top
of the periodic table.
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Focusing on the three-electron case, the puzzling Hartree-Fock deficiency
can be analyzed by expanding the corresponding wave function into its VB
constituents, as we did above in the two-electron case. Taking the F,™ case as an
example, the Hartree-Fock wave function Wyr (3-e) reads:

YHF(3-€)=}..9;..050,0 (18)

where @j represent the inactive orbitals, and the active orbitals 6g and o, are
defined already in eq 4 above. Expanding 6 and 6 leads to eq 19:

YHEGB - ) =]..0; - XaXaXb| |- Pi-XaXbXb] (19)

Thus, the Hartree-Fock wave function is equivalent to a two-configuration
VB wave function. The same VB structures, 24 and 25, were in fact used in the
original VB treatment of three-electron bonds by Pauling [40].

e -
24 25

Even though it is physically correct, the ROHF wave function suffers from
the same defect as the GVB wave function for two—electron bonds. Thus, the
active AOs are common for the two structures and are not adapted to their
instantaneous occupancies, while the inactive orbitals are not adapted to the
instantaneous charge of the fragments. Once again, this defect can be removed
by use of the BOVB wave function that allows for different orbitals for
different structures, as in eq 20 :

¥eove(3—€)=Cy|..q; ..L,L,R;|[+Cp|..¢; ..L R, R, (20)
La#zLl;, Rr#Ra;  @i#F 07

Here the orbitals are defined in the same way as in eqs 10-12. Some
representative test cases are discussed below.

3.3.1. The Fy radical anion

As is the case for its neutral homologue, the difluorine radical anion is a
difficult test case for the calculation of its bonding energy. At the Hartree-Fock
level, the bonding energy is about + 4 kcal/mol, depending on whether the
ROHF or UHF method is used. The experimental bond energy is 30 kcal/mol.
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In contrast, the MP2 and MP4 methods of theory are successful, and this
success emphasizes the dynamic nature of electron correlation for this molecule.

The computed equilibrium distance and bonding energy of Fy~ are
displayed in Table 5. To appreciate better the sensitivity of active vs inactive
orbitals to the breathing orbital effect, the latter has been introduced by steps:
In the first step no breathing orbitals are used (La = L, Ra = Ry, @; = ¢;’): this
VBSCEF calculation is nearly equivalent to the ROHF level. In the second step,
only active orbitals are included in the breathing set (L, # L;, Ry # R;), while
in the next step full breathing is permitted (Lz # Ly, Ra # Ry, ¢; # ¢i’). The
latter wave function, at the L-BOVB level, can be represented as in 26, 27

9 o 0

@F@D — OG0

& &)

26 27
The breathing orbital effect, restricted to the active orbitals that are directly
involved in the three-electron bond, already improves the bonding energy by
some 17 kcal/mol relative to the ROHF value (Table 5). Extension of the

Table 5

Calculated equilibrium distances and dissociation energies for the F,™ radical anion,
(6-31+G* basis set). BOVB calculations are performed with all valence orbitals being
included in the set of breathing orbitals (fully-breathing option) unless otherwise specified
(entry 2).

Entry  Method Req (A) D, (kcal/mol) Ref.
1 ROHF -4 [23]
2 L-BOVB (active set only) 1.954 13.3 « «
3 L-BOVB 1.964 29.7 [13]
4 D-BOVB 1.954 30.1 . «“
5 SD-BOVB 1.975 28.0 « «“
6 SD-BOVB (4-structure) 1.976 28.0 “ «
7 MP2 1.916 26.2 [13]
8 PMP2 1.935 29.5 *
9 MP4 1.931 25.8 [41]
10 Experiment 30.2 [30]
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breathing orbital effect to the inactive orbitals brings another 16 kcal/mol,
yielding a final bonding energy of 29.7 kcal/mol, in excellent agreement with
the experimental bonding energy of 30.2 kcal/mol [30].

The Hartree-Fock error is thus completely corrected by the breathing orbital
effect. On a “per orbital” basis, each active AO contributes for 8.6 kcal/mol to
the overall BO stabilization, while the inactive lone pairs have a lesser
influence, about 2.8 kcal/mol each.

The calculation can be further improved by allowing the inactive n orbitals
to delocalize over the molecule, at the D-BOVB level. As a result, the
equilibrium bond length is shortened by 0.01 A, and the bonding energy is
increased by 0.4 kcal/mol relative to the L-BOVB level (Table 5). This rather
meager return from increasing the level of theory indicates that the fully
localized atomic orbitals are, right at the outset, well adapted to the description
of the three-electron interaction, contrary to what is observed in two-electron
bonds. This difference may be due in part to the long equilibrium distance that
characterize three-electron bonds, which results in weak interatomic repulsions
between inactive lone pairs. Another reason for the ineffectiveness of =
delocalization is that neither of the VB structures 24 or 25 displays a polar ¢
bond that needs to be counter-polarized by n back-donation as in two-electron
bonds.

Somewhat more significant is the effect of splitting the active orbitals,
leading to structures 28 and 29 at the SD-BOVB level, where the local singlet

@Q@DQG — ®©®@®

50 @

spin-couplings are indicated by curved lines. However this improvement does
not lead to an increase, but rather to a small decrease (1.7 kcal/mol) of the
bonding energy. This is because the effect of splitting the active orbitals
stabilizes both the separated fragments and the bonded molecules, so that both
stabilizations nearly compensate each other and may lead to a small correction
of any sign in the bonding energy. In contrast, in the case of two-electron
bonds, splitting the doubly occupied active orbitals always benefits the ionic
structures that are present at equilibrium distance but which vanish at infinite
separation, leading thereby to an increased bonding energy.

Up to now we have dealt with the two Lewis structures that a chemist might
write down to describe the three-electron interaction. However, mathematically,
there are two spin-coupling modes of three electrons in three orbitals both
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leading to doublet spin eigenfunctions. Thus, the complexity of the SD-BOVB
wave function could be further increased by adding structures 30 and 31. These
structures exhibit the same orbital occupancy as 28 and 29 but exhibit different
spin couplings. The calculation using 30 and 31 is referred to as “SD-BOVB
(4-structure)” in Table 5, and is seen to give a bond energy virtually the same
as the standard SD-BOVB level. This result fully confirms the validity of
Pauling’s simple model based on chemical intuition.

el - c%@ =
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The performances of the various BOVB levels can be compared to those of
Mopiller-Plesset (MP) perturbation theory, yet with some caution since the
various MP orders do not converge well. This is due to a rather large spin
contamination at the unrestricted MP2 level, which leads to a wave function
with an <S*> value of 0.78. Keeping in mind that the breathing orbitals of Fy~
are not much polarized [13], the bonding energy is not expected to be very
basis set dependent, so that the SD-BOVB value of 28.0 kcal/mol is entirely
reasonable relative to the experimental value of 30.2 kcal/mol. The BOVB
calculated equilibrium bond lengths are rather long relative to the values
calculated at the various MP levels (no experimental value is available), and
both sets of values display significant variations from one level to the other.
This inaccuracy is however normal, owing to the extreme flatness of the
potential surface near the energy minimum. Indeed, at the MP4 level the force
constant is only 0.55 mdyn/A, which means that stretching the bond by 0.02 A
away from equilibrium results in an energy rise of onty 0.03 kcal/mol.

A final point is in order concerning the avoidance of symmetry-breaking
artefacts by the BOVB method as opposed to others. Three-electron bonds, just
like any electronic system that must be described by more than one Lewis
structure, are subject to the symmetry-breaking artefact with most
computational methods of MO type: Hartree-Fock, MP2 or MP4, and even
CCSD and CCSD(T)) [42,43]. This symmetry breaking is observed beyond a
critical interatomic distance which may actually happen to be shorter than the
equilibrium bond length, and it is due to a competition, during orbital
optimization, between the resonance effect and the breathing orbital effect
{called “ size effect” by other authors [44,45]} in this case). Assuming for
example that the orbital optimization is performed at the Hartree-Fock level,
the wave function is subject to the so-called *“ symmetry dilemma ”: that is, if
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the symmetry of the wave function is broken, it converges to a solution like 26
alone, in which the orbitals are adapted to their occupancy but where the
resonance is lost. On the other hand, if the symmetry is maintained, the wave
function converges to a solution of the type 24<525; this benefits from the
resonance energy, but the orbitals are optimized in a mean field, and are
consequently poorly adapted to their instantaneous occupancy. In cases where
the resonance is dominant, the wave function displays the correct symmetry.
However, as soon as the resonance becomes too weak to overcome the
breathing orbital effect, the wave function departs from the molecular
symmetry and leads to unphysical geometries, frequencies and energetics. This
problem, which is rather difficult to overcome with standard computational
methods, vanishes at the BOVB level: as the wave function involves both the
size effect and the resonance effect at any molecular geometry, the root cause
for the symmetry breaking disappears. The BOVB method is, by nature, entirely
[free from the symmetry breaking artefact.

3.3.2. The Cly radical anion

The valence orbitals of Cl,” are spatially larger than those of Fj~.
Accordingly, the breathing orbital effect is expected to be less important in Cly~
than in F,7, since two electrons occupying the same orbital are now less
confined than in the compact orbitals of F™.

Table 6 displays some bonding energies for Cly™, as calculated at the D-
BOVB level and at other theoretical levels, including Hartree-Fock and Magller-
Plesset perturbation theory. Unlike the F,~ case, the Mgller-Plesset series
converges well around the values of 24-25 kcal/mol which can be taken as
references for the bonding energy in this basis set.

The fully breathing D-BOVB result is once again in good agreement with
the various Moller-Plesset values and with the POL-CI calculation of Wadt and
Hay [46] in a similar basis set. The breathing orbital effect of the inactive
orbitals, estimated by comparing the bonding energies in entries 1 and 2 in
Table 6, only amounts to 7.1 kcal/mol, which is significantly smaller than the
corresponding value of 16.4 kcal/mol in Fy~. Moreover, the effect for the
active orbitals alone (compare entries 2 and 3) brings only 4.5 kcal/mol of
stabilization in Cly™ relative to the Hartree-Fock level, to be compared to the
value 17.3 in F,7, thus fully supporting the qualitative expectations based on
orbital size.

Basis set effects begin to be important in three-electron bonds involving
atoms of the third-row, since polarization functions are important for
reproducing atomic polarizabilities, which are important in atom-ion
interactions. For this reason, the BOVB result that was calculated in the modest
6-31+G* basis set yields a bonding energy which is some 4-5 kcal/mol smaller
than more accurate G2 [47] and CPF [48] calculations, using a close to
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Table 6
Calculated dissociation energies for the Cl,” radical anion, in 6-31+G* basis
set, with an MP2-optimized bond length of 2.653 A, except otherwise
specified.

Entry Method D, (kcal/mol) Ref.
D-BOVB
1 fully-breathing 22.6 [13]
2 active set only 15.5 [13]
3 ROHF 11.0 [13]
4 MP2 24.7 [13]
5 PMP2 25.5 [13]
6 MP4 24.4 [13]
7 POL-CI 2 24.0 [46]
8 G2b 27.5 (47}
9 CPF/6s5p4d3f2g © 27 [48]

2 Optimized bond length of 2.69 A. b Optimized within the G2 procedure.
¢ Optimized bond length of 2.59 A.

complete basis set. It is clear that using a more sophisticated basis set for Cly™
would have brought the BOVB calculated bonding energy close to the accurate
value. In support of this assertion, Archirel [49] has calculated the bonding
energy of another three-electron-bonded molecule of the third-row, Ary*, and
got disappointing results with a simple double-zeta polarized basis set. Then,
using a better basis set of 4sdp2d1f quality, he obtained a bonding energy of
30.2 kcal/mol at the D-BOVB level, in good agreement with the experimental
value of 30.7 kcal/mol, or 32.0 kcal/mol after compensating for the estimated
spin-orbit interaction [50].

3.3.3. The (NH3)>" radical cation

The atomic orbitals of nitrogen are larger than those of fluorine, with
optimized exponents of 1.96 for NH3 vs 2.40 for F~, in a minimal basis set.
Therefore, one can once again predict a smaller breathing orbital effect for both
the active and inactive orbitals of (H3NNH3)*, relative to F27. However, the
inactive orbitals in this case represent single N-H bonds as opposed to the lone
pairs in the F>™ case. It is clear that the inactive electrons are on average closer
to the nuclei for lone pairs than for bonds, and are therefore more sensitive to
the charge fluctuation of the active space. This effect, together with the orbital
size effect, leads to the expectation that the breathing orbital effect should be
definitely weaker in (H3NNH3)* compared with F>™, and probably even more
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Table 7
Calculated dissociation energies for the (H3N-NH3)* radical cation in its D3y,

conformation (6-31G* basis set). MP2-optimized geometries are used
throughout.

Method D. (kcal/mol) Ref.
D-BOVB

fully-breathing 37.9 [13]

active set only 30.8 oo
ROHF 20.3 "o
MP2 40.0 "o
PMP2 41.4 "o
MP4 389 "o

so in the inactive orbital space.

The bonding energies of the (H3NNH3)* cation, calculated at the D-BOVB
level and at various levels of MO theory, are reported in Table 7 and support
the above qualitative deductions. The total breathing orbital effect amounts to
17.6 kcal/mol, that could be decomposed into 7.1 kcal/mol for the
inactiveorbitals and 10.5 kcal/mol for the active ones, which is much less than
in F27. As in the preceding case, the BOVB-calculated bonding energy of
(H3NNH3)™* is in satisfying agreement with the results of the Magller-Plesset
series which is rather well converged and probably reflects the basis set limit.

3.3.4. One-electron bonds

As shown by Clark [38] in a comprehensive computational study of
(HnX*XHp)* radical cations (X= Li to C, Na to Si), one-electron bonds are
already rather well described by simple Hartree-Fock theory. This is because
the active system contains a single electron, so that the breathing orbital effect
is ineffective in the active subspace, where each orbital is either empty or singly
occupied as illustrated in 32, 33 for the C+C bond.

%C@D c/ -— \CODC/

S Z S
s §

32 33

W

Therefore, the effect is restricted to the inactive space and, accordingly, the
Hartree-Fock error is nearly proportional to the number of inactive orbitals. It
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increases gradually in the series (X = Li to C), reaching 13 kcal/mol in
(H3C+CH3)*, compared with the total bonding energy of 51.0 kcal/mol [51],
calculated at the MP4/6-31G* level. In accord with the above qualitative
analysis of the breathing orbital effect in terms of orbital size, compounds of
the third row atoms (X = Na to Si) exhibit less correlation effects than analogs
of the second row of the periodic table.

The (H3C+CH3)* radical cation was selected, to test the ability of the BOVB
method to describe one-electron bonds, since this bond exhibits the largest
correlation effect in the series. The bonding energy, calculated at the D-BOVB
level, amounts to 48.7 kcal/mol, in fair agreement with the MP4 value.

3.4. Summary of the Computational Tests

The BOVB method has not been subject to systematic tests of accuracy,
except for the Fp, HF, F7, Cl,™ and (NH3),* species. However, some bonding
energies have been calculated here and there in studies dedicated to other
aspects of bonding, e.g., charge-shift bonding in H3M-Cl (M = C, Si, Ge, Sn,
Pb) [52,53], the lone pair bond weakening effect [54], etc. These studies
provide additional tests of the accuracy of the BOVB method. However it must
be kept in mind that in these studies, the best accuracy was not the aim and
hence was not sought. In particular, basis sets of modest size were used, so that
the calculated dissociation energies should not be compared directly to
experimental values.

Naturally then, the accuracy of the results, displayed in Table 8, follows the
adequacy of the basis set that has been used. As a rule, basis sets involving
high-ranking polarization functions are needed for third-row atoms and/or for
atoms involving lone pairs. Accordingly, the calculated C-H bonding energy is
quite close to the experimental value for CH4, a molecule made of first and
second-row atoms and devoid of lone pairs, for which the 6-31G** basis set is
sufficient. For NH; and H»O, which bear lone pairs, the lack of f-type
polarization functions begins to down-grade the numerical accuracy, and the

Table 8

Some BOVB-calculated bonding energies in double-zeta polarized basis sets

BOVB level Basis set De (theor.)  De (exp.) Ref.
H3C-H SL 6-31G** 114.5 112.0 [54]
HoN-H SL 6-31G** 114.4 116.0 [54]
HO-H SL 6-31G** 119.1 1254 [54}
H3C-Cl SD 6-31G* 79.9 87.3 [52]

H3Si-Cl SD 6-31G* 101.7 110.7 [52]
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basis set deficiency gets more severe in H3C-Cl and H3Si-Cl that involve lone
pairs as well as third-row atoms. Nonetheless, the bonding energies remain very
reasonable in all cases, as has been found above for transition metal hydrides

[36].

This generally good performance demonstrates that the BOVB wave
function, despite its very small size, captures the essence of the chemical bond,
be it of the odd-electron or two-electron type, polar or non-polar. The complete
neglect of Coulomb correlation within the inactive space has no significant
consequences for the relative energies. This in turn means that the inactive
electrons require dynamic correlation, associated with the fact that their orbitals
undergo changes in size, polarization or hybridization. However these electrons
have some nearly constant Coulomb correlation energy. In fact, just the bare
minimum electron correlation is taken into account since the method becomes
equivalent to a Hartree-Fock calculation of the separated fragments at the
dissociation limit. Thus, the method only calculates the differential electron
correlation, that involves the left-right electron correlation of the active
electrons, and the dynamical correlation associated with the formation of the
bonds. Since the latter term is nascent from the instantaneous adaptation of the
orbitals to the charge fluctuation of the active electrons, dynamical correlation
effects are particularly important in three-electron bonds, because in such
systems the stabilizing interaction originates only in the charge fluctuation
between the two VB structures.

While all levels provide nearly equally good bonding energies for the three-
electron bonds, the same does not hold true for two-electron bonds which often
require the best levels for an accurate description. Splitting the active orbitals in
the ionic structures is important when the bond is polar. Moreover, the
interatomic interactions between inactive orbitals are important in two-electron
bonds, owing to their short equilibrium bond lengths. Such interactions are
adequately taken into account by delocalizing the inactive orbitals.? This effect
is particularly important when the bond is very polar as in H3C-Cl and H3Si-
Cl. Thus polar bonds are better described at the SD-BOVB level while bonds
that are mainly covalent in nature are less demanding.

Finally, a few remarks are in order concerning the non dynamic correlation
of the inactive electrons. Normally, these electrons are left uncorrelated (except
in the extended SD-BOVB calculation for H-F, above) in the molecule as well
as in the dissociated fragments or in any conformation of a molecular system
throughout a potential surface. However, since the inactive orbitals are
somewhat different in the HL and ionic VB structures, it is impossible to avoid

¥ It has been checked by counterpoise calculations that the stabilization due to the
delocalization of the inactive orbitals is much larger than the spurious basis set superposition
effect {12,13].
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the fact that such a difference in a multistructure wave function will bring in
some correlation of the inactive electrons. This explains why, when medium
basis set are sufficient or when the calculation is compared to estimated full CI
(as for H3C-H or F-F above), the SD-BOVB dissociation energy tends to be a
few kcal/mol too high. This is a rather fortunate systematic error, since
generally the basis set that is used is far from complete and the slight BOVB
overbinding compensates for the basis set deficiency. However, some cases may
be encountered in which this spurious correlation of the inactive electron
replaces the breathing orbital effect of the active electrons, leading to
nonsensical bond energies. This may happen, for example, if the active orbitals
were allowed to delocalize freely as in the GVB method. The outcome might be
that the active orbitals are all the same in the HL and ionic structures, being of
Coulson-Fisher type, thus representing a triplicate active system of GVB type.
On the other hand, the degree of freedom of the BOVB wave function would
be used to make the inactive orbitals very different from each other in the three
structures, so that the resulting wave function would display some correlated
inactive electrons. This would bring an additional correlation effect that
stabilizes only the molecule but not the fragments because, at the asymptotic
geometry, the HL structure is the only VB configuration that remains. This
stresses the importance of keeping the active orbitals as strictly localized on
their respective atom or fragment. 4 BOVB calculation would become
meaningless if the active orbitals were freely allowed to delocalize.

The energy collapse due to spurious correlation of inactive orbitals may be
exceptionally encountered, even if the active orbitals are not delocalized, as has
been observed for ZnH* above [36]. Such an artefact is however easy to detect,
based on the fact that an inactive pair in an ionic structure occupies an orbital
that is mostly virtual in the HL structure, e.g. an orbital displaying a node. The
remedy consists of effectively giving the inactive electrons the level of
correlation that they try to achieve. This can be done by going to the extended
SD level as in FH above, however this rigorous solution makes the calculation
rather cumbersome. A much easier corrective procedure is to double the major
VB structure at any point of a potential surface all the way to the dissociated
products, if any. In this way, the “ excess ” stabilization of the inactive orbitals
carries over to the whole potential surface, which deletes any artefactual
overbinding effect. This procedure has been used successfully in the ZnH™ case.

3.5. Diabatic states

One of the most valuable features of theoretical methods based on classical
VB structures is their ability to calculate the energy of a diabatic state. For
practical uses, some diabatic bond energy curves of chemical interest can be,
for example, the separate dissociation energy curves of the ionic and covalent
components of a bond, or the energy curves of the effective VB structures of a
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chemical reaction which are traced individually along a reaction coordinate.
Such diabatic curves are plotted in the curve-crossing VB diagrams which are
used to predict and interpret reaction barriers [4]. Diabatic states have also
some applications related to the concepts of organic chemistry, like resonance
energy.

3.5.1. Definition

While the definition of an adiabatic state is straightforward, as an
eigenfunction of the Hamiltonian within the complete set of VB structures, the
concept of diabatic state is less clear-cut and accepts different definitions.
Strictly speaking, a basis of diabatic states (3, 9’...) should be such that eq 21
is satisfied for any variation 0Q of the geometrical coordinates.

<9 8/0Q|9>=0 1)

However this condition is impossible to fulfill in the general case with more
than one geometrical degree of freedom, so that one has to search for a
compromise in the form of a function whose physical meaning remains as
constant as possible along a reaction coordinate. Clearly, a single VB structure,
that keeps the same bonding scheme irrespective of the geometry of the system,
is the choice definition for a general diabatic state. For example, if we consider
the A-B molecule in the BOVB framework, the ground state (made of three VB
structures) will be adiabatic, while the three VB structures, respectively
A*—B, A*B™ and A™B*, will be the diabatic states. Note however that a
diabatic state can possibly be made up of more than one formal VB structure.
For instance, in the SN2 reaction (eq. 9), one diabatic state could be the
bonding scheme of the reactants, ClI™ + H3C-F, while the other would represent
the products, CI-CH3 + F~. In this case, each diabatic state would be made of
three VB structures, respectively 3, 5, 6 and 4, 5, 7, corresponding to the
covalent and two ionic components of the carbon-halogen bond. Such diabatic
states constitute the crossing curves of the VB correlation diagrams of Shaik
and Pross [4].

3.5.2. Practical calculation

Having defined a diabatic state as a unique VB structure, or more generally
as a linear combination of a subset of the full VB structure set that describes the
adiabatic state, in the next step one has to specify the orbitals needed to
construct the VB structure(s) of this diabatic state. One first possibility is to
keep for the diabatic state the same orbitals that optimize the adiabatic state.
This has the advantage of simplicity. Practically, once the orbitals have been
determined at the end of the BOVB orbital optimization process, the
hamiltonian matrix is constructed in the space of the VB structures and the
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adiabatic energies are calculated by diagonalization of the hamiltonian matrix
while the energies of the diabatic states are just the respective diagonal matrix
elements.

An inconvenience of this practical procedure is that it does not guarantee
the best possible orbitals for the diabatic states. Indeed, the BOVB orbitals are
optimized so as to minimize the energy of the multi-structure ground state and
are therefore the best compromise between the need to lower the energies of the
individual VB structures and to maximize the resonance energy between these
VB structures. This latter requirement implies that the final orbitals are not the
best possible orbitals to minimize each of the individual VB structures taken
separately. It follows that the diabatic states calculated in this way are not the
best possible diabatic states to represent the respective bonding schemes and, in
practical calculations, they may appear surprisingly high in energy. For
instance, the purely covalent H3C—Cl bond appears to be repulsive, if
calculated this way, which is unreasonable.

An alternative approach which we recommend consists of optimizing each
diabatic state separately, in an independent calculation. As a result, the orbitals
of the diabatic states come out different from those of the adiabatic states, and
we now get for each diabatic state its best possible set of orbitals. The diabatic
energies are obviously lower compared with those obtained by the previous
method. Using again the H3C-Cl bond as an example, the second procedure
now yields an energy profile for the purely covalent structure, with a bonding
energy of 34 kcal/mol, in agreement with common sense as opposed to the
repulsive covalent interaction obtained in the first procedure. We therefore
believe that the separate calculations of the diabatic states yields the best
possible results in terms of chemical interpretation.

It might be argued that the diabatic states, calculated separately as we
recommend, are subject to basis set dependency. It is true that, in the limit of
an infinite basis set, there would be so many and so diverse polarization
functions that the optimized orbitals could not be considered as localized, so
that the diabatic state would converge to the ground state rather than to a
specific VB structure. However, some tests have been done which show that, as
long as standard basis sets are used, such basis set dependency remains
marginal. As an example, adding a set of diffuse functions to the 6-311G* basis
set was found in one of our applications to change the energy of the diabatic
state by only 0.1-0.2 kcal/mol relative to the ground state [55].

3.5.3. Resonance energies

Many molecules are represented as a set of resonating structures. For
example, the ground state of formamide is the optimized mixture of the VB
structures 34 and 35. The resonance energy, which is responsible for the
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rotational barrier, is the energy difference between the major VB structure 34
and the ground state.

Thus, the resonance energy characterizes the insufficiency of structure 34
for accurately representing the ground state. It is clear therefore that this
concept is best quantified by comparing the energy of the optimized ground
state with that of the best possible wave function for 34, and this is meaningful

34 35

only if the orbitals of the diabatic state that represents structure 34 are
optimized for this specific state alone, as recommended above. Accordingly, the
method for calculating resonance energies in the BOVB framework consists of
separate optimizations of the ground state and of the major VB structure (the
one that has the largest weight in the wave function). The resonance energy is
the difference between the variational energies of the full state and the
reference VB structure. In this manner the resonance energy itself is variational.

4. SUMMARY AND CONCLUSION

It is striking that, while the great majority of quantitative calculations are
done in the framework of MO theory, the language of chemists has remained
faithful to the valence bond theory with its Lewis structures, hybrid orbitals,
mesomeric stuctures and so on. In a way, one might say that MO theory has
won the battle of computations while VB has won the battle of language and
epistemology, so that the most commonly employed computational tool is not
fully commensurate with the chemical concepts. This has occasionally created
some confusion with respect to the great paradigms of chemistry. To take only
a few examples, the role of electronic delocalization in aromaticity, the role of
resonance in the rotational barriers of the peptide bonds in a protein or in the
strength of carboxylic acids has long been debated, mainly because of the
inadequacy of MO methods to settle these questions.

Clearly, there has been a need for a computational method that would speak
the language of chemists while being reasonably quantitative as far as
geometries, force constants and energetics in general are concerned. The BOVB
method is an endeavour to fill this gap by bringing together the qualities of
lucidity, compactness and reasonable accuracy. The requirements necessary to
achieve the goal were as follows :

(1) As a first condition, it is necessary to ensure a maximum

correspondence between the mathematical formulation and the
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concept of Lewis structure displaying a specific bonding scheme.
This requirement leads to the use of strictly localized orbitals, at least
in the active space.

(i1) A second condition was that the method should be capable of
describing the elementary events that characterize a chemical process:
the breaking and forming of chemical bonds, be they of the one-
electron, two-electron or three-electron type. This is a requirement
for a balanced description of an electronic system throughout a
potential surface. To achieve this balance, it is essential to take care
of the differential electron correlation types associated with the bonds
that are created or broken along the reaction coordinate. A unique
feature of the BOVB method is that it brings not only the non
dynamic but also the dynamic part of this differential correlation,
which can be very significant in some cases.

The leading principles of the method are straightforward. To calculate a
given electronic state, all the Lewis structures that are relevant for the
qualitative VB description of this state are generated, and the covalent forms
are distinguished from the ionic ones. Each of these Lewis structures is
represented by a single VB function which has its specific set of orbitals. The
orbitals and the coefficients of the VB structures are optimized simultaneously,
to minimize the energy of the final multi-structure state.

Practically, only a small part, called the active part, of a molecular system
is treated in the VB framework, while the rest is treated at the ordinary MO
level. The active part includes these orbitals and electrons that undergo
effective changes throughout a potential surface, like bond-breaking or bond-
forming. The inactive part undergoes orbital optimization to follow the changes
of the active part, but its electrons are not explicitly correlated, in keeping with
the assumption that the absolute error so introduced is quasi-constant
throughout a potential surface. This ensures an extreme compactness of the
wave function. As a typical example, the study of an SN2 reaction would
necessitate a BOVB wave function involving only six VB configurations, from
the reactants to the products via the transition state.

The VB structures can be defined in different ways according to the desired
level of accuracy, but all levels agree on the principle that the active orbitals
should be strictly localized on their specific atom or fragment, and not allowed
to delocalize in the course of the orbital optimization process. This latter
condition is important for keeping the interpretability of the wave function in
terms of Lewis structures, but also for a correlation-consistent description of
the system throughout a potential surface.

The computational tests that have been performed in a variety of difficult
cases show that the description is consistent and reasonably accurate, in view of
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the compactness of the wave functions. Some applications of the BOVB method
to effective chemical problems have already been made by various authors.
Langenberg et al. [56] have used the BOVB method as a mean to solve the
symmetry-breaking artefact in the potential energy surface of the glyoxal
cation. This property of the method has also been exploited by Humbel et al. in
the investigation of the HpO,™ potential surface [57]. Basch et al. applied the
method to study the SiH3-F bond [58] and to calculate the covalent vs ionic
dissociation curves of CH3-Y molecules (Y = F, OH, NH,, CH3, BHj, CN,
NO) [59]. Calculations of diabatic states were performed by Lauvergnat et al.
to characterize the lone pair bond weakening effect in the H-NH,, H-OH and
H-F bonds [54]. The diabatic states were also used in the generation of VB
curve crossing diagrams for hydrogen transfer reactions between X groups (X =
H, CHj3, SiH3, GeHs, SnH3, PbH3) [60], and for identity radical exchange
reactions of the type H+ XH’—> HX + H’ and X + HX’—» XH + X’ (X = F,
Cl, Br) [61]. The covalent vs ionic nature of homonuclear and heteronuclear ©
bonds was investigated [55], and a new type of bonding, in which the strength
of the bond is primarily due to an exceptional energy of resonance between the
covalent and ionic forms, has been discovered [55,61]. The reader is referred to
the original papers.

The BOVB method does not of course aim to compete with the standard ab
initio methods. BOVB has its specific domain. It serves as an interface between
the quantitative rigor of today’s capabilities and the traditional qualitative
matrix of concepts of chemistry. As such, it has been mainly devised as a tool
for computing diabatic states, with applications to chemical dynamics, chemical
reactivity with the VB correlation diagrams, photochemistry, resonance
concepts in organic chemistry, reaction mechanisms, and more generally all
cases where a valence bond reading of the wave function or the properties of
one particular VB structure are desirable in order to understand better the
nature of an electronic state. The method has passed its first tests of credibility
and is now facing a wide field of future applications.
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Chapter 8

The Biorthogonal Valence Bond Method
Joseph J.W. McDouall

Department of Chemistry, University of Manchester, Oxford Road,
Manchester M13 9PL, United Kingdom

The theoretical basis and certain computational aspects of the biorthogonal
valence bond (BOVB) method are presented. A number of calculations on
small molecules are used to illustrate the description of electronic structure and
bonding that can be obtained from BOVB calculations. Calculations are
reported that include up to 30 electrons in nonorthogonal orbitals outside a
closed shell. Tt is suggested that calculations involving up to 60 electrons,
accommodated in nonorthogonal singly-occupied orbitals, can be contemplated
realistically. The combination of the BOVB method with layering techniques,
in which a molecule is partitioned into different layers and each layer is treated
at a different level of theory, provides a viable route to valence bond studies on
large molecular systems. Recent calculations on the pseudohalide acid HCS,N;
and a large diphosphaallene radical anion are also reported.

1. INTRODUCTION

The biorthogonal valence bond method has its origins in the work of
Moshinsky and Seligman on group theory and second quantization for
nonorthogonal orbitals [1]. Essentially, by introducing a dual (biorthogonal)
orbital space, they showed how the difficult problem of evaluating matrix
elements of the electronic hamiltonian, between functions built from
nonorthogonal orbitals, could be simplified. Moshinsky and Seligman applied
their formalism to the potential energy surface of Hj using a minimal basis of
orbitals, with the resultant complete configuration basis expressed as Gelfand
states. Following this seminal work, Cantu, Klein, Matsen and Seligman [2]
discussed the use of this formalism in a valence bond context using a Rumer-
Weyl basis [3, 4] of configuration state functions (CSF). However, these
authors did not provide any examples of numerical calculations. The
biorthogonal technique was investigated in the context of classical valence bond
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wavefunctions, including varying numbers of coyalent and ionic terms with
fixed orbitals, for H,, LiH and H,O by Norbeck and McWeeny [5]. Payne [6]
also provided a theoretical exposition on the biorthogonal method for general
configuration interaction (CI) calculations in a nonorthogonal orbital basis.
The biorthogonal approach was introduced in the context of modern valence
bond calculations by McDouall [7]. Initial biorthogonal valence bond (BOVB)
studies on HF, H,0 and F,0, involved optimizing the nonorthogonal orbitals
involved in bond formation for a single spin-coupling mode (perfect-pairing
approximation) with all other electrons assigned to doubly-occupied molecular
orbitals, which were simultaneously optimized.  Following this work,
optimization for more general wavefunctions was considered [8], with special
emphasis on the requirements for accurate evaluation of the dynamic electron
correlation energy in an extended biorthogonal CI. Malcolm and McDouall [9]
implemented a BOVB method in which the configuration expansion in the
nonorthogonal orbital space was complete. This yields energies identical to the
corresponding N-electron/N-orbital orthogonal complete active space self-
consistent field (CASSCF) wavefunctions, thus ensuring a variational bound.
Application of this method to the electronic structure of some 1,3-dipoles [10]
showed that the results obtained, in terms of nonorthogonal orbital shapes and
overlaps, are essentially identical with those of spin-coupled valence bond
studies [11, 12]. However, the realm of applicability of this approach is
limited to the same size of problem as can be handled in CASSCF calculations
(= 12-14 electrons) since the configuration expansion increases very rapidly
with N. Despite this limitation, a major advantage of this approach is that it is
a simple matter to evaluate derivatives of the energy with respect to geometrical
parameters, thus enabling geometry optimizations and reaction path searches to
be carried out. Indeed the simplest way to do this is to use an efficient
CASSCEF procedure and then transform to the BOVB representation. A similar
idea has been used more recently in the CASVB methodology [12].
Thorsteinsson and Cooper [13] have also discussed the implementation of the
biorthogonal method using techniques similar to those used in their spin-
coupled valence bond studies.

In the next section we review some of the theoretical and practical details
of the BOVB method. In particular we consider means by which much larger
calculations may be attempted. In section 3, we present some illustrative
calculations to expose the properties of BOVB wavefunctions and familiarize
the reader with the BOVB description of electronic structure. This is followed
by a description of some recent calculations on the pseudohalide acid HCS;Nj3
and a large diphosphaallene radical anion. We conclude by summarizing the
strengths and weaknesses of the BOVB method as a general quantum chemical
tool and suggest areas for future development.
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2. PRINCIPLES OF BIORTHOGONAL VALENCE BOND THEORY

2.1. Theory
In most modern valence bond calculations the wavefunction takes the form
of a multiconfigurational expansion

\PzchWK (1)
X

in which Wy is an antisymmetrized space-spin product. The set {y} is usually
constructed from an orbital set, {¢}, which contains a number of doubly-
occupied orbitals which accommodate the energetically low lying electrons.
Above the doubly-occupied orbitals sit a group of orbitals which are allowed
different occupancies and spin-couplings in different members of {y}. {¢}
also contains a number of virtual orbitals which are not occupied in {y}. The
doubly-occupied orbitals are chosen to be orthogonal amongst themselves and
to all other orbitals. In contrast, the orbitals which are allowed variable
occupancies and spin-couplings are allowed to be nonorthogonal amongst
themselves, but are required to remain orthogonal to the doubly-occupied
‘core’.

The main difficulty in performing calculations with an orbital set
containing nonorthogonal orbitals is that of evaluating matrix elements over the
hamiltonian. These matrix elements contain complicated products of orbital
overlap integrals [14]. In the BOVB approach, the set {\y} is used in setting up
the electronic Schrodinger equation

f‘1| ‘P> = E| ‘I’) (2)

but when integrating for the energy (taking scalar products from the left) a
second set of functions {J } is introduced to expand the wavefunction

F=3 Gy 3)
K
giving

()
E=2_—1 )
(¥]¥)
The members of {J} have a one-to-one correspondence with the members of

{y} with respect to orbital occupancy and spin-coupling, except that the
orbitals used in their construction belong to a dual set defined by
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where 8 is the orbital overlap matrix. The set {$} can always be defined in

this way provided the set {¢} is not linearly dependent. The two sets of
orbitals {¢} and {} possess a biorthogonality property

<$p|¢q>=8pq (6)

Thus the reduction of the matrix element <\|I K|H|\|I L> in a nonorthogonal
valence bond calculation, which contains complicated products of orbital
overlap integrals, (q) p|¢q>, is replaced by the corresponding element
<\TJ K!H|\|; L> which contains the biorthogonal overlaps in Eq. (6) and

consequently may be evaluated as if the orbitals were orthonormal. The matrix
elements, using conventional notation, may be written as

(WilHly.) =28, |Ho, )vie + 3 (Bg | 7T, )

pgrs

The integrals over the one- and two-electron operators have the dual basis to

the left of the operator and the primary basis to the right. The one- and two-
. . KL KL :

electron vector coupling coefficients, y,, and I',  respectively, may be

evaluated as though over orthogonal orbitals but it must be remembered that the

introduction of the dual basis reduces the symmetry properties of these to

Ik _ KL Ik _ KL
Yoo =Vpq and qusr - qurs (8)

These quantities may be evaluated by a variety of techniques [15-18]. In the

dual basis the one-electron integrals have no exploitable symmetry and the two-
electron integrals possess only a two-fold symmetry

(6,0,18,0,)=(3,0,16,0,) 9

A consequence of this is that <\TJK 'I-qWL> # <\TIL |H1\|! K > and we must deal with
an unsymmetric eigenvalue equation

2<\T’K|HlWL>CL :EZ<WK|WL>CL (10a)
L L
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or in matrix notation

HC =SCE (10b)
In general Eq. (10) is not equivalent to the secular equations obtained from the
variation method, unless {y} is complete. An analysis of the error in the
energy obtained from Eq. (10) was given by Boys [19]. Error vectors may be
defined for the left and right eigenvectors of Eq. (10) as

A

C-C, (11)

A=C-C (12)

oo

where C, C are the left and right eigenvectors in a truncated expansion and C_,
C.. are the corresponding eigenvectors of Eq. (10) in a complete basis,
respectively. Boys showed that the error in the energy is proportional to ¢,
defined as

e=JA-AVA-A (13)

The significance of this is that the error contains the product of both error
vectors. Hence, if {y} is a good set for representing ¥, then the norm of A
will be small and an accurate energy should be obtained since it will not depend
too heavily on the set { \y}. However it is not possible to know how the error

will decrease as the set {y} is systematically extended.

2.2. BOVB wavefunctions

Given the preceding discussion of the error in the energy obtained from
Eq. (10) it is clear that complete expansions, analogous to orthogonal CASSCF
methods, provide a useful limiting case against which to explore the properties
of more general BOVB wavefunctions. We have recently been interested in
using highly truncated expansions which, if necessary, can be systematically
improved to the limiting case. To this end it is useful to introduce a notation

BOVB(N,M+X) (14)

which we use to clearly label different wavefunctions. In this notation, N is the
number of electrons accommodated in N nonorthogonal orbitals. M is the
number of spin-couplings of the N electrons included in the wavefunction and
X is the level of orbital replacements (Single, Double, etc. excitations)
generated from each of the M spin-couplings. All other electrons in the system
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are deposited in doubly-occupied molecular orbitals. For example, consider a
BOVB wavefunction for water describing the two O—H bonds in 4

nonorthogonal orbitals
/ 0\ ‘“‘
NGO

With the orbitals numbered as shown above, two linearly independent spin-
couplings would be

4 1 4 1

3 2 3 2
V1 = Ald;02(af-Ba) 9304(af-Par)] V2 = Ald04(aB-Bo) dr03(af-Bor)]

and these would be denoted BOVB(4,2). If we were to include all single
orbital replacements (necessary in our scheme for optimizing the nonorthogonal
orbitals) the corresponding wavefunction would be denoted BOVB(4,2+S). If
a complete expansion was to be used we would simply denote this as
BOVB(4, V) indicating the variational limit (equivalent to a 4-electron/4-orbital
CASSCF wavefunction). In general the total number of CSF of ionicity, i,
which may be constructed from N electrons distributed in » orbitals with total
spin, s, is [20]

(25+ I)n!
ﬂ@+i—Ny@N+s—HJy6N—s—W

Dan_

(15)
i, the ionicity gives the number of orbitals which are doubly occupied. In Eq.
(15) the values of i are restricted to lie in the range

(N-n)<i<N/2 (16)
Another set of configurations which it is sometimes useful to add to each spin-

coupling is based on the restricted CI (RCI) ideas of Goddard and coworkers
(e.g. see [21]). We have found that on some problems the variational bound is
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violated when the BOVB wavefunction is limited to a small number of spin-
couplings and their single excitations. This sometimes happens when a BOVB
orbital optimization is started from a particularly poor set of orbitals. In such
cases spurious lower energy roots appear in the solutions to Eq. (10), making
any type of orbital optimization a hazardous undertaking. Clearly, under these
conditions, the eigenspectrum of Eq. (10) does not lie close to that of Eq. (2).
We have found that a stabilization (elimination of spurious lower roots) can be
achieved by increasing the number of functions included in the BOVB
wavefunction, in accord with the expectations of Eq. (13). In particular, the
RCI expansion allows up to (N-2s)/2 simultaneous single excitations. While we
have been unable to provide a rigorous proof of the efficacy of the RCI type
expansion in BOVB calculations, we have not observed any problematic cases
which have not been tamed by the use of a RCI expansion. The RCI expansion
is generated by allowing each spin-coupled pair to have all possible occupations
in the paired orbitals, i.e.

D ¢1—|— ¢2—|—
2) ¢1—||— by—
y h— o

The total wavefunction is then obtained by taking the direct product of all such
structures. This leads, for P pairs, to a total of 3” spatial configurations

|- |- |- bu—|—
o~ e— Ol o]~ b | &

o — ¢2—“— $3— ¢4"“"

The RCI expansion produces a relatively small number of additional terms and
can be used for problematic cases to stabilize the energy obtained from Eq.
(10). A wavefunction including these additional configurations for the example
above would be denoted BOVB(¥, I+ S+ RCI).
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2.3. Orbital optimization

In the BOVB procedure the orbital space is partitioned into three
subspaces: (1) a core of doubly-occupied orbitals which are orthogonal amongst
themselves and also to all other orbitals, (2) an ‘active’ space of orbitals which
are mutually nonorthogonal but are orthogonal to the core orbitals, and (3) a
complementary virtual space which is orthogonal within itself and also to all
other subspaces. With this partition of the orbital space, the optimization may
be formulated in terms of a general rotation, R, of the orbitals. R may be
separated into the product of a transformation, Re, amongst orbitals which are
required to remain orthogonal to each other and a general transformation, Ry,
amongst the nonorthogonal orbitals

R = R() RN (17)
Ry is usually expressed as an exponential transformation
Ro=e* =I+X+1X%+ . (18)

Where X is an antisymmetric matrix containing the independent (orthogonal)
rotation parameters. Expanding the energy in X about the origin

E(X)=E(0)+gX +1X"GX (19)
allows X to be obtained from

X=-G'g (20)
where the components of g, the gradient vector, are given by

dE ~ ~
=LPq+qu_Lqp_Lqp 21

r
The matrices L and L are defined as
Ly =X (8,10, v, +22(BrI50)T,,
r rst
qu = z<,q3r h|¢p>Yrq + 22(;}7‘ gt)rrqst
rst

I3

(22)
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The one- and two-body density matrices are formed by contraction of the
vector coupling coefficients with the left and right eigenvectors of Eq. (10)
(assuming CSC=1)

Ypg = 2C~KY§;CL
KL

R (23)
I“pqrs = ;L‘, CKqursCL

Further details of the evaluation of R, such as approximate expressions for the
hessian matrix, G, in Eq. (20), may be found in Ref. 10.

In our earlier work the transformation, Ry, was evaluated using a super CI
method [7-9]. Super CI includes single excitations from the reference
wavefunction into the expansion space and uses the eigenvector from this
extended CI calculation to rotate the orbitals [22]. The super CI strategy is not
without problems in optimizing BOVB wavefunctions. When the expansion
space is complete the energy is invariant to the nonorthogonal orbital rotations.
If a truncated expansion is used, the energy is not variational and minimization
is not necessarily the best way to proceed. However, the super CI formalism is
particularly simple to implement and lends itself to large scale application.
Consequently, we now develop a projection criterion for optimizing the
nonorthogonal orbitals in a BOVB calculation which is motivated by the super
CI method and reduces to super CI exactly in the limit of a single reference
function. As we have mentioned previously, we wish to be able to extend the
configuration expansion systematically to the complete limit. This means that
it is most convenient to work with uncontracted configuration expansions.
However, the super CI formalism (for more than a single reference function) is
a contracted CI method in which single excitation operators are applied to the
reference wavefunction rather than to individual configurations. Furthermore
if we wish to expand the configuration space systematically, it is necessary to
use some form of ‘standard’ expansion functions to avoid linear dependence.
To illustrate this consider the application of an excitation operator (a product of
creation and dual annihilation operators which transform as the generators of
GL(N), see Ref.s 1 and 7) to a Rumer CSF (all our calculations employ the

Rumer basis), '\y P >, where N=6 and s=0

1
6 1| 2
5 2 = 316 =l
4 3 415
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Now apply the excitation operator E,,

1] 2 1] 2 1] 1 6 :
E.l3l6] = |3]6 = —% 25| =5 2
4| s 1] s 3| 6 s 3

This produces a non-standard Rumer function as shown by the representation
on the right hand side. These non-standard functions, which correspond to a
Rumer diagram in which the lines cross, are not used in calculations. A
standard set of functions can be selected using the following procedure: the
open shell orbitals are represented by a 1 if their number occurs in the left hand
column of the Weyl tableau or a 2 if it appears in the right hand column.
Hence for the example above

Orbital Number: 2 3 5 6
Term: 1 1 2 2

We now pair the left most “2” with the closest “1” to its left, i.e.

Orbital Number: 2 3 5 6
Term: 1 1 2 2
_J
Thus we obtain the standard function
1 1 6 1
) 6 = 5 2
315 4 3

which is to be used in the calculation. Hence we can write



237

1 2 1 1
~ K
Euw| 316 = Piua 21 6
4 5 3 5

pf, indicates that this is the result of applying £, to l\u K>. The best way to

keep track of such transformations is to calculate the overlap between the raw
Rumer function generated and the standard Rumer function to be used in the
super CI calculation.  This phase/overlap must be included in the
transformation process. In general all doubly-occupied orbitals are written
first, in ascending order, then paired orbitals are ordered, first within each row
of the Weyl tableau and then by the left column into ascending order, and
finally the high-spin orbitals are inserted in ascending order.

Ry is obtained from the eigenvector of this pseudo super CI calculation. If
we are optimizing the orbitals for M reference functions, Ry is obtained as

M
Ry =I+)Y X, (24)
K
where
(X ¢ ),,,, =0
(x,()pq = sign(Cy JA'CCXph (25)
M
A=Y
K

In Eq. (25) Ck is the right eigenvector component of reference function |\|1 1<>
and C 11,2 is the eigenvector component corresponding to the application of E -

to |\y K>. With these definitions we can generate the rotation matrix, R, and

assume convergence when R=I. In the case of a single reference function
(M=1) Eq.s (24) and (25) reduce to the regular super CI procedure [23]. Other
definitions of the projection for defining the nonorthogonal orbital
transformation are possible. The transformation as defined in Eq.s (24) and
(25) produces results which, in terms of orbital shapes and overlaps, are very
similar to those obtained within the spin-coupled valence bond approach. Many
examples illustrate that this process does converge, but we have found it
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essential to include some form of convergence accelerator. In particular we
have employed DIIS extrapolation [24] of the orbital coefficients using
gradients of the orthogonal rotation parameters and the off-diagonal elements
of Ry to define the error vector. We have also implemented the space efficient
form of the BFGS hessian updating method of Fischer and Almli6f [25]. By
default our procedures use DIIS extrapolation, but we have found that the
quasi-Newton technique can force convergence when extrapolation fails. More
elaborate optimization techniques are certainly possible but only at an increased
computational cost.

2.4. Weights in BOVB wavefunctions

Given that we intend to employ a wide range of different expansions in
our BOVB calculations it is important to know which types of configurations
dominate the wavefunction and which simply serve to condition Eq. (10). The
usual way to analyze a wavefunction is to calculate the weight of each
configuration within the total wavefunction. The most widely used definition
of weight is that of Chirgwin and Coulson [26]

Wy =Y CxSxC, (26)
L

in which Sk; is a configuration overlap and C is the eigenvector. C is usually
normalized such that

Y CxSpCy =1 (27)
KL

In the BOVB approach, we must deal with both left and right eigenvectors.
Hence we use a symmetric form for the weights

Wy :%{ékﬁﬂCL +C~L‘§LKCK} (28)

which given the normalization of the left and right eigenvectors

Y CxSiC, =1 (29)
KL

implies

3 W =1 (30)
K

All weights reported in this chapter were evaluated using Eq. (28).
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3. ILLUSTRATIVE CALCULATIONS

In this section we outline some simple calculations which illustrate the nature of
the results we can expect from the BOVB method we have described. Our
purpose here is not to report new applications, those will be given in the next
section, but rather to illustrate the utility of what we have proposed and enable
a comparison to be made with other valence bond schemes.

All of our computer programs have been interfaced with the GAUSSIAN
98 suite of programs [27]. All one- and two-electron integrals and integral
derivatives over atomic basis functions are evaluated using standard procedures
within GAUSSIAN 98. These are passed to our programs which have been
coded as a link within the GAUSSIAN structure. All other standard ab initio
and semiempirical calculations are performed with GAUSSIAN 98. Orbital
surface plots presented in this chapter are produced with MOLDEN [28].

3.1. C;,H;,+, Polyenes

Polyenes provide a good example to illustrate BOVB calculations based on
a single covalent configuration (perfect-pairing approximation). It is possible
to treat a very large number of electrons within this type of approximation.
For a BOVB(Y, 1+S) calculation the single excitations necessary for orbital
optimization add only N(N-I) configurations to the super CI problem. This
coupled with our use of essentially linear methods for the orbital optimization,
which reduce the number of transformed two-electron integrals required to a
minimum, prompts us to believe it is possible to treat perhaps up to N=60. In
this work we report calculations for up to N=30 using our current code. For
larger problems it will be necessary to write a very efficient direct biorthogonal
two-electron integral transformation, since this process will now dominate the
calculation. A revised strategy for this transformation is currently being
developed. We also note that if we wish to include more than a single perfect-
pairing configuration the extension of the super CI space goes roughly in steps
of N(N-1) per additional spin-coupling. So several spm—couplmgs can be
treated without difficulty.

Since our purpose is to show the number of electrons/nonorthogonal
orbitals that can be handled we have simply used a minimal STO-3G basis [29].
The polyene is set up with alternating double and single bonds. The double
bond length is taken as 1.335 A, the single bond length as 1.45 A and the C—H
bond as 1.089 A, in all cases. The CCC and HCC angles are assumed to be
120°. We also report, for comparison, Hartree-Fock energies and CASSCF
energies. The CASSCF calculations are limited to up to N=12. In these
CauHansy systems there are 2n m-electrons and we include all of these in our
calculations. The wavefunction used may be denoted BOVB(2n,/+S) in the
notation of Eq. (14). As may be anticipated the outcome of the BOVB
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O3 by

Fig. 1. The innermost paired orbitals in C¢Hg obtained at the BOVB(6,/+S)/STO-3G level.
The molecule is oriented so that it lies in the plane of the paper.

orbital optimization is a set of 2n carbon-centred, highly localized 2p-like
nonorthogonal orbitals which are distorted towards their bonding partner. Fig.
1 displays the innermost paired orbitals in C¢Hg viewed from above the
molecular plane. The overlap integral between these orbitals is 0.601. For the
outer pairs the overlap integral is reduced slightly to 0.597. This pattern
persists through all of the polyenes we have studied (N=2n=2-30). The overlap
integrals between adjacent spin-coupled pairs is 0.329 indicating that our
perfect-pairing calculation does not impose any type of inter-pair orthogonality
restriction.

It is interesting to look at the differences in energy between the Hartree-
Fock, CASSCF N in N and BOVB(Y, /+S) calculations. The Hartree-Fock and
CASSCEF energies scale linearly with the number of electrons for these systems
(size extensive). To be able to compare the BOVB and CASSCF energies, as a
function of the number of electrons, these quantities are plotted in Fig. 2 as
energies relative to the Hartree-Fock energy for each polyene. A straight line
has been fitted to each set of data: in both cases, the correlation coefficient is
1.0000. This shows the stability of the BOVB results even for very large
numbers of electrons. A further point to note is that accurate energies can be
obtained even with this very restricted type of BOVB wavefunction. The
highly localized form of the orbitals introduces a large amount of electron
correlation, despite the fact that only a single spatial configuration and spin-
coupling are included.

The energies reported are from the super CI calculation, as described in
the previous section. The orbitals are transformed until the norm of the orbital
gradient falls below 1 x 10™. In all cases, at convergence, the weight of the
perfect-pairing configuration is 1 (see Eq. (28)). This illustrates that for a
single configuration Eq. (25) is equivalent to the regular super CI method.
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Fig. 2. Comparison of CASSCF N in N, BOVB(¥,/+S) and Hartree-Fock energies for
polyenes CyHjpip (N=2n=2-30).

3.2. Benzene

The classic spin-coupled valence bond description of benzene [30] is by
now well known. The description comprises six equivalent, carbon-centred 2p-
like orbitals which are distorted equivalently towards neighbouring carbons.
The BOVB description is qualitatively identical to that of the spin-coupled
valence bond method. Using a cc-pVDZ basis [31] and allowing the six &
orbitals and electrons to become nonorthogonal we have performed
BOVB(6, V), BOVB(6,5+S) and BOVB(6,2+S5) calculations. Fig. 3 shows one
of the six equivalent carbon-centred orbitals which are obtained. The molecule
has been tilted out of the plane of the paper to show clearly the 2p-like shape
and the symmetric distortion towards both neighbouring carbon atoms. Table 1
shows the total energies, and orbital overlap integrals between adjacent and next
nearest orbitals, obtained at different levels. Also given is a breakdown of the
weights from each class of function included: covalent, singly ionic, doubly
ionic etc. The covalent functions comprise the two equivalent Kekulé
structures and the three equivalent Dewar structures:

00 ol

Kekulé Dewar
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Fig. 3. One of the six equivalent carbon-centred benzene orbitals obtained from BOVB
calculations.

The energy of the BOVB(6,V) calculation is identical to an orthogonal
CASSCF 6-electron/6-orbital calculation. Note that the contribution of the
singly ionic terms is not zero but, when combined via Eq. (25), a zero orbital
rotation is obtained. Qualitatively the picture emerging from all three BOVB
calculations is the same. It is useful to compare the BOVB wavefunctions with
those in Ref. 32. Spin-coupled valence bond calculations do not contain any
ionic configurations and so give summed weights for the Kekule and Dewar
structures of 0.812 and 0.188, respectively. CASVB calculations do include
ionic configurations but their weights are effectively reduced to zero and so
yield weights in the range of 0.819-0.627 for the Kekulé structures and 0.181-
0.373 for the Dewar structures, depending on the type of optimization used.

Table 1

Total energies (a.u.), overlap integrals and configuration weights for benzene obtained with the
cc-pVDZ basis with different wavefunctions. The geometry used is HF/cc-pVDZ

Orbital overlap integrals

Wavefunction Energy Adjacent Next nearest
HF -230.702913
BOVB(6, V) —230.775933 0.526 0.112
BOVB(6,5+S) -230.771032 0.533 0.115
BOVB(6,2+5) —230.756827 0.527 0.102
Sum of weights
Kekulé + Dewar = covalent singly doubly  remainder
ionic ionic
BOVB(6, V) 0.555 0277 0.832 0.129 0.038 0.001
BOVB(6,5+S) 0573 0254 0.827 0.173 — —

BOVB(6,2+S) 0.826 — 0.826 0.174 — —
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3.3. Dioxirane

The next example we consider is the three-membered ring dioxirane. Here
we treat the electrons involved in the bonds of the ring. The geometry we use
was obtained at the HF/cc-pVDZ level. We carried out BOVB(6,V) and
BOVB(6, 1+ S+RCI) calculations. In contrast to T systems, we have observed
that nonvariational BOVB calculations are quite difficult to converge for ¢
systems. Faced with this problem, as we have discussed above, we include as
well as all single excitations from the reference covalent function also the RCI
configurations. This usually stabilizes the optimization process. Table 2 shows
the energies obtained at various levels and the weights of different functions in
the total wavefunction. The wavefunction is dominated by a single spin-
coupling with a weight of 0.954:

1| 2 6 1
3 4 5 2
516 4 3

= Ald;1¢(aB—Por) d304(af—Par) dsds(af—Po)]

Other spin-couplings have small but negative weights and so reduce the
contribution of covalent functions in the BOVB(6, V) wavefunction to 0.892.
This is a consequence of the Chirgwin-Coulson definition of weights which can
produce negative weights. Fig. 4 shows the BOVB symmetry unique orbitals.
There are three equivalent orbitals on the opposite side of the mirror plane
perpendicular to the plane of the ring. The numbers of these orbitals are
indicated in parenthesis in Fig. 4. Table 3 shows the matrix of orbital overlap
integrals. The powerful oxidizing reactivity of the dioxirane molecule is
generally initiated by rupture of the O—O bond rather than the C—O bonds.

Table 2
Total energies (a.u.) and configuration weights for dioxirane obtained with the cc-pVDZ basis
with different wavefunctions.

Sum of weights
covalent singly doubly remainder
Wavefunction Energy ionic ionic
HF -230.702913
BOVB(6,V) -230.775933 0.892 -0.007 0.079 0.036

BOVB(6,1+ S5+ RCI) -230.756827 0.889 0.000 — 0.111
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01 (de) b2 (0s) 03 (0g)

Fig. 4. Symmetry unique orbitals of dioxirane obtained with BOVB(6,1+S+RCI)
wavefunction using a cc-pVDZ basis. Parts of the orbitals have been cut off by the bounding
box used for plotting.

This preference is reflected in the overlap integral of 0.627 between the O—O
orbitals, compared with an overlap of 0.800 for the C—O orbitals. The largest
inter-pair overlap (0.128) is between the two symmetry equivalent carbon-
centred orbitals (¢; and ¢).

Table 3
Overlap integrals obtained from BOVB(6,/+S+RCI) wavefunction for dioxirane in a
cc-pVDZ basis

o {073 03 04 s b6
o 1.000
(v 0.800 1.000
05 0.021 0054  1.000
04 0.060 0.033 0.627 1.000
05 0.124 0.084 0.033 -0.054 1.000

03 0.128 0.124 —0.060 0.021 0.800 1.000
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3.4. Methane

Historically there have been many valence bond descriptions of methane.
Here we report a BOVB(8, I+ S+RCI)/cc-pVDZ calculation at the HF/cc-pVDZ
geometry. The BOVB description is dominated by a single spin-coupling with
a weight of 0.766. This spin-coupling corresponds to four equivalent spin-
coupled pairs, each of which consists of the two orbitals shown in Fig. 5. The
overlap integral between the paired orbitals is 0.810, with all other overlap
integrals being < 1 x 10™*. The singly-ionic terms do not contribute to the final
wavefunction, but the additional RCI terms have a summed weight of 0.234.
The RCI terms serve to condition the eigenproblem and produce a good
estimate of the energy. The BOVB(S8,/+S+RCI) energy lies approximately
0.005 a.u. above the BOVB(8,V) energy. This is remarakbly close given the
compactness of the BOVB(8, /+S+RCI) expansion (129 CSF) compared with
the BOVB(8, V) expansion (1764 CSF). The bonding picture that emerges is
consistent with the classical hybrid description which may be found in most
undergraduate textbooks. It must be stressed that while the individual orbitals
do not transform as irreducible representations of the molecular point group,
the total N-electron wavefunction does possess full 7, symmetry.

H
He_ C/

A%
HH

01 (0P}

Fig. 5. Symmetry unique orbitals of methane obtained with BOVB(8, I+ S+ RCI) wavefunction
using a cc-pVDZ basis.
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3.5. Water

We have shown the BOVB description of © and ¢ bonds in the previous
examples. We conclude this section with the BOVB description of the water
molecule in which we allow both the bonding and lone-pair electrons to be
described in nonorthogonal orbitals. This leads to an eight electron problem
which we describe with a BOVB(8, /+ S5+ RCI)/cc-pVDZ wavefunction. Again
the geometry is HF/cc-pVDZ. The BOVB(S,/+S+RCI) energy lies
approximately 0.008 au above the BOVB(8, V) energy.

01 (94) 02 (03)

05 (97) 06 (9s)

Fig. 6. Symmetry unique orbitals of water obtained with BOVB(8, /+S5+RCI) wavefunction
using a cc-pVDZ basis.
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It is well known that there are two viewpoints on the description of the
lone-pairs in water. They differ in whether the lone-pairs are equivalent or not.

H%,,#
..... Q
H/
(a) (b)

Both descriptions, depicted above, are equally valid and lead to a total N-
electron wavefunction which possesses the full symmetry of the molecular point
group. However, we note that we have found it impossible to converge our
BOVB method to any solution mimicking (a) above. The description given in
Fig. 6 is the only one we have been able to fully optimize. In this description
we obtain two equivalent lone-pairs, one above and one below the molecular
plane in radially split nonorthogonal orbitals. The matrix of overlap integrals
is given in Table 4. The weight of the perfect-pairing configuration is only
0.571. The singly-ionic terms have zero weight but the RCI terms contribute
0.429 to the final wavefunction. Again, this large contribution from the RCI
terms probably explains why the energy obtained is so close to that obtained
with a complete expansion. Conversely, the energy obtained with just the
perfect-pairing term can be expected to lie well above the variational limit.

Table 4
Overlap integrals obtained from BOVB(8, /+S+RCI) wavefunction for water in a cc-pVDZ
basis (see Fig. 6 for numbering)
d b2 o3 b4 s b6 ) s
¢; 1.000
¢, 0.773 1.000
6; 0.191 0.353 1.000
o, 0.089 0.191 0.773 1.000
¢s 0.106 0.226 0.226 0.106 1.000
0s 0.026 0.139 0.139 0.026 0.817 1.000
¢; 0.106 0.226 0.226 0.106 0.054 0.015 1.000
g 0.026 0.139 0.139 0.026 0.015 —0.074 0.817 1.000
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4. APPLICATIONS

4.1. The pseudohalide acid HCS;N;

The term pseudohalogen is used to refer to strongly bound, linear or
planar univalent radicals which can form anions, hydracids, neutral
dipseudohalogens and interpseudohalogens. Recently the CS,Nje radical has
been shown to satisfy all these conditions and so is classed as a pseudohalogen
[33]. Itis the only cyclic pseudohalogen currently known.

Our investigation is concerned with the electronic structure of the
hydracid, H—(CS,;N;). Early semiempirical calculations [34] indicated two
stable geometric forms,

H
S S
L I
s N 57 “n—H
\ / \ /
N=N N=N
I 11

with the thiol form (I) being the more stable. However, recent experimental
studies [33] have shown that the N—H form (II) is the one adopted in the X-
ray structure. There has also been much reference [33-35] to the “aromatic” or
“pseudoaromatic” character of the underlying CS,N;~ ion. We have
investigated this system with our BOVB method using the cc-pVDZ basis.

H—(CS;N3) contains eight valence © electrons. It should be borne in
mind that the sulfur atom outside the ring also contributes two electrons to the
T system. We have optimized the geometries of both forms of the acid using a
BOVB(8,V) wavefunction with no symmetry constraints. Both optimized
structures are very slightly non-planar. Table S gives the total and relative
energies of the two forms. We see accord with the experimental situation in
that the N—H form (II) is predicted to be the most stable.

Table 5

Total energies (a.u.) and relative energies (kcal mol™) in parenthesis for the two forms of
H—(CS,N3) obtained with the cc-pVDZ basis

Wavefunction Form I Form I

HF —996.785519 (7.1) —996.796858 (0.0)

BOVB(S, ) —996.864375 (4.8) —996.872056 (0.0)
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s
\ / \
N—N H

Fig. 7. BOVB(8, V)/cc-pVDZ orbitals of form I of H—(CS;N3)
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Table 6
Overlap integrals obtained from BOVB(8,¥) wavefunction for form I of H—(CS;N;) in a
cc-pVDZ basis (see Fig. 7 for orbitals)
] ) ) b4 s ds ¢ s
o, 1.000
o, 0.849 1.000
o; 0.208 0.207 1.000
0; 0.025 0.024 0.670 1.000
¢s —0.041 —-0.042 0.191 0.290 1.000
s —0.018 -0.020 0.051 0.093 0.614 1.000
o; 0.061 0.061 0.172 0.010 0.019 0.179 1.000
¢ 0.104 0.090 0.236  -0.006 0.003 0.234 0.853 1.000

In both structures the wavefunction is dominated by a single spin-coupling in
which the orbitals are paired ¢r——¢2 ¢3—¢4 ¢5—¢6 ¢7_¢8- In the S—H
form (I) this function has a weight of 0.899 in the final wavefunction. In the
N—H form (II) the weight of this spin-coupling is 0.972. The BOVB(S,V)
orbitals for I are shown in Fig. 7 and those of II in Fig. 8. The corresponding
overlap integrals are given in Tables 6 and 7. We find no indication of any
‘aromaticity’, since both structures are dominated by a single spin-coupling.
From our results, the distribution of the & electrons in these systems is best
denoted as

.'S/H
& &
:s” N .57 “N-H
\ / \ /
N=N N=N

Table 7
Overlap integrals obtained from BOVB(8,V) wavefunction for form II of H—(CS,N;) in a
cc-pVDZ basis (see Fig. 8 for orbitals)

o ) 9; 04 s b6 ] g
6 1.000
0, 0701  1.000
6; 0010 0112  1.000
o4 —0.110 0.181 "0.834 1.000
o5 0.033 -0.042 0.183 0.293 1.000
0 0.032 -0.005 0.042 0.029 0.616 1.000
o, —0.021 0.119 0.038 0.079 0.036 0.173 1.0Q0
og —0.076 0.115 0.045 0.104 0.028 0.230 0.852 1.000
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Fig. 8. BOVB(8, V)/cc-pVDZ orbitals of form II of H—(CS,N3)
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4.2. Diphosphaallene radical anion

The formation of anions provides an interesting challenge to electronic
structure methods. Not only from the point of view of providing quantitatively
accurate predictions, but also from the perspective of what happens to the
electronic structure when an extra electron attaches. Recent studies on the
diphosphaallene system

Bu'

Bv

(which we shall denote Ar-P=C=P-Ar) and its radical ions [36, 37] have
suggested that it is an electronically intriguing system. Essentially, when the
anion is formed, by electrochemical reduction, two conformations are obtained.
These two conformations have been referred to as “cis-like” and “trans-like”
[37] and differ principally in the Ar-P...P—Ar dihedral angle.

i AL,
cHERCY
cis-like trans-like

In the cis structure the dihedral angle is in the region of 45° while in the trans
structure it is in the region of 135°. These structures lie very close to each
other in energy. Semiempirical AMI studies on the complete system suggest a
preference for the trans conformation of 0.3 kcal mol ™. Conversely, ab initio
and density functional methods applied to the model H-P=C=P-H system
predict the cis structure to be more stable by 0.3-1.5 kcal mol™, depending on
the level of theory used [37]. It has been suggested that the calculated EPR
couplings of the trams structure agree better with the results of EPR
experiments. The cis structure possesses C, symmetry with both P atoms
equivalent. The tramns structure is of C; symmetry with the two P atoms
slightly inequivalent. This inequivalence rises from the bending of the PCP
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angle. It has been found that this angle has an essentially flat potential which
gives the P-C-P linkage a fluxional nature, allowing it to invert easily. This,
and the results of EPR experiments, have led to the suggestion that the radical
anion [Ar-P=C=P-Ar]" is best described by two equivalent allylic structures

Ar-P—C=P-Ar ¢ Ar-P=C_P-Ar

where the ‘resonance’ is brought about by the fluxional P-C-P linkage. These
resonance forms are suggested by the molecular orbital viewpoint which
involves the additional electron entering an antibonding allylic orbital and thus
weakening/breaking the P=C bond.

Clearly, obtaining an ab initio description of a system as large as this with
a reasonable basis set is an unrealistic undertaking. Thus we have chosen to use
the layering method (IMOMO) of Morokuma and coworkers [38], in which the
full system is divided into three sets with coordinates denoted by R;, R, and
R, respectively.

Set3(Ry)  Bu' . .

E NH
i P—=C=P'
=Y :

] Set2(Ry)!  Set1(Rp) ! Set2(R,)

y '
Set 3 (Ry) ' :
Real system Model system

The model system we have treated with the BOVB method and the full system
with the PM3 semiempirical method. The total energy is evaluated as

E(RI’Rs)=Eﬁom(R1,A’2) + L3 (RlsR3) ~ L3 (RI’RZ) (31)

The gradients of Eq. (31) with respect to geometrical parameters may be
evaluated straightforwardly.

For the BOVB description of the neutral system we chose the four
electrons of the allylic @ system and used a 6-31++G(d,p) basis [39]. We
carried out geometry optimizations at the BOVB(4, V)/6-31++G(d,p):PM3 level
for the neutral and found very good agreement with the X-ray structure. For
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the radical anion we included in the BOVB orbital space one additional allylic
orbital from the starting set of spin-restricted open-shell Hartree-Fock orbitals.
We located both cis and trans forms of the radical anion at the BOVB(S,V)/6-
31++G(d,p):PM3 level. Our calculations agree with the findings of previous
ab initio calculations, on the model HPCPH system, in that we find the cis
structure is more stable than the frans structure by 2.0 kcal mol™.

Fig. 9. BOVB(4, ¥)/6-31++G(d,p) orbitals of the —P=C=P— fragment of Ar-P=C=P-Ar (see
text for description) :
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Our concern here is the nature of the radical anion. In Fig. 9 the
BOVB(4, V) orbitals of the neutral are shown. The wavefunction is dominated
by a single spin-coupling, ¢;— @2 ¢3—@4, with a weight of 0.981. The
overlap integrals (([)1 ‘¢2>=<¢3 |¢4>=0.600, with all other overlap integrals

being two orders of magnitude smaller.

Fig. 10 shows the BOVB(S, V) orbitals of the frans radical anion. Two
spin-couplings make a significant contribution: ¢,—¢3 ¢s—0¢s ¢;, with a
weight of 0.727 and ¢;—d4 ¢2—¢3 @5, with a weight of 0.129. The orbital
overlap integrals are given in Table 8. Clearly the double bonds of the P-C-P
linkage still appear intact. Although ¢4/¢s have been distorted by having the
high-spin electron largely localized on the P atom on the left hand side. A
small amount of high-spin character is also attributed to ¢s by the second spin-
coupling. From these results we suggest a better scheme for depicting the
radical anion might be

Ar-P=C=P-Ar & Ar-P=C=P-Ar

which emphasizes that the attachment of an electron does not automatically lead
to the disruption of the P=C bond.

The use of the layering scheme combined with our BOVB methods
provides one route to valence bond studies of large molecular systems. These
types of studies merit much more investigation. The layering technique can of
course be adapted to any form of energy calculation and hence any type of
valence bond calculation. It opens up new horizons for ab initio valence bond
methods, which have traditionally been used mostly for small molecule studies.
Ironically (perhaps), the small molecule ab initio calculation gets to stay (which
pleases the theoretician), but it takes on the appearance of ‘reality’ through the
intermediation of Eq. (31). For systems very much larger than those studied
here it is possible to add a further layer to Eq. (31), and introduce a yet lower
level of theory (molecular mechanics) to produce a three-layer calculation.

Table 8
Overlap integrals obtained from BOVB(S,V)/6-311++G(d,p) wavefunction for
[Ar—-P=C=P—Ar]" (see Fig. 10 for orbitals)

o1 107 03 04 05
o 1.000
V%) -0.165 1.000
3 0.129 0.656 1.000
(N 0.813 0.103 0.247 1.000

Os 0.399 0.081 0.263 0.730 1.000
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Fig. 10. BOVB(S, V)/6-31++G(d,p) orbitals of the —P=C=P— fragment of [Ar-P=C=P-Ar]"
(see text for description)
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5. CONCLUSIONS

It is appropriate to conclude by asking what the BOVB method has to offer
valence bond theory in general and, perhaps more importantly, what it may
offer the larger area of quantum chemistry as a whole.

The BOVB method does not lend itself for use as a ‘black box’ method.
The same is true of any valence bond approach. The user must have some
understanding of the underlying electronic structure of the system under study.
Only then will they be able to make sane choices for the orbital partitioning and
spin-coupling problems. This aspect may be viewed as a strength or a
weakness, depending on one’s point of view. However, it does mean that the
‘preparative’ stage of a calculation is very much more labour-intensive than a
corresponding calculation using, for example, a Hartree-Fock based or density
functional method. Computationally, like any multiconfigurational method,
there are significant overheads in obtaining transformed molecular integrals and
dealing with a sometimes large eigenvalue problem. To treat large molecular
systems some form of layering and/or hybrid and/or semiempirical
methodology must be employed. The wavefunctions obtained from BOVB
calculations are not always as compact as those from spin-coupled valence bond
studies, but they are sufficiently compact and accurate to be a useful extension
of valence bond methods. There also remain essential developments in the
BOVB method which are required, such as gradients for general BOVB
wavefunctions and a compact treatment of the dynamic electron correlation
problem.

At present, the BOVB method is able to treat large numbers of electrons in
nonorthogonal orbitals, provided some restriction of the spin space is imposed.
This combined with layering techniques for managing large numbers of atoms
should provide a route into many areas of molecular research which have
traditionally been ‘too big’ for all atom valence bond calculations. The
developments of the last decade bear witness to the fact that as the number of
valence bond studies on real problems increases, so the following for the
valence bond approach grows. The future of valence bond methods appears
bright.
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Ab initio modern valence bond theory, in its spin-coupled valence bond (SCVB)
form, has proved very successful for accurate computations on ground and excited
states of molecular systems. The compactness of the resulting wavefunctions
allows direct and clear interpretation of correlated electronic structure. We
concentrate in the present account on recent developments, typically involving
the optimization of virtual orbitals via an approximate energy expression. These
virtuals lead to higher accuracy for the final variational wavefunctions, but with
even more compact functions. Particular attention is paid here to applications of
the methodology to studies of intermolecular forces.

1. INTRODUCTION

Various methods are now available for computing highly accurate total
energies and molecular properties for ground and excited states of small
molecular systems. Unfortunately, the ever-increasing sophistication of such
wavefunctions tends to make it more and more difficult to obtain direct insight
into the physical and chemical details of the molecular electronic structure. As
such, there is of course much interest in developing alternative strategies that
can obtain useful accuracy with relatively compact wavefunctions, thereby
allowing the development of appropriate models that provide reliable predictions
for larger systems. Of course, as well as being compact, the descriptions need to
be accurate if we are to trust the predictions of the derived models. At least in
principle, valence bond theory has always offered direct and clear interpretation
of the wavefunction, but intrinsic difficulties linked to the nonorthogonality of the
orbitals, as well as to the apparent high contributions from ionic structures, have
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meant that VB approaches have received relatively minor attention from the
chemical community.

As evidenced by numerous contributions to this volume, recent years have
seen a significant resurgence of interest in ab initio VB approaches, with a
prominent role being played by algorithms for computing so-called ‘modern VB’
wavefunctions, such as in spin-coupled valence bond (SCVB) theory. In the
present account, we summarize key features of the basic spin-coupled and SCVB
approaches, before describing recent extensions that combine the required
degrees of compactness and accuracy by utilizing optimized virtual orbitals.
Particular attention will be devoted to the application of the methodology to
studies of intermolecular forces, which pose additional problems.

2. SC APPROACH

The SC method describes an N-electron molecule through a set of N singly
occupied SC orbitals {¢,} which are completely free to overlap with one another.
The coupling of the spins is described by a linear combination of the full space of
f." spin eigenfunctions {6},,}, where S,M are the usual spin quantum numbers,
and

. @S+DNV!
1 = GaN+S+DICAN-I)! 1

The most general single-configuration wavefunction that can be set up using the
N SC orbitals may be written [1,2]:

fN
‘Psc =4 ¢1¢2"'¢N icw. egwg (2)

k=1

in which # is the antisymmetrizer, needed to satisfy the Pauli principle, and the
¢, are called spin-coupling coefficients.

The N SC orbitals are expanded in a proper basis set of m basis functions {y,}:
¢,=2c,x%, ®

Hence the expectation value of the energy becomes a function of the {c,} and {c}
coefficients:

Yo [H|Y,
E = g?‘?sﬁ:)xz = E({cip}){csk}) N

in which H is the usual nonrelativistic clamped-nucleus hamiltonian. The various
free parameters are evaluated on the basis of the variational principle, using a
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robust minimization algorithm based on a stabilized Newton-Raphson procedure.
This last requires the evaluation of first and second derivatives of the energy
with respect to the variational coefficients, using density matrices up to third
order (for the gradient) and up to fourth order (for the hessian).

It is straightforward also to include a ‘core’ of doubly-occupied orthonormal
orbitals, which may either be taken unchanged from prior calculations or
optimized, simultaneously with the {c,} and {c,} coefficients, as linear
combinations of the {x,}. Multiconfiguration variants of the SC wavefunction
may also be generated, if required, and calculations may be performed directly
for excited states.

In general, SC wavefunctions are not invariant to linear transformations of the
{¢), so that the converged solution is a unique outcome of the optimization
procedure. There is slightly more flexibility in the numerical values of the spin-
coupling coefficients, which depend on the particular choice of full basis used in
the calculations, but it is routine to transform exactly between different spin
bases. The shapes of the SC orbitals, and their variations with nuclear geometry,
provide direct insight into the spatial arrangements of the electronic clouds, the
hybridization of the atoms, and processes of bond making and bond breaking. The
spin-coupling coefficients, and/or matrix elements of appropriate spin operators,
furnish a quantitative description of the relative importance of the different
modes of spin coupling. This gives the possibility, for example, of elucidating the
role of different resonance structures to the overall wavefunction.

In this way we may obtain a compact single-configuration wavefunction of
comparable accuracy to a many-configuration ‘N electrons in N orbitals’ CASSCF
description. It must be stressed that no constraints are imposed on the SC
orbitals, which are determined solely only on the basis of the variational
principle, but a typical outcome is a set of functions mostly localized on individual
atoms but distorted towards all neighbouring atoms, especially along the
direction of bonds. As such, it is often straightforward to interpret SC
wavefunctions in terms of traditional chemical concepts. An important
consequence of these ‘overlap enhancing’ orbital distortions is a much reduced
role for ionic configurations.

Basis set superposition error (BSSE) is a particular problem for supermolecule
treatments of intermolecular forces. As two moieties with incomplete basis sets
are brought together, there is an unavoidable improvement in the overall quality
of the supermolecule basis set, and thus an artificial energy lowering. Various
approximate corrections to BSSE are available, with the most widely used being
those based on the counterpoise method (CP) proposed by Boys and Bernardi [3].
There are indications that potential energy surfaces corrected via the CP method
may not describe correctly the anisotropy of the molecular interactions, and there
have been some suggestions of a bias in the description of the electrostatic
properties of the monomers (secondary basis set superposition errors).
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Not surprisingly, there have been various attempts to develop methods for the
a priori elimination of BSSE, including the development of appropriate effective
hamiltonians. Of particular relevance to the present work is the idea of
partitioning the supermolecule basis set between the various molecular
fragments, of identifying the total number of electrons associated with each
fragment, and then of developing each orbital using only the basis functions of
the particular fragment. At the RHF level, this procedure has been termed self-
consistent field for molecular interaction (SCF-MI) [4,5]. The SCF-MI method
has been applied successfully to a variety of systems, ranging from the well
known problem of the water dimer up to pairs of nucleic acids [5]. Much the same
type of approach can be implemented almost immediately within the SC
methodology.

Indicating with {x)} and {x;} the atomic basis functions centred on the moieties
A (with N, electrons) and B (with N, electrons), respectively, the SC orbitals are
expanded in the form:

mA
=2 cx for i=1,2,...,N,
p=1

mB
o= cx for i=1,2,...,N, 5)
p=t

Of course, the SC orbitals associated with a particular fragment are completely
free to overlap with one another, and with all of the SC orbitals of the other
fragment(s). In particular, the {¢/} are free to extend spatially over the nuclei of
the B molecule, using the tails of the atomic functions {x,}, thereby taking into
account also effects connected to charge transfer interactions. Various
calculations have confirmed that such a SC wavefunction is able to describe in a
compact way the ground state of a weakly-bound system, without biasing the
results with BSSE.

3. SCVB

The converged SC orbitals satisfy orbital equations of the form [6]:
907 = "¢ i=1,...,.N and j=1,....m 6)

such that one of the solutions coincides with the SC orbital ¢, already determined
by the variational procedure and the higher solutions are virtual orbitals. Due to
the mathematical structure of the hermitian operators {f*}, each orbital ‘feels’ a
field generated by only the remaining N-1 electrons, so that low-lying virtuals
provide rather good descriptions of actual excited states. Each of the f generates
its own ‘stack’ of m orthonormal functions, but orbitals in different stacks may
overlap one another.
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Starting from the ground-state SC configuration and/or from other appropriate
reference configurations, additional configurations may be generated by replacing
one or more occupied orbitals with virtual orbitals. ‘Vertical’ excitations are those
within individual stacks. Configurations with doubly occupied orbitals, obtained
by means of ‘cross excitations’, are termed ionic. Once all the desired structures
have been generated, the best linear combinations of them are determined by
constructing and resolving the corresponding secular problem using efficient VB
strategies [7,8]. The various roots are called SCVB wavefunctions and
correspond, of course, to different electronic states.

Calculations on quite a large variety of systems have shown that the SCVB
approach can generate molecular properties and relative energies of an accuracy
comparable to MO-CI methods, but using expansions built from orders of
magnitude fewer configurations. In addition, it is very common to find that very
few VB structures have an appreciable weight in any given excited state, thereby
making it very straightforward to deduce a reliable and insightful qualitative
interpretation of the electronic structure.

In recent years, the SCVB approach has proved particularly useful in studies
of low-energy charge transfer collisions in astrophysical plasmas [9]. The usual
strategy is to consider only vertical excitations into low-lying virtuals, plus
associated ionic configurations, taking as reference functions the dominant
structure for each state of interest. It is important to achieve good accuracy for
several asymptotic energy separations, as these determine to a large extent the
positions and the nature of (avoided) crossings. However, it is just as important
to maintain this high accuracy for all geometries, and for many states of different
spin and spatial symmetry. The compactness of the final SCVB wavefunctions
proves particularly beneficial for the computation of the required radial
(nonadiabatic) couplings. The ease of identifying the qualitative character of each
state, over the entire range of nuclear geometries, is an important asset when
transforming the adiabatic molecular data to the p-diabatic representation that it
is used in the fully-quantal scattering calculations.

4. SCVB*

We are especially interested in calculating accurate intermolecular potentials
to be used with classical and quantum dynamics programs. Particularly for
systems with larger numbers of valence electrons, we need to be able to obtain
very accurate SCVB wavefunction by means of even smaller numbers of
structures. To accomplish this we have devised a new approach in order to
generate one or more ‘optimal’ virtual orbitals for each occupied SC orbital [10].
We concentrate here on the case of a single properly optimized virtual orbital ¢f
for each SC occupied orbital ¢,
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The determination of these virtual orbitals {¢J..'} is carried out by augmenting
the converged SC wavefunction with all double vertical excitations into the
unknown virtuals:

N
Y, =¢ ¥ + 2 cii\Pii @
i>j
where
fN
P =] 00,000, Sc06f, ®)
k=1

Our task is to find virtual orbitals {¢j} that minimize the total energy of the
wavefunction ¥, but, in order to reduce the overall computational effort, we now
invoke the following approximations:
1) the spin coupling coefficients cg’: appearing into the excited configurations
are fixed to the values found for the SC reference configuration.
2) the virtual orbitals are optimized with respect to the energy of the overall
wavefunctions by means of a second order perturbation approximation.
The use of this perturbation approximation to compute optimized virtual orbitals
introduces a major saving. We need only compute diagonal and first row
elements of the hamiltonian and overlap matrices, because the relevant energy
expression takes the form:
— 2
E®=H_+ ﬁ: (H o y~HS o] ©)
inj Hoos(éi.m_me

isf

in which H,=(¥_|H|¥,), S,=(¥«|¥,), and so on. The hamiltonian and overlap
matrices are computed using the usual Lowdin formula for the evaluation of
matrix elements between Slater determinants built from non-orthogonal orbitals.
Many of the efficient computational strategies adopted in the SC
methodology [11] have been used in this new approach. However, the bra and ket
orbitals are now different, with the resulting loss of symmetry in the density
matrices elements leading to some additional computational overhead [10].

The most convenient procedure for attaining the minimum of the second order
perturbation expression of the energy, so as to generate the optimized virtual
orbitals, depends on the kind of problem being studied. In the case of
intermolecular interactions, convergence is quite easy with just a gradient-based
procedure. The minimization scheme can be recast in such a way that the
coefficients of the improved virtual orbitals can be obtained, at each step, by a
resolution of a linear system of N,+IV, equations. Specifically:

FC = ¢
FC° = ¢ (10)

i
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in which F* (F’) is a square matrix of order m, (m,), and C/ (C”) is a column
vector of dimension m, (m,) containing the new updated -coefficients
corresponding to the virtual orbital ¢:'.

Ultimately, the SC occupied orbitals and the optimized virtuals are used to
construct the final, variational SCVB* wavefunctions. These take the form:

Yo = Co ¥ + ﬁ e, + ﬁ', c, ¥, 11
: ™
and thus consist of:

a) The SC reference configuration ¥, i.e. f;' structures.

b) Singly-excited configurations ¥, where the occupied SC orbital ¢, has been
replaced by its own optimized virtual orbital ¢:', i.e. Nxf." structures. These are
included to improve the description of molecular properties and to take
account of orbital relaxation.

¢) Doubly-excited configurations ¥, in which pairs of occupied orbitals ¢, and ¢,
have been replaced by their own optimized virtual orbitals ¢‘: and ¢J+_, Le.
KN(N+1)xf." structures.

The quality of the final results, as well as the relative numerical values of

appropriate c; coefficients, provide reassurance as to the quality of the

approximations invoked during the optimization of the virtuals.

The interaction between a helium atom and the LiH molecule has been
described using a SCVB* wavefunction built up using just 25 structures.
Interaction energies, computed along different approaches of the two moieties,
compare extremely well with a corresponding traditional SCVB calculation using
many more structures. Even a very small energy minimum of about 0.01
mHartree is perfectly reproduced for He at a distance of R=11 bohr from the
centre of mass of the LiH molecule (collinear approach of He to H-Li).

In addition to further correlating the ground state of a single molecule, the
SCVB* procedure can also be used to describe its excited states. However, a
minimization procedure based on a first-order approach tends not to give good
convergence in such cases. Instead, we have adopted a stabilized Newton-
Raphson scheme, as in the usual SC approach, but we use an approximate
expression for the second derivative that requires only density matrices up to
third order [12]. The resulting procedure has been shown to be quite stable.

5. MR-SCVB* APPROACH

So far, we have described SCVB-based approaches in which dynamical
correlation is introduced by means of excitations from one or more reference
functions that are constructed from the occupied and virtual orbitals of one
electronic state. A recent advance is the implementation of a multireference
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approach involving optimization of a set of properly-bound spin-coupled
configurations: these last may be used as ‘references functions’ for the virtual
orbital optimization and for the construction of the final non-orthogonal
configuration interaction wavefunctions, which may be termed MR-SCVB*.
Rather than use the general multiconfiguration SC procedures that have been
used previously for excited states, it turns out to be more appropriate to start
from an approximate approach [13} to the excited states problem.

Motivated by the orthogonality of different electronic states, proper bounds
may be imposed on excited-state SC configurations by means of orthogonality
constraints against the ground-state configuration. We can obtain appropriate SC
excited functions simply by imposing orthogonality relations between the orbitals
of the ‘excited’ functions and the orbitals of the ground-state configuration. In
this context, we are mainly interested in states characterized by different spatial
configurations, simply because those that differ mostly in the mode of spin
coupling can already be described by means of different linear combinations of
the {©] .}

SM:A

There is, of course, no shortage of plausible orbital orthogonalization schemes.
Applying different constraints on the orbitals results in functions that can have
very different energies and which can, in principle, be more appropriate for
different excited states. In particular, we have found in practice that the lowest
energy ones do indeed turn out to be good representations of the lower-lying
excited states. Functions with higher energy lose such correspondence with
specific excited states, but they are useful tools for the construction of
multireference wavefunctions without problems of linear dependence.

The general strategy is to start with a conventional single-configuration spin-
coupled calculation for the lowest state of the given symmetry. Certain of the
occupied orbitals are then designated as ‘active’ for the next stage of the
calculations. The ‘excited’ orbital space is simply the orthogonal complement of
the space spanned by the chosen active set, and the dimension of the active set
fixes the number of excited orbitals that have to be constrained during
optimization of the excited spin-coupled functions. For a three-electron system:
we can consider an active set of dimension three and constrain one excited orbital
to be orthogonal to those of the ground state; or, we can consider an active set
formed by two of the three orbitals (there are three possibilities here) and then
constrain two excited orbitals; or, finally, we can take a simple one-dimensional
active set (there are again three possibilities) and constrain all the excited
orbitals. The actual choice of active set depends on the problem under
consideration. Since the approach appears more useful for low-lying excited
states, one is mainly interested in orthogonalization schemes that produce low-
energy solutions. It is certainly not necessary to test all of the possible
orthogonalization schemes, not least because it is often straightforward to
identify orbitals that are not likely to be altered substantially between the
different states of interest.
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In practice, the introduction of the orbital constraints is very simple: it is
sufficient to switch from a pure atomic basis set to a projected one, adapted to the
decomposition of the one-electron space into an active and an excited space. The
orthogonality constraints on the orbitals are thus realized by the expansion of the
excited state orbitals within the projected basis set. Good results are obtained
employing both the N:1 scheme (V orbitals orthogonal to one ground state
orbital) and the 1:N scheme (one excited orbital orthogonal to all the ground state
orbitals). The overall computational cost is currently determined by three stages:
the (Gram-Schmidt) orthogonalization, the four-index transformation to the
projected basis set, and the optimization of the excited SC configurations.

Once the proper spin-coupled excited reference state has been obtained, the
type of optimization procedure described in the previous Section may be used to
generate virtual orbitals, and thus to introduce dynamical correlation directly
into the excited states of interest. It should be noted that such optimization has
to be modified slightly to avoid the collapse of the doubly-excited configuration
towards the ground state. The modifications consist simply in a set of additional
orthogonality constraints, analogous to the previous ones, to be imposed during
the virtual orbital optimization procedure.

The method has been used to study the LiH; system [13,14,15] for which the
main interest was in the first excited state, which governs the dynamical
behaviour of the neutral LiH molecule in the presence of a naked proton. Various
nuclear configurations have been sampled, both in the subreactive [14] and
reactive regions of the configuration space [13]. It turned out that a simple two-
reference VB wavefunction was sufficient for the subreactive study, while the
stretching of the LiH bond in the reactive regions required the use of an
additional reference function. For this system, the ground state SC wavefunction
has the form:

2
Vo =A ¢ls¢;s¢HA¢HB Z} Cor ego;k 12)

in which ¢,, ¢/, are localized on Li and represent the 1s* core, and g, Oy, are
atomic orbitals mostly localized on the hydrogen atoms. In the subreactive
domain, the lowest excited spin-coupled reference turned out to be that obtained
by applying the N:1 scheme, in which the active orbital was that with the highest
orbital energy. The corresponding excited wavefunction takes the form:

2
‘Pscz =4 ¢1s¢;s¢H¢ZS(Li) gcok @30;12 (13)

in which ¢, is based on a 1s orbital centred on the H atom closest to the Li site
and ¢,,,, resembles the somewhat deformed Li(2s) orbital in the isolated LiH
molecule. This excited spin-coupled function describes correctly the physical
situation of a proton impinging on a neutral LiH molecule. This configuration can
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also describe correctly the region of the proton exchange reaction, because of the
change of character of the active ¢, orbital, from the 1s orbital of the projectile
hydrogen to the 1s orbital of the target hydrogen (due to the crossing of the SC
orbital energies). In fact, the first and second excited states strongly interact with
each other in this region, leading to a maximum or ‘bump’ in the energy profile of
the C, symmetric configuration. This bump is observed also in full-CI
calculations and it is clearly reproduced by the simple (excited) SC curve, as
shown in the left-hand panel of Figure 1, in which potentials calculated with only
the SC functions are compared with the full-CI data.

r=r (LiH) and ©=169.0
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Figure 1. Comparison between VB and full-CI results with the same basis-set for
the LiH, system as a function of projectile-target distance. The r(LiH) distance is
fixed at the equilibrium distance of the diatomic molecule and the Jacobi angle
(the projectile-LiH centre of mass-target H angle) is fixed at the value of 169°.

The right-hand panel of Figure 1 compares the excited curve obtained from the
final MR-SCVB* (or, MRVB for short) calculation with that from the full CI. In
this study, starting with the double-reference SC functions, we optimized a set of
4 pairs of virtuals for each reference and, at the end, we built a VB wavefunction
consisting of 84 spatial configurations for a total of only 125 VB structures. This
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contrasts markedly with the 1654650 determinants of a full-CI calculation in the
same basis set.

The additional SC reference function required for the reactive domain takes
the form

Ve = A ¢Is¢;s¢25(Li)¢U (H;) Z;cok 630;12 (14)

and is in fact lower in energy than ¥,,,. The H;(c,) orbital in ¥, was the outcome
of the 1:N orthonormalization scheme.

6. APPLICATIONS OF SCVB* AND MR-SCVB*

Only the lightest elements (H, D, He, Li and trace amounts of Be) are thought
to have been present in the early universe, with the chemistry being based on
simple binary collisions and processes involving photons (absorption, emission
and the scattering of cosmic background radiation) [16]. The small fraction of the
atomic gas which had become molecular could lead to radiative cooling, and
thereby play an important role in the collapse of protogalactic clouds. We have
studied a number of gas phase collision processes that may be important for
developing reliable cosmological chemical evolutionary models. In particular, the
SCVB* method, either in its single or multireference formulation, has been
applied to processes involving LiH, ranging from simple bimolecular reactions to
rovibrational energy transfer in inelastic collisions with He.

A full subreactive potential energy surface was computed for the LiH+He
system [17,18], avoiding BSSE a priori by expanding all orbitals in the properly
chosen sets of ‘target’ and ‘projectile’ basis functions. The computed points span a
wide range of values of the scattering coordinate and of the usual Jacobi angle for
each of five chosen Li—H distances in the bottom of the target diatomic well. The
orientation dependence of the potential was subsequently expressed in Legendre
polynomials and the dependence on scattering coordinate was fitted using
Laguerre functions. The dependence on Li-H distance was interpolated with
cubic splines and used to compute the vibrational couplings which govern the
vibrational energy transfer. The (fitted) PES was used in quantum mechanical
calculations of cross sections for rovibrational energy transfer in the LiH
molecule by He impact. State-to-state rate constants were generated for a range
of temperatures of astrophysical relevance.

The reliability of the PES may be judged by comparing rigid-rotor close-
coupling calculations of rotational inelastic scattering cross sections with the
experimental data that are available for a collision energy of 0.32eV [19].
Although the first vibrationally excited channel is open at this high collision
energy, the weak vibrational coupling prevents a substantial loss of flux into such
excited states, and so very similar results are obtained with V-R close-coupling
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calculations. As can be seen from Figure 2, the agreement of the theoretical
results with the experimental data is especially good for the lowest Aj transitions.
Deviations for higher transitions may reflect imprecision in the experimental
data, which could be viewed as lower bounds to the scattering cross sections.

Collision energy 0.32 eV
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Figure 2 Experimental and theoretical results for the rotationally inelastic
integral cross section in the LiH + He scattering system.

Also displayed in Figure 2 are results of analogous dynamical calculations
using instead a